Probabilistic Analysis of Immersed Tunnel Settlement Using CPT and MASW

Total Page:16

File Type:pdf, Size:1020Kb

Probabilistic Analysis of Immersed Tunnel Settlement Using CPT and MASW Probabilistic analysis of immersed tunnel settlement using CPT and MASW Bob van Amsterdam January 16, 2019 Version: Final report Probabilistic analysis of immersed tunnel settlement using CPT and MASW Bob van Amsterdam Thesis committee: Prof. Dr. ir. K.G. Gavin Geo-engineering TU Delft Assoc. prof. Dr. ir. W. Broere Geo-engineering TU Delft Ir. K.J. Reinders Hydraulic engineering TU Delft Dr. ir. C. Reale Geo-engineering TU Delft January 16, 2019 Abstract Settlement data of the Kiltunnel and the Heinenoordtunnel show that immersed tunnels in the Netherlands have been experiencing much larger settlement than expected when designing the tunnels causing cracks in the concrete and leakages in the joints. Settlements of 8 - 70 mm have been measured at the Kiltunnel and of 7 - 30 mm at the Heinenoordtunnel while settlements in the range of 0 - 1 mm were expected. Both sites are investigated through non-invasive geophysical site investigation method MASW (Multichannel Analysis of Surface Waves) for each 2.5 meter along the length of the tunnel and invasive site characterisation method CPT’s (Cone Penetration Tests). The settlement of immersed tunnels is similar to that of a shallow foundation. It can be modelled using the Mayne equation which uses the small strain shear stiffness and the degradation of secant stiffness based on the load compared to the ultimate bearing resistance. A way of characterising the site is determining the small strain stiffness directly from the shear wave velocity using the uncertainties in the relationship between shear wave velocity and cone penetration resistance and correlating the cone penetration resistance to this value. The correlation between the cone penetration resistance and shear wave velocity or small strain shear stiffness at the Heinenoord site is, however, so weak that it practically means that all possible qc values should be considered. Another way is to use both the shear wave velocity and the cone penetration resis- tance separately to characterise the site. The cone penetration resistance profiles are modelled stochastically based on the statistical data and the scales of fluctuations from the CPT’s. The vertical scale of fluctuation at the Heinenoord site ranges from 0.06 - 1.44 meter for sands and 0.19 - 1.37 meter for clays. The horizontal scale of fluctuation of the cone penetration test could not be determined accurately enough to use in a model due to lack of data within the correlation length. The horizontal scale of fluctuation of the shear wave velocity is a different quantity than v the horizontal scale of fluctuation of the cone penetration resistance because it has been shown that it is at least a factor 10 larger for the Heinenoord site. The 5% and 95% boundaries of the initial settlement at the middle element of the Heinenoordtunnel are 4.04 - 4.68 mm, this settlement can not be compared to the measured settlement because it has occurred before the start of the measurements. The 5% and 95% boundaries of the creep settlements that are calculated for the middle element of the Heinenoordtunnel are 0.39 - 0.80 mm in 1996. This is much smaller than the measured settlement of around 7 mm. The 5% and 95% boundaries of the initial settlement at the middle element of the Kiltunnel are 1.82 - 2.27 mm. The creep settlements that are calculated for the middle element of the Kiltunnel are in the order magnitude of 1.98 - 3.19 mm in 2018. This is much smaller than the measured settlement of around 7.5 - 18.1 mm in 2018. To see if cyclic loading has an effect on the settlement of the middle section the effect of thermal expansion and contraction of the elements and the cyclic loading of the tides is examined. The thermal expansion and contraction of the elements at an angle loaded the middle element. The expansion of the Gina Gaskets between the flat element and the elements at an angle is between -3 and 3 mm. This expansion and contraction of the Gina Gasket causes a vertical load on each of the edges of the middle element of 268 kN. This causes a settlement of 0.47 - 0.58 mm in 1996 at the edges of the middle element of the Heinenoordtunnel and a settlement of 0.42 - 0.55 mm in 2018 of the edges of the middle element of the Kiltunnel. This means that it does have a small influence on the settlement of both tunnels measured at these joints but does not explain all occurred settlement. The tide loads both tunnels because there is a layer of sludge on the bottom of the rivers that could cause a decay and a lag in the fluctuation of the pore pressures in the deeper sand layers. This means that the effective stress in the deeper sand layers can increase and decrease due to the tides. No accurate measurements are available for the fluctuations of these pore pressures in the deeper sand layers. For an indication of the settlement of the Heinenoordtunnel and the Kiltunnel under the loading of the tides a few calculations have been performed using an assumed lower bound of 40% and an upper bound of 90% of loading of the tides. At the Heinenoord the lower bound scenario gave results between 4.99 - 7.51 mm, which means that the measured values of around 7 mm are within the range of the vi results, while the upper bound scenario gave results between 10.05 and 15.57 mm which is larger than the measured values. At the Kiltunnel there is no real trend of which bound is more accurate compared to the measured settlements. At location 21 and 23 the lower bound is more accurate, at location 19, 25 and 27 the upper bound is more accurate while for location 29 the measured settlement is somewhere in between the two bounds. At location 19 even the 95 % of the upper bound (21.34 mm) is much smaller than the measured settlement (around 34 mm). The difference in shear wave velocity is not that large and can not explain the large difference in settlement while the information from the CPT’s is so limited that it is not possible to determine if there is a difference between location 19 and the other locations. These calculations show that there is a possibility that the settlements have occurred through a combination of the creep, the temperature effects and the loading of the tides but it does not conclude that all settlements occur because of these loading conditions. vii Contents Abstract v 1 Introduction 1 1.1 Problem statement . 1 1.1.1 Kiltunnel . 1 1.1.2 Heinenoordtunnel . 2 1.2 Scope of the project and research questions . 4 1.3 Reading guide . 5 2 Literature study 7 2.1 Multichannel analysis of surface wave (MASW) . 7 2.1.1 Parameter selection from MASW . 9 2.2 Cone penetration test (CPT) . 10 2.3 Settlement and bearing capacity calculations for shallow foundations 13 2.3.1 Conventional calculations . 13 2.3.2 CPT-based approaches . 15 2.3.3 Mayne model . 16 2.3.4 Zone of influence . 17 2.3.5 Creep settlement . 20 2.3.6 Cyclic loading model for sand . 20 2.4 Scales of fluctuation . 21 2.4.1 Vertical scale of fluctuation . 23 2.4.2 Horizontal scale of fluctuation . 24 2.5 Correlations CPT’s and MASW in literature . 24 2.5.1 Correlation shear wave velocity and cone penetration resistance 25 2.5.2 Correlation small strain shear stiffness and cone penetration resistance . 27 2.6 Concluding remarks literature study . 28 3 Site investigation 29 3.1 Site investigation Kiltunnel . 29 3.1.1 MASW Kiltunnel . 30 3.1.2 CPT’s Kiltunnel . 31 3.2 Site investigation Heinenoordtunnel . 31 ix 3.2.1 MASW Heinenoordtunnel . 32 3.2.2 CPT’s Heinenoord . 33 4 Correlations between MASW and CPT 35 4.1 Correlations CPT’s and MASW . 36 4.1.1 Correlation shear wave velocity and cone penetration resis- tance at the Heinenoord site . 37 4.1.2 Correlation small strain shear stiffness and cone penetration resistance . 39 4.2 Filtering measurements from multiple layers . 40 4.3 Comparison to literature . 42 4.4 Concluding remarks correlation approach . 43 5 Stochastic ground model approach 45 5.1 Statistical analysis . 47 5.1.1 Vertical scale of fluctuation . 48 5.1.2 Horizontal scale of fluctuation . 49 5.2 Soil profile simulations . 53 5.3 Determining ultimate bearing resistance . 55 5.4 Determining small strain modulus . 55 5.5 Loading conditions . 57 5.5.1 Static loading Kiltunnel . 57 5.5.2 Static loading Heinenoordtunnel . 58 5.6 Settlement calculations . 59 5.6.1 Verification at Blessington site . 59 5.6.2 Settlement calculations Heinenoordtunnel site . 61 5.6.3 Settlement calculations Kiltunnel site . 66 5.7 Concluding remarks stochastic ground model approach . 70 6 Cyclic loading 73 6.1 Thermal expansion and contraction of the tunnel lining . 73 6.1.1 Settlement of Heinenoordtunnel due temperature fluctuation 76 6.1.2 Settlement of Kiltunnel due temperature fluctuation . 78 6.2 Tidal loading . 78 6.2.1 Lower bound scenario . 81 6.2.2 Upper bound scenario . 82 6.2.3 Settlement calculations Heinenoordtunnel . 83 6.2.4 Settlement calculation Kiltunnel . 86 6.3 Concluding remarks cyclic loading . 89 7 Conclusions 91 8 Recommendations 93 x Bibliography 95 Appendices 99 A Appendix A: Statistical data CPT’s Heinenoord 101 B Appendix B: Hand calculations 109 B.1 Determining ultimate bearing resistance for the Mayne equation . 109 B.2 Determining the applied load on the middle section of the Kiltunnel .
Recommended publications
  • CPT-Geoenviron-Guide-2Nd-Edition
    Engineering Units Multiples Micro (P) = 10-6 Milli (m) = 10-3 Kilo (k) = 10+3 Mega (M) = 10+6 Imperial Units SI Units Length feet (ft) meter (m) Area square feet (ft2) square meter (m2) Force pounds (p) Newton (N) Pressure/Stress pounds/foot2 (psf) Pascal (Pa) = (N/m2) Multiple Units Length inches (in) millimeter (mm) Area square feet (ft2) square millimeter (mm2) Force ton (t) kilonewton (kN) Pressure/Stress pounds/inch2 (psi) kilonewton/meter2 kPa) tons/foot2 (tsf) meganewton/meter2 (MPa) Conversion Factors Force: 1 ton = 9.8 kN 1 kg = 9.8 N Pressure/Stress 1kg/cm2 = 100 kPa = 100 kN/m2 = 1 bar 1 tsf = 96 kPa (~100 kPa = 0.1 MPa) 1 t/m2 ~ 10 kPa 14.5 psi = 100 kPa 2.31 foot of water = 1 psi 1 meter of water = 10 kPa Derived Values from CPT Friction ratio: Rf = (fs/qt) x 100% Corrected cone resistance: qt = qc + u2(1-a) Net cone resistance: qn = qt – Vvo Excess pore pressure: 'u = u2 – u0 Pore pressure ratio: Bq = 'u / qn Normalized excess pore pressure: U = (ut – u0) / (ui – u0) where: ut is the pore pressure at time t in a dissipation test, and ui is the initial pore pressure at the start of the dissipation test Guide to Cone Penetration Testing for Geo-Environmental Engineering By P. K. Robertson and K.L. Cabal (Robertson) Gregg Drilling & Testing, Inc. 2nd Edition December 2008 Gregg Drilling & Testing, Inc. Corporate Headquarters 2726 Walnut Avenue Signal Hill, California 90755 Telephone: (562) 427-6899 Fax: (562) 427-3314 E-mail: [email protected] Website: www.greggdrilling.com The publisher and the author make no warranties or representations of any kind concerning the accuracy or suitability of the information contained in this guide for any purpose and cannot accept any legal responsibility for any errors or omissions that may have been made.
    [Show full text]
  • Presentation Slides
    Center for Accelerating Innovation Advanced Geotechnical Methods in Exploration (A-GaME) Tools for Enhanced, Effective Site Characterization 1 Center for Accelerating Innovation What are the Advanced Geotechnical Methods in Exploration? The A-GaME is a toolbox of underutilized subsurface exploration tools that will assist with: • Assessing risk and variability in site characterization • Optimizing subsurface exploration programs • Maximizing return on investment in project delivery 2 Center for Accelerating Innovation Why do you need to bring your A-GaME? • Because, in up to 50% of major infrastructure projects, schedule or costs will be significantly impacted by geotechnical issues!! • The majority of these issues will be directly or indirectly related to the scope and quality of subsurface investigation and site characterization work. 3 Center for Accelerating Innovation Presenters Silas Nichols Derrick Dasenbrock Ben Rivers Principal Bridge Geomechanics/LRFD Geotechnical Engineer – Engineer Engineer Geotechnical Minnesota DOT FHWA RC FHWA HQ 4 Center for Accelerating Innovation What is “Every Day Counts”(EDC)? State-based model to identify and rapidly deploy proven but underutilized innovations to: shorten the project delivery process enhance roadway safety reduce congestion improve environmental sustainability . EDC Rounds: two year cycles . Initiating 5th Round (2019-2020) - 10 innovations . To date: 4 Rounds, over 40 innovations For more information: https://www.fhwa.dot.gov/innovation/ FAST Act, Sec.1444 5 Center for Accelerating Innovation Implementation Planning Team Practitioners l Geotechnical l Construction l Design l Risk l Geophysics l Site Variability l Public and Private Sectors l Industry Representation – ADSC, AEG, DFI, EEGS, GI and AASHTO COBS, COC, COMP Brian Collins – FHWA-WFL Michelle Mann – NMDOT Derrick Dasenbrock – MNDOT Marc Mastronardi - GDOT Mohammed Elias – FHWA-EFL Mike McVay – Univ.
    [Show full text]
  • Cone Penetration Test for Bearing Capacity Estimation
    The 2nd Join Conference of Utsunomiya University and Universitas Padjadjaran, Nov.24,2017 CONE PENETRATION TEST FOR BEARING CAPACITY ESTIMATION AND SOIL PROFILING, CASE STUDY: CONVEYOR BELT CONSTRUCTION IN A COAL MINING CONCESSION AREA IN LOA DURI, EAST KALIMANTAN, INDONESIA Ilham PRASETYA*1, Yuni FAIZAH*1, R. Irvan SOPHIAN1, Febri HIRNAWAN1 1Faculty of Geological Engineering, Universitas Padjadjaran Jln. Raya Bandung-Sumedang Km. 21, 45363, Jatinangor, Sumedang, Jawa Barat, Indonesia *Corresponding Authors: [email protected], [email protected] Abstract Cone Penetration Test (CPT) has been recognized as one of the most extensively used in situ tests. A series of empirical correlations developed over many years allow bearing capacity of a soil layer to be calculated directly from CPT’s data. Moreover, the ratio between end resistance of the cone and side friction of the sleeve has been prove to be useful in identifying the type of penetrated soils. The study was conducted in a coal mining concession area in Loa Duri, east Kalimantan, Indonesia. In this study the Begemann Friction Cone Mechanical Type Penetrometer with maximum push 2 capacity of 250 kg/cm was used to determine bearing layers for foundation of the conveyor belt at six different locations. The friction ratio (Rf) is used to classify the type of soils, and allowable bearing capacity of the bearing layers are calculated using Schmertmann method (1956) and LCPC method (1982). The result shows that the bearing layers in study area comprise of sands, and clay- sand mixture and silt. The allowable bearing capacity of shallow foundations range between 6-16 kg/cm2 whereas that of pile foundations are around 16-23 kg/cm2.
    [Show full text]
  • Geotechnical Investigations for Tunneling
    Breakthroughs in Tunneling September 12, 2016 Geotechnical Site Investigations For Tunneling Greg Raines, PE Objective To develop a conceptual model adequate to estimate the range of ground conditions and behavior for excavation, support, and groundwater control. support Typical Phases of Subsurface Investigation Phase 1: Planning Phase – Desk Top Study/Review Phase 2: Preliminary/Feasibility Design – Initial Field Investigations Phase 3: Final Design – Additional/Follow-Up Field Investigations Final Phase: Construction – Continued characterization of site Typical Phases of Subsurface Investigation Phase 1: Planning Phase – Desk Top Study/Review Review: Geologic maps Previous reports/investigations Aerial photos Case histories Develop conceptual geologic/geotechnical model (cross sections), preliminarily identify technical constraints/issues for the project. Plan subsurface investigation program. Identify/Collect Available Geotechnical Data in the Project Area Bridge or control Information can include: structure • Geologic maps • Data from previous reports • Drill hole data • Preliminary mapping Compile available local data into a database for further evaluation. Roads or Residential Canals Area Geologic Profiles – Understand Geologic Setting and Collect Specific Data Bedrock Surface Elevation Maps Aerial Photo / LiDAR Interpretation Aerial Photo Diversion Tunnel Use digital imagery/LiDAR to map local features prior to field mapping. Dam LiDAR Field Geologic Mapping Field Geologic Mapping Structural Data Collection (faults, folds,
    [Show full text]
  • Fugro Cone Penetration Tests
    SERVICE FLYER FUGRO CONE PENETRATION TESTS The objective of all site investigations is to obtain data that will ■■ Piezocones (CPTU) can also be used adequately quantify the variability of the geotechnical properties of to assess hydrostatic head, the site. Cone Penetrometer Testing (CPT) provides a rapid and cost consolidation and permeability effective way to achieve this. characteristics ■■ Yields thousands or tens of thousands of data points that can be digitally INTRODUCTION stored and transferred in real time Sufficient data is required to assess the ■■ Provides a continuous (although ■■ Cost-effective method employing rapid impact of soil variability within a time frame indirect) record of ground conditions, probing rates to accredited test such that it can be allowed for within the avoiding the ground disturbance procedures geotechnical design and/or construction. associated with boring and sampling ■■ Data may be used in long-established CPT generates high value data and adapts CPT units can be mobilised as road-going semi-empirical design methods, for readily to the environmental sensitivities of 6x6 trucks or a variety of tracked and example, analysis of foundation many investigations in favourable types of crawler units, ideally suited to traversing bearing capacity, foundation material, generally excluding bedrock, very soft, water logged terrain or entering sites settlement, pile carrying capacity and dense granular fill and strata containing with limited access. Fugro’s development of liquefaction potential cobbles and boulders.
    [Show full text]
  • NOTES on the CONE PENETROMETER TEST
    GE 441 Advanced Engineering Geology & Geotechnics Spring 2004 NOTES on the CONE PENETROMETER TEST Introduction The standardized cone-penetrometer test (CPT) involves pushing a 1.41-inch diameter 55o to 60o cone (Figs. 1 thru 3) through the underlying ground at a rate of 1 to 2 cm/sec. CPT soundings can be very effective in site characterization, especially sites with discrete stratigraphic horizons or discontinuous lenses. Cone penetrometer testing, or CPT (ASTM D-3441, adopted in 1974) is a valuable method of assessing subsurface stratigraphy associated with soft materials, discontinuous lenses, organic materials (peat), potentially liquefiable materials (silt, sands and granule gravel) and landslides. Cone rigs can usually penetrate normally consolidated soils and colluvium, but have also been employed to characterize d weathered Quaternary and Tertiary-age strata. Cemented or unweathered horizons, such as sandstone, conglomerate or massive volcanic rock can impede advancement of the probe, but the author has always been able to advance CPT cones in materials of Tertiary-age sedimentary rocks. The cone is able to delineate even the smallest (0.64 mm/1/4-inch thick) low strength horizons, easily missed in conventional (small-diameter) sampling programs. Some examples of CPT electronic logs are attached, along with hand-drawn lithologic interpretations. Most of the commercially-available CPT rigs operate electronic friction cone and piezocone penetrometers, whose testing procedures are outlined in ASTM D-5778, adopted in 1995. These devices produce a computerized log of tip and sleeve resistance, the ratio between the two, induced pore pressure just behind the cone tip, pore pressure ratio (change in pore pressure divided by measured pressure) and lithologic interpretation of each 2 cm interval are continuously logged and printed out.
    [Show full text]
  • The Application of the Seismic Cone Penetration Test (SCPTU) in Tailings Water Conditions Monitoring
    Article The Application of the Seismic Cone Penetration Test (SCPTU) in Tailings Water Conditions Monitoring Wojciech Tschuschke 1, Sławomir Gogolik 1, Magdalena Wró˙zy´nska 1,* , Maciej Kroll 1 and Paweł Stefanek 2 1 Institute of Construction and Geoengineering, Pozna´nUniversity of Life Sciences, Wojska Polskiego 28, 60–637 Pozna´n,Poland; [email protected] (W.T.); [email protected] (S.G.); [email protected] (M.K.) 2 Tailings Management Division, KGHM Polska Mied´z,Polkowicka 52, 59-305 Rudna, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-6-1846-6453 Received: 15 January 2020; Accepted: 5 March 2020; Published: 8 March 2020 Abstract: The safe operation of the large, outflow Tailings Storage Facilities (TSF) requires comprehensive and continuous threat monitoring. One of the basic kinds of threat monitoring is to monitor the water conditions in deposited tailings, which is usually carried out using a conventional piezometric observation method from a network of installed piezometers. In complex tailings storage conditions, the reliability of the piezometric method may be questioned. The Seismic Cone Penetration Test (SCPTU) can meet high test standards. The results of the penetration tests closely identify conditions of sediments that determine the tailings water regime verified locally on the basis of pore water pressure dissipation tests. On the other hand, seismic measurements perfectly complement the characteristics of sediments in terms of their saturation. The analysis of the results of SCPTU implemented in the tailings massif also showed that below the phreatic surface, a zone of not fully saturated tailings can be found.
    [Show full text]
  • Guide to Cone Penetration Testing
    GUIDE TO CONE PENETRATION TESTING www.greggdrilling.com Engineering Units Multiples Micro (μ) = 10-6 Milli (m) = 10-3 Kilo (k) = 10+3 Mega (M) = 10+6 Imperial Units SI Units Length feet (ft) meter (m) Area square feet (ft2) square meter (m2) Force pounds (p) Newton (N) Pressure/Stress pounds/foot2 (psf) Pascal (Pa) = (N/m2) Multiple Units Length inches (in) millimeter (mm) Area square feet (ft2) square millimeter (mm2) Force ton (t) kilonewton (kN) Pressure/Stress pounds/inch2 (psi) kilonewton/meter2 kPa) tons/foot2 (tsf) meganewton/meter2 (MPa) Conversion Factors Force: 1 ton = 9.8 kN 1 kg = 9.8 N Pressure/Stress 1kg/cm2 = 100 kPa = 100 kN/m2 = 1 bar 1 tsf = 96 kPa (~100 kPa = 0.1 MPa) 1 t/m2 ~ 10 kPa 14.5 psi = 100 kPa 2.31 foot of water = 1 psi 1 meter of water = 10 kPa Derived Values from CPT Friction ratio: Rf = (fs/qt) x 100% Corrected cone resistance: qt = qc + u2(1-a) Net cone resistance: qn = qt – σvo Excess pore pressure: Δu = u2 – u0 Pore pressure ratio: Bq = Δu / qn Normalized excess pore pressure: U = (ut – u0) / (ui – u0) where: ut is the pore pressure at time t in a dissipation test, and ui is the initial pore pressure at the start of the dissipation test Guide to Cone Penetration Testing for Geotechnical Engineering By P. K. Robertson and K.L. Cabal (Robertson) Gregg Drilling & Testing, Inc. 4th Edition July 2010 Gregg Drilling & Testing, Inc. Corporate Headquarters 2726 Walnut Avenue Signal Hill, California 90755 Telephone: (562) 427-6899 Fax: (562) 427-3314 E-mail: [email protected] Website: www.greggdrilling.com The publisher and the author make no warranties or representations of any kind concerning the accuracy or suitability of the information contained in this guide for any purpose and cannot accept any legal responsibility for any errors or omissions that may have been made.
    [Show full text]
  • Differential Settlement of Foundations on Loess
    Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in (2013) - Seventh International Conference on Geotechnical Engineering Case Histories in Geotechnical Engineering 02 May 2013, 2:00 pm - 3:30 pm Differential Settlement of Foundations on Loess Dušan Milović University of Novi Sad, Serbia Mitar Djogo University of Novi Sad, Serbia Follow this and additional works at: https://scholarsmine.mst.edu/icchge Part of the Geotechnical Engineering Commons Recommended Citation Milović, Dušan and Djogo, Mitar, "Differential Settlement of Foundations on Loess" (2013). International Conference on Case Histories in Geotechnical Engineering. 10. https://scholarsmine.mst.edu/icchge/7icchge/session02/10 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. DIFFERENTIAL SETTLEMENT OF FOUNDATIONS ON LOESS Dušan Milović Mitar Djogo University of Novi Sad University of Novi Sad Novi Sad, SERBIA Novi Sad, SERBIA ABSTRACT Experience gained during several decades shows that the loess soil in some cases undergoes structural collapse and subsidence due to inundation and that in some other cases the sensitivity of loess to the collapse is considerably less pronounced. In this paper the behaviour of three 12 story buildings A, B and C, of the same static system and the identical shapes have been analyzed.
    [Show full text]
  • Some Issues Related to Applications of the CPT
    2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA, USA, May 2010 Some issues related to applications of the CPT N. Ramsey Sinclair Knight Merz, Melbourne, Australia ABSTRACT: This paper reviews some issues related to the use of Cone Penetration Testing for geotechnical applications. Some of the areas that are considered include: a) The advantages and disadvantages of Cone Penetration Testing (CPT) b) The advantages of integrating CPT with laboratory testing. c) Identification of similar geological units using statistics. d) A review of published classification/behaviour charts, using a diverse and highly dependable database. e) The importance of using correct cone calibration and cone zero values in normally consolidated fine-grained soils. 1 INTRODUCTION The Burland Triangle (Burland, 1987), shown in Figure 1, provides a useful framework for the majority of geotechnical problems. The Cone Penetration Test (CPT) can provide valuable input to this framework, by providing cost-effective and useful information for the “Ground profile” and “Soil behaviour” aspects of the triangle. Figure 1: The Burland Triangle (Burland, 1987) The main purposes of this paper are to review the contribution of the CPT, in terms of ground profiling and the assessment of soil behaviour. The paper concentrates primarily on sites containing normally consolidated (NC) fine grained soils, as these soils tend to be relatively difficult to analyse, and because published correlations can be less reliable in these soils. Practical examples
    [Show full text]
  • Interpretation of Seismic Cone Penetration Testing in Silty Soil
    Interpretation of Seismic Cone Penetration Testing in Silty Soil Rikke Holmsgaard1, Lars Bo Ibsen2, and Benjaminn Nordahl Nielsen3 1PhD. Fellow, Master of Science in Civil Engineering, Aalborg University, Department of Civil Engineering, Sofiendalsvej 11, 9200 Aalborg SV, Denmark, Phone +45 40939994, email: [email protected] 2Professor, Aalborg University, Department of Civil Engineering, Sofiendalsvej 11, 9200 Aalborg SV, Denmark, Phone +45 99408458, email: [email protected] 3Associate Professor, Aalborg University, Department of Civil Engineering, Sofiendalsvej 11, 9200 Aalborg SV, Denmark, Phone +45 99408459, email: [email protected] Corresponding author: Rikke Holmsgaard, email: [email protected] ABSTRACT Five Seismic Cone Penetration Tests (SCPT) were conducted at a test site in northern Denmark where the subsoil consists primarily of sandy silt with clay bands. A portion of the test data were collected every 0.5 m to compare the efficacy of closely-spaced down-hole data collection on the computation of shear wave velocity. A minimum of eight seismic tests were completed at each depth in order to examine the reliability of shear wave velocity data, as well as to assess the impact of the time interval between CPT termination and seismic test initiation on SCPT results. The shear wave velocity was computed using three different methods: cross-over, cross-correlation and cross-correlation “trimmed with window”. In the “trimmed with window” technique the latter part of the signal is clipped off by setting the amplitude to zero. The result showed that more closely-spaced test intervals actually increased the variability of the shear wave velocity and that time interval between seismic tests is insignificant.
    [Show full text]
  • Seismic Cone Penetration Test and Vertical Seismic Profiling in Permafrost
    Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Seismic cone penetration test and vertical seismic profiling in permafrost A.-M. LeBlanc & R. Fortier Département de géologie et de génie géologique and Centre d’études nordiques, Université Laval, Sainte-Foy (Québec), Canada M. Allard Département de géographie and Centre d’études nordiques, Université Laval, Sainte-Foy (Québec), Canada ABSTRACT: Seismic Cone Penetration Tests (SCPTs) were carried out to a depth of 24 m in a permafrost mound near the Inuit community of Umiujaq in Nunavik, Canada, to study its cryostratigraphy in terms of pene- tration resistance and seismic velocities. The tip load, friction, temperature, inclination and electrical resistivity were measured with sensors embedded in the penetrometer. The cone penetration was stopped periodically to add a new rod and to perform multi-offset Vertical Seismic Profiling (VSP). A Swept Impact Seismic Technique (SIST) was used as a seismic source directly in contact with the thawing front and the seismic signal was recorded with a module of triaxial accelerometers, also embedded in the penetrometer, and with a seismograph. The seis- mic velocities were evaluated from the propagation time of the seismic signal in permafrost. The permafrost con- ditions are characterised by variation in seismic velocities with depth, depending on the ground temperature and sequence of frozen soil layers and ice lenses. 1 INTRODUCTION 2 STUDY SITE The study of the dynamic behaviour of frozen soils is The fieldwork was conducted on the east coast of the fundamental in cold regions engineering for the Hudson Bay, near the Inuit community of Umiujaq design of vibrating machinery on frozen ground, the (56°N, 76°W) in Nunavik, Canada, in the discontinu- response of frozen soil to dynamic loading induced by ous and scattered permafrost zone (Fig.
    [Show full text]