


  









 sign in sign up 








Europython 2003: Python Metaclasses (Pdf) [PDF]




Related documentation

	Bit Nove Signal Interface Processor
	Signedness-Agnostic Program Analysis: Precise Integer Bounds for Low-Level Code
	Metaclasses: Generative C++
	Meta-Class Features for Large-Scale Object Categorization on a Budget
	Bit, Byte, and Binary
	Floating Point Arithmetic
	OMG Meta Object Facility (MOF) Core Specification
	Handwritten Digit Classication Using 8-Bit Floating Point Based Convolutional Neural Networks
	Bit Preservation
	10 Disruptive Trends in Wealth Management
	CS/COE1541: Introduction to Computer Architecture Dept
	Python 3 Metaprogramming Requirements
	Choose the Right A/D Converter for Your Application
	Floating Point Arithmetic Chapter 14
	Bit Nibble Byte Kilobyte (KB) Megabyte (MB) Gigabyte
	COSC 6385 Computer Architecture Instruction Set Architectures
	Sample 16-Bit Modbus Packet
	Binary/Memory/Data I
	Technical Report
	Understanding Bit Depth
	Arxiv:1605.06402V1 [Cs.CV] 20 May 2016
	1 Representing Numbers in the Computer
	Physical Memory: -- Byte Addressable. -- 14-Bit Physical Addresses
	II Representation of Characters, Integers and Fractions-Octal And
	Training Deep Neural Networks with 8-Bit Floating Point Numbers
	1.Coding Information
	Homedepot Tapcon Info Sheet-B
	Fintech and Consumer Protection: a Snapshot
	Bits, Bytes, and Nibbles
	Signedness-Agnostic Program Analysis: Precise Integer Bounds for Low-Level Code
	CS107 Lecture 2 Bits and Bytes; Integer Representations
	Biased Exponent
	ADS8598H 18-Bit, 500-Ksps, 8-Channel, Simultaneous-Sampling
	2012 U.S. Model Bilateral Investment Treaty
	Memory and Pointers
	Studying a Minimal Object-Oriented Kernel
	Pointers, Arrays, Memory: AKA the Cause of Those F@#)(#@*( Segfaults
	Redacted Decision – Docket Numbers 15-040 Cu, 15-041 Cu, Cons # 15-0006
	Instruction Set Architecture
	Programming Abstractions In
	The Use of Binary Codes to Represent Characters Teacher’S Notes
	ENCM 369 Winter 2014 Lab 12 for the Week of April 7
	1 an Overview of Bits and Bitting
	Abstract Domains for Bit-Level Machine Integer and Floating-Point Operations
	In Praise of Metaclasses! D a V ICOLUMNS D B E a Z L E Y
	Bits, Bytes, and Integers
	Signedness, Overflow, Multiplication and Division
	A TUTORIAL on POINTERS and ARRAYS in C by Ted Jensen Version 1.2 (PDF Version) Sept
	Computer Basics, Representation of Characters in Computers
	CSE 220: Systems Programming Bitwise Operations
	Lecture 17 Floating Point
	Data Types and Addressing Modes 29
	Memory Sample Problems Assume We Have 8GB of Word Addressable
	Lecture 03 Bits, Bytes and Data Types
	Expanding Javascript Metaobject Protocol Abstract
	Memory Basics
	Europython 2003: Python Metaclasses (Pdf)
	Memory Addressing the Memory of a Computer System Consists of Tiny Electronic Switches, with Each Switch in One of Two States: Open Or Closed
	Handwritten Digit Classiﬁcation Using 8-Bit Floating Point Based Convolutional Neural Networks
	Generalizers: New Metaobjects for Generalized Dispatch
	Primary Memory • Bits
	1. Pointer Variables a Computer Memory Location Has an Address and Holds a Content
	An 8-Bit Floating Point Representation ©2005 Dr. William T. Verts
	Unsigned and Signed Integers 01/25/2006 01:39 PM
	Double Precision Floating-Point Format 1 Double Precision Floating-Point Format
	Reflection Meta-Objects, Classes, Metaclasses
	Everything You Want to Know About Pointer-Based Checking
	Chap04: MARIE: an Introduction to a Simple Computer
	Integers and Integer Representation
	What Every Scientist Should Know About Floating-Point Arithmetic
	Number Systems and Number Representation
	IEEE Standard for Floating Point Numbers
	CS429: Computer Organization and Architecture Bits and Bytes
	Generalizers: New Metaobjects for Generalized Dispatch
	ABSTRACT Integers Can Be Represented in Programs As Either Signed Or Unsigned
	BITS & BYTES What Does Memory Look Like?
	Design and Simulation of 32-Bit Floating Point Arithmetic Logic Unit Using Veriloghdl
	Integer Safety Crash Course
	CS429: Computer Organization and Architecture Integers
	ASCII Computer Code
	Floating Point Arithmetic
	Bits, Bytes, Binary Numbers, and the Representation of Information
	The Pros and Cons of Cryptocurrency Investment
	Computer Memory: Bits and Bytes
	Vulnerabilities Induced by Migrating to 64-Bit Platforms
	Types in C LAST TODAY NEXT
	Expanding Javascript's Metaobject Protocol
	Data Representation
	Memory and C++
	What Every Computer Scientist Should Know About Floating-Point Arithmetic D
	Demystifying Python Metaclasses
	Computing with 10000 Bits
	Memory Locations, Address, Instructions and Instruction Sequencing
	COMS 1003: Introduction to Computer Programming in C
	Metaclasses 1 1.1 Rules for Classes
	Logic, Words, and Integers
	A Block Minifloat Representation for Train
	Open Implementations and Metaobject Protocols







<<


 Home , Bit, Metaclass, Template (C++) 







 Python Metaclasses
Alex Martelli
© 2003 AB Strakt 1 STRAKT This talk's audience...:
„ "fair" to "excellent" grasp of Python and OO development
„ "none" to "good" grasp of Metaclasses
„ wants to learn more about: Python's OO underpinnings, Metaclasses, custom Metaclasses
© 2003 AB Strakt 2 STRAKT what's a metaclass
„ type(x) is class (or type) of x „ type(type(x)) is the metaclass (or metatype) of x (sometimes also called "the metaclass of type(x)" -- not strictly-correct usage) „ for any built-in type or new-style class X: type(X) is type „ for any classic-class X: type(X) is types.ClassType
© 2003 AB Strakt 3 STRAKT a key book...:
„ "Putting Metaclasses to Work", by Ira Forman and Scott Danforth (Addison- Wesley 1998) „ strong influence on Python 2.2 & later „ based on IBM SOMobjects & C++ „ out of print, but available from used- books dealers & the like -- get it iff you're really keen to explore further
© 2003 AB Strakt 4 STRAKT the class statement A class statement is (neat, elegant syntax for) a metaclass call : class Name[(b)]: # bindings into a dict d --> Name=metaclass('Name',b,d) So -- how is metaclass determined...?
© 2003 AB Strakt 5 STRAKT Determining the metaclass [0] 4-step decision procedure:
[1] explicit __metaclass__ [2] inherited metaclass [3] global __metaclass__ [4] classic-by-default
© 2003 AB Strakt 6 STRAKT Determining the metaclass [1]
[1]: if '__metaclass__' is a key in d, the corresp. value is the metaclass: class Name[(b)]: ... __metaclass__ = M --> M is the metaclass
© 2003 AB Strakt 7 STRAKT Determining the metaclass [2] [2]: otherwise, if b is non-empty (the class has some bases), the metaclass is type(b[0]) (type of the first base*): class Name(object): pass --> the metaclass is: type(object) [i.e., type] * there's a subtlety w/types.ClassType...
© 2003 AB Strakt 8 STRAKT Determining the metaclass [3]
[3]: otherwise, if __metaclass__ is a global variable, the variable's value is the metaclass: __metaclass__ = M class Name: pass --> M is the metaclass
© 2003 AB Strakt 9 STRAKT Determining the metaclass [4]
[4]: otherwise, the metaclass is types.ClassType ("classic-by- default") class Name: pass --> the metaclass is types.ClassType
© 2003 AB Strakt 10 STRAKT A subtlety w/types.ClassType
 class X(old,new): pass assert type(X) is type # how?!
„ types.ClassType, when called, checks all bases, and delegates to the first base that's not a classic class
„ thus: a class is classic only if all of its bases are classic classes
© 2003 AB Strakt 11 STRAKT When the metaclass is called...
„ it must generate an instance (normally "of itself"; normally a new one) -- just like any other call to any class or type
„ calling any type proceeds through 2 steps: __new__ then __init__ • a good example of the Template Method and Factory Design Patterns in action
© 2003 AB Strakt 12 STRAKT Calling a type: type.__call__ def __call__(cls,*a,**k): nu = cls.__new__(cls,*a,**k) if isinstance(nu, cls): cls.__init__(nu,*a,**k) return nu
(An example of "2-phase construction")
© 2003 AB Strakt 13 STRAKT Custom metaclasses
„ arbitrary callables w/right signature: def M(N,b,d): return d.get('f','%s')%N class Ciao: __metaclass__ = M f = '*wow*%s!' # is just like: Ciao=M('Ciao',(),{'f':'*wow*%s!'}) # so, Ciao is a string: '*wow*Ciao!'...!
© 2003 AB Strakt 14 STRAKT "Canonical" custom metaclasses
„ normally, a metaclass M, when called, returns (a class that's) an instance of M „ just like any class: "normally, a class C, when called, returns an instance of C" „ almost invariably, canonical custom metaclasses are subclasses of type „ typically overriding some of __new__, __init__, __call__, ...
© 2003 AB Strakt 15 STRAKT Cooperative metaclass behavior
„ typically overrides of __new__, __init__, __call__, ..., must delegate some cases to the superclass (supermetaclass?) „ using type.__new__ (&c) is simplest but not cooperative • I generally use it in this presentation... due to space limitations on slides! „ consider using super instead!
© 2003 AB Strakt 16 STRAKT Fundamentals of Python OO
„ say type(x) is C, type(C) is M „ x.a looks in x, else C, not up into M „ operations look for special methods in C only (not in x, not up into M) „ "look in C" always implies C's own dict/descriptors then up the sequence of ancestor classes along C's MRO
© 2003 AB Strakt 17 STRAKT Custom metaclasses: why?
„ "deeper magic than 99% of users should every worry about. If you wonder whether you need them, you don't" (Tim Peters)
„ a bit pessimistic/extreme...
„ worry is misplaced, but...
„ it is an extra tool you might want...! 
© 2003 AB Strakt 18 STRAKT Custom metaclasses: what for?
„ non-canonical uses • whenever you'd like N=M('N',atuple,adict) with adict handily generated with assign &c... • ...you could use class N: w/M as metaclass! • neat hack but -- easy to abuse -- take care! „ what can be done only with a CMC • special-methods behavior of the class itself „ what may best be done with a CMC • particularly at class-creation/calling time • may be simpler, faster, more general ... © 2003 AB Strakt 19 STRAKT Easing canonical custom-MC use
„ name your metaclass 'metaSomething': class metaXXX(type): def __new__(mcl,N,b,d): # e.g., alter d here return type.__new__(mcl,N,b,d) „ define an auxiliary empty class: class XXX: __metaclass__ = metaXXX „ now, classes can just inherit XXX: class AnX(XXX): "...etc etc..."
© 2003 AB Strakt 20 STRAKT Length-handicapped vrbl nms
„ a metaclass is called with 3 args: • Name of the class being instantiated • tuple of Bases for said class • dictionary with the class's attributes „ in the following, I'll write this as...: class metaXXX(type): def __new__(mcl,N,b,d): using mcl to stand for metaclass (just like cls for class, self for ordinary object) -- not widely used yet, but GvR likes it!-)
© 2003 AB Strakt 21 STRAKT A non-canonical custom MC class metaProperty(object): def __new__(mcl,N,b,d): return property( d.get('get'), d.get('set'), d.get('del'), d.get('__doc__') or 'Property %s' % N) or, rather equivalently: def metaProperty(N, b, D): ...
© 2003 AB Strakt 22 STRAKT Example use of metaProperty class SomeClass(object): class prop: __metaclass__ = metaProperty def get(self): return 23 # mostly equivalent to: # def prop_get(self): return 23 # prop = property(prop_get) anobj = SomeClass() print anobj.prop # prints 23
© 2003 AB Strakt 23 STRAKT How come this doesn't work...? class Property: __metaclass__ = metaProperty
 class SomeClass(object): class prop(Property): def get(self): return 23
# hint: what's type(Property)...?
© 2003 AB Strakt 24 STRAKT A hack can make it work, e.g....: class metaProperty(type): def __new__(mcl,N,b,d): if N=='Property': return type.__new__(mcl,N,b,d) else: return property( ...etc... ) Must subclass type and return a true instance of the metaclass for the auxiliary-class only
© 2003 AB Strakt 25 STRAKT ...or, an even dirtier hack...: class Property: pass Property.__class__ = metaProperty Just set the __class__ attribute of (anything...) to the metaclass... (!) Metaclass must be any new-style class, or, for an even-dirtier sub-hack...: def meta(N, b, d): ... class Prop: pass Prop.__class__=staticmethod(meta)
© 2003 AB Strakt 26 STRAKT Behavior of the class object itself class metaFramework(type): def __repr__(cls): return ("Framework class %r" % cls.__name__) __metaclass__ = metaFramework
 class XX: pass x = XX() print type(x)
© 2003 AB Strakt 27 STRAKT Abstract Classes class metaAbst(type): def __call__(cls,*a,**k): if cls._abs: raise TypeError,... return type.__call__(... def __new__(mcl,N,b,d): d['_abs'] = (not b or not isinstance(b[0],metaAbst)) return type.__new__(...
© 2003 AB Strakt 28 STRAKT Final Classes [1] class metaFinal(type): def __new__(mcl,N,b,d): if (b and isinstance(b[0],metaFinal)): raise TypeError, ... else: return type.__new__(mcl,N,b,d) # unsuitable, as coded, for the # usual class MyCl(Final): ... # shortcut, of course
© 2003 AB Strakt 29 STRAKT Final Classes [2] class metaFinal(type): def __new__(mcl,N,b,d): if (b and isinstance(b[0],metaFinal) and b[0] is not Final): raise TypeError, ... else: return type.__new__(mcl,N,b,d) class Final: __metaclass__ = metaFinal
© 2003 AB Strakt 30 STRAKT Struct-like classes w/factory func def struct(name, **flds): class st(object): pass st.__dict__.update(flds) st.__name__ = name def __init__(self, **afs): for n, v in afs.iteritems(): if n not in flds: raise ... setattr(self,n,v) st.__dict__['__init__']=__init__ return st
© 2003 AB Strakt 31 STRAKT Struct-like classes w/CMC [1] # reproducing the factory...: class metaStruct(type): def __new__(mcl, cnm, cbs, cdf): def __init__(self, **afs): for n, v in afs.iteritems(): if n not in cdf: raise ... setattr(self, n, v) cdf['__init__']=__init__ return type.__new__( mcl, cnm, cbs, cdf)
© 2003 AB Strakt 32 STRAKT Struct-like classes w/CMC [2] # a metaclass allows even more...: class metaStruct(type): def __new__(mcl, cnm, cbs, cdf): cdf['__slots__'] = cdf.keys() def __init__(self, **afs): ims=cdf.items()+afs.items() for n, v in ims: setattr(self, n, v) cdf['__init__'] = __init__ ...
© 2003 AB Strakt 33 STRAKT Struct-like classes w/CMC [3] def __repr__(self): ps = [] for n, dv in cdf.iteritems(): v = setattr(self, n) if v!=dv: ps.append(repr(v)) return '%s.%s(%s)' % ( cdf['__module__'], cnm, ','.join(ps)) cdf['__repr__'] = __repr__ ...
© 2003 AB Strakt 34 STRAKT Custom metaclasses and MI
„ check in type.__new__(mc,N,b,d) class M(type): pass class N(type): pass class m: __metaclass__ = M class n: __metaclass__ = N class x(m, n): pass TypeError: metaclass conflict; the metaclass of a derived class must be a subclass...
© 2003 AB Strakt 35 STRAKT Solving metaclass conflicts
„ derive custom-metaclass as needed: class MN(M,N): pass class x(m,n): __metaclass__=MN „ in general, the derived metaclass must solve actual special-method conflicts „ most typical/troublesome: __new__ „ Forman and Danforth: "inheriting metaclass constraints" (in theory, automates the derivation process)
© 2003 AB Strakt 36 STRAKT Advanced metaclass examples
„ all from Forman and Danforth's book: • re-dispatching • before/after • invariant-checking • thread-safe • ... „ if you're really keen on this -- get the book...!
© 2003 AB Strakt 37 STRAKT E.g.: metaTimeStamped [1] A metaclass I can "plug into" already- coded classes to make them timestamp their instances at instance-creation: class mTS(type): def __call__(cls,*a,**k): x=super(mTS,cls)(*a,**k) x._created=time.time() return x . . .
© 2003 AB Strakt 38 STRAKT TStamping w/an adjuster func def addTS_to_class_init(cls): cinit = cls.__init__ def init(self,*a,**k): cinit(self,*a,**k) self._created=time.time() cls.__init__ = cinit # but, what if...: __slots__, # _created conflicts, ... ?
© 2003 AB Strakt 39 STRAKT E.g.: metaTimeStamped [2] def __new__(mc,N,b,d): snm = '__slots__' cnm = '_created' sl = d.get(snm,(cnm,)) if cnm not in sl: d[snm] = tuple(sl)+(cnm,) # ins getCreated,property,... return type.__new__(mc,N,b,d)
© 2003 AB Strakt 40 STRAKT
 




















