Signedness-Agnostic Program Analysis: Precise Integer Bounds for Low-Level Code
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metaobject Protocols: Why We Want Them and What Else They Can Do
Metaobject protocols: Why we want them and what else they can do Gregor Kiczales, J.Michael Ashley, Luis Rodriguez, Amin Vahdat, and Daniel G. Bobrow Published in A. Paepcke, editor, Object-Oriented Programming: The CLOS Perspective, pages 101 ¾ 118. The MIT Press, Cambridge, MA, 1993. © Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. Metaob ject Proto cols WhyWeWant Them and What Else They Can Do App ears in Object OrientedProgramming: The CLOS Perspective c Copyright 1993 MIT Press Gregor Kiczales, J. Michael Ashley, Luis Ro driguez, Amin Vahdat and Daniel G. Bobrow Original ly conceivedasaneat idea that could help solve problems in the design and implementation of CLOS, the metaobject protocol framework now appears to have applicability to a wide range of problems that come up in high-level languages. This chapter sketches this wider potential, by drawing an analogy to ordinary language design, by presenting some early design principles, and by presenting an overview of three new metaobject protcols we have designed that, respectively, control the semantics of Scheme, the compilation of Scheme, and the static paral lelization of Scheme programs. Intro duction The CLOS Metaob ject Proto col MOP was motivated by the tension b etween, what at the time, seemed liketwo con icting desires. The rst was to have a relatively small but p owerful language for doing ob ject-oriented programming in Lisp. The second was to satisfy what seemed to b e a large numb er of user demands, including: compatibility with previous languages, p erformance compara- ble to or b etter than previous implementations and extensibility to allow further exp erimentation with ob ject-oriented concepts see Chapter 2 for examples of directions in which ob ject-oriented techniques might b e pushed. -
Variable Precision in Modern Floating-Point Computing
Variable precision in modern floating-point computing David H. Bailey Lawrence Berkeley Natlional Laboratory (retired) University of California, Davis, Department of Computer Science 1 / 33 August 13, 2018 Questions to examine in this talk I How can we ensure accuracy and reproducibility in floating-point computing? I What types of applications require more than 64-bit precision? I What types of applications require less than 32-bit precision? I What software support is required for variable precision? I How can one move efficiently between precision levels at the user level? 2 / 33 Commonly used formats for floating-point computing Formal Number of bits name Nickname Sign Exponent Mantissa Hidden Digits IEEE 16-bit “IEEE half” 1 5 10 1 3 (none) “ARM half” 1 5 10 1 3 (none) “bfloat16” 1 8 7 1 2 IEEE 32-bit “IEEE single” 1 7 24 1 7 IEEE 64-bit “IEEE double” 1 11 52 1 15 IEEE 80-bit “IEEE extended” 1 15 64 0 19 IEEE 128-bit “IEEE quad” 1 15 112 1 34 (none) “double double” 1 11 104 2 31 (none) “quad double” 1 11 208 4 62 (none) “multiple” 1 varies varies varies varies 3 / 33 Numerical reproducibility in scientific computing A December 2012 workshop on reproducibility in scientific computing, held at Brown University, USA, noted that Science is built upon the foundations of theory and experiment validated and improved through open, transparent communication. ... Numerical round-off error and numerical differences are greatly magnified as computational simulations are scaled up to run on highly parallel systems. -
250P: Computer Systems Architecture Lecture 10: Caches
250P: Computer Systems Architecture Lecture 10: Caches Anton Burtsev April, 2021 The Cache Hierarchy Core L1 L2 L3 Off-chip memory 2 Accessing the Cache Byte address 101000 Offset 8-byte words 8 words: 3 index bits Direct-mapped cache: each address maps to a unique address Sets Data array 3 The Tag Array Byte address 101000 Tag 8-byte words Compare Direct-mapped cache: each address maps to a unique address Tag array Data array 4 Increasing Line Size Byte address A large cache line size smaller tag array, fewer misses because of spatial locality 10100000 32-byte cache Tag Offset line size or block size Tag array Data array 5 Associativity Byte address Set associativity fewer conflicts; wasted power because multiple data and tags are read 10100000 Tag Way-1 Way-2 Tag array Data array Compare 6 Example • 32 KB 4-way set-associative data cache array with 32 byte line sizes • How many sets? • How many index bits, offset bits, tag bits? • How large is the tag array? 7 Types of Cache Misses • Compulsory misses: happens the first time a memory word is accessed – the misses for an infinite cache • Capacity misses: happens because the program touched many other words before re-touching the same word – the misses for a fully-associative cache • Conflict misses: happens because two words map to the same location in the cache – the misses generated while moving from a fully-associative to a direct-mapped cache • Sidenote: can a fully-associative cache have more misses than a direct-mapped cache of the same size? 8 Reducing Miss Rate • Large block -
Chapter 2 Basics of Scanning And
Chapter 2 Basics of Scanning and Conventional Programming in Java In this chapter, we will introduce you to an initial set of Java features, the equivalent of which you should have seen in your CS-1 class; the separation of problem, representation, algorithm and program – four concepts you have probably seen in your CS-1 class; style rules with which you are probably familiar, and scanning - a general class of problems we see in both computer science and other fields. Each chapter is associated with an animating recorded PowerPoint presentation and a YouTube video created from the presentation. It is meant to be a transcript of the associated presentation that contains little graphics and thus can be read even on a small device. You should refer to the associated material if you feel the need for a different instruction medium. Also associated with each chapter is hyperlinked code examples presented here. References to previously presented code modules are links that can be traversed to remind you of the details. The resources for this chapter are: PowerPoint Presentation YouTube Video Code Examples Algorithms and Representation Four concepts we explicitly or implicitly encounter while programming are problems, representations, algorithms and programs. Programs, of course, are instructions executed by the computer. Problems are what we try to solve when we write programs. Usually we do not go directly from problems to programs. Two intermediate steps are creating algorithms and identifying representations. Algorithms are sequences of steps to solve problems. So are programs. Thus, all programs are algorithms but the reverse is not true. -
Integers in C: an Open Invitation to Security Attacks?
Integers In C: An Open Invitation To Security Attacks? Zack Coker Samir Hasan Jeffrey Overbey [email protected] [email protected] [email protected] Munawar Hafiz Christian Kästnery [email protected] Auburn University yCarnegie Mellon University Auburn, AL, USA Pittsburgh, PA, USA ABSTRACT integer type is assigned to a location with a smaller type, We performed an empirical study to explore how closely e.g., assigning an int value to a short variable. well-known, open source C programs follow the safe C stan- Secure coding standards, such as MISRA's Guidelines for dards for integer behavior, with the goal of understanding the use of the C language in critical systems [37] and CERT's how difficult it is to migrate legacy code to these stricter Secure Coding in C and C++ [44], identify these issues that standards. We performed an automated analysis on fifty-two are otherwise allowed (and sometimes partially defined) in releases of seven C programs (6 million lines of preprocessed the C standard and impose restrictions on the use of inte- C code), as well as releases of Busybox and Linux (nearly gers. This is because most of the integer issues are benign. one billion lines of partially-preprocessed C code). We found But, there are two cases where the issues may cause serious that integer issues, that are allowed by the C standard but problems. One is in safety-critical sections, where untrapped not by the safer C standards, are ubiquitous|one out of four integer issues can lead to unexpected runtime behavior. An- integers were inconsistently declared, and one out of eight other is in security-critical sections, where integer issues can integers were inconsistently used. -
BALANCING the Eulisp METAOBJECT PROTOCOL
LISP AND SYMBOLIC COMPUTATION An International Journal c Kluwer Academic Publishers Manufactured in The Netherlands Balancing the EuLisp Metaob ject Proto col y HARRY BRETTHAUER bretthauergmdde JURGEN KOPP koppgmdde German National Research Center for Computer Science GMD PO Box W Sankt Augustin FRG HARLEY DAVIS davisilogfr ILOG SA avenue Gal lieni Gentil ly France KEITH PLAYFORD kjpmathsbathacuk School of Mathematical Sciences University of Bath Bath BA AY UK Keywords Ob jectoriented Programming Language Design Abstract The challenge for the metaob ject proto col designer is to balance the con icting demands of eciency simplici ty and extensibil ity It is imp ossible to know all desired extensions in advance some of them will require greater functionality while oth ers require greater eciency In addition the proto col itself must b e suciently simple that it can b e fully do cumented and understo o d by those who need to use it This pap er presents the framework of a metaob ject proto col for EuLisp which provides expressiveness by a multileveled proto col and achieves eciency by static semantics for predened metaob jects and mo dularizin g their op erations The EuLisp mo dule system supp orts global optimizations of metaob ject applicati ons The metaob ject system itself is structured into mo dules taking into account the consequences for the compiler It provides introsp ective op erations as well as extension interfaces for various functionaliti es including new inheritance allo cation and slot access semantics While -
Bit Nove Signal Interface Processor
www.audison.eu bit Nove Signal Interface Processor POWER SUPPLY CONNECTION Voltage 10.8 ÷ 15 VDC From / To Personal Computer 1 x Micro USB Operating power supply voltage 7.5 ÷ 14.4 VDC To Audison DRC AB / DRC MP 1 x AC Link Idling current 0.53 A Optical 2 sel Optical In 2 wire control +12 V enable Switched off without DRC 1 mA Mem D sel Memory D wire control GND enable Switched off with DRC 4.5 mA CROSSOVER Remote IN voltage 4 ÷ 15 VDC (1mA) Filter type Full / Hi pass / Low Pass / Band Pass Remote OUT voltage 10 ÷ 15 VDC (130 mA) Linkwitz @ 12/24 dB - Butterworth @ Filter mode and slope ART (Automatic Remote Turn ON) 2 ÷ 7 VDC 6/12/18/24 dB Crossover Frequency 68 steps @ 20 ÷ 20k Hz SIGNAL STAGE Phase control 0° / 180° Distortion - THD @ 1 kHz, 1 VRMS Output 0.005% EQUALIZER (20 ÷ 20K Hz) Bandwidth @ -3 dB 10 Hz ÷ 22 kHz S/N ratio @ A weighted Analog Input Equalizer Automatic De-Equalization N.9 Parametrics Equalizers: ±12 dB;10 pole; Master Input 102 dBA Output Equalizer 20 ÷ 20k Hz AUX Input 101.5 dBA OPTICAL IN1 / IN2 Inputs 110 dBA TIME ALIGNMENT Channel Separation @ 1 kHz 85 dBA Distance 0 ÷ 510 cm / 0 ÷ 200.8 inches Input sensitivity Pre Master 1.2 ÷ 8 VRMS Delay 0 ÷ 15 ms Input sensitivity Speaker Master 3 ÷ 20 VRMS Step 0,08 ms; 2,8 cm / 1.1 inch Input sensitivity AUX Master 0.3 ÷ 5 VRMS Fine SET 0,02 ms; 0,7 cm / 0.27 inch Input impedance Pre In / Speaker In / AUX 15 kΩ / 12 Ω / 15 kΩ GENERAL REQUIREMENTS Max Output Level (RMS) @ 0.1% THD 4 V PC connections USB 1.1 / 2.0 / 3.0 Compatible Microsoft Windows (32/64 bit): Vista, INPUT STAGE Software/PC requirements Windows 7, Windows 8, Windows 10 Low level (Pre) Ch1 ÷ Ch6; AUX L/R Video Resolution with screen resize min. -
Third Party Channels How to Set Them up – Pros and Cons
Third Party Channels How to Set Them Up – Pros and Cons Steve Milo, Managing Director Vacation Rental Pros, Property Manager Cell: (904) 707.1487 [email protected] Company Summary • Business started in June, 2006 First employee hired in late 2007. • Today Manage 950 properties in North East Florida and South West Florida in resort ocean areas with mostly Saturday arrivals and/or Saturday departures and minimum stays (not urban). • Hub and Spoke Model. Central office is in Ponte Vedra Beach (Accounting, Sales & Marketing). Operations office in St Augustine Beach, Ft. Myers Beach and Orlando (model home). Total company wide - 69 employees (61 full time, 8 part time) • Acquired 3 companies in 2014. The PROS of AirBNB Free to list your properties. 3% fee per booking (they pay cc fee) Customer base is different & sticky – young, urban & foreign. Smaller properties book better than larger properties. Good generator of off-season bookings. Does not require Rate Parity. Can add fees to the rent. All bookings are direct online (no phone calls). You get to review the guest who stayed in your property. The Cons of AirBNB Labor intensive. Time consuming admin. 24 hour response. Not designed for larger property managers. Content & Prices are static (only calendar has data feed). Closed Communication (only through Airbnb). Customers want more hand holding, concierge type service. “Rate Terms” not easy. Only one minimum stay, No minimum age ability. No easy way to add fees (pets, damage waiver, booking fee). Need to add fees into nightly rates. Why Booking.com? Why not Booking.com? Owned by Priceline. -
Abstract Data Types
Chapter 2 Abstract Data Types The second idea at the core of computer science, along with algorithms, is data. In a modern computer, data consists fundamentally of binary bits, but meaningful data is organized into primitive data types such as integer, real, and boolean and into more complex data structures such as arrays and binary trees. These data types and data structures always come along with associated operations that can be done on the data. For example, the 32-bit int data type is defined both by the fact that a value of type int consists of 32 binary bits but also by the fact that two int values can be added, subtracted, multiplied, compared, and so on. An array is defined both by the fact that it is a sequence of data items of the same basic type, but also by the fact that it is possible to directly access each of the positions in the list based on its numerical index. So the idea of a data type includes a specification of the possible values of that type together with the operations that can be performed on those values. An algorithm is an abstract idea, and a program is an implementation of an algorithm. Similarly, it is useful to be able to work with the abstract idea behind a data type or data structure, without getting bogged down in the implementation details. The abstraction in this case is called an \abstract data type." An abstract data type specifies the values of the type, but not how those values are represented as collections of bits, and it specifies operations on those values in terms of their inputs, outputs, and effects rather than as particular algorithms or program code. -
Understanding Integer Overflow in C/C++
Appeared in Proceedings of the 34th International Conference on Software Engineering (ICSE), Zurich, Switzerland, June 2012. Understanding Integer Overflow in C/C++ Will Dietz,∗ Peng Li,y John Regehr,y and Vikram Adve∗ ∗Department of Computer Science University of Illinois at Urbana-Champaign fwdietz2,[email protected] ySchool of Computing University of Utah fpeterlee,[email protected] Abstract—Integer overflow bugs in C and C++ programs Detecting integer overflows is relatively straightforward are difficult to track down and may lead to fatal errors or by using a modified compiler to insert runtime checks. exploitable vulnerabilities. Although a number of tools for However, reliable detection of overflow errors is surprisingly finding these bugs exist, the situation is complicated because not all overflows are bugs. Better tools need to be constructed— difficult because overflow behaviors are not always bugs. but a thorough understanding of the issues behind these errors The low-level nature of C and C++ means that bit- and does not yet exist. We developed IOC, a dynamic checking tool byte-level manipulation of objects is commonplace; the line for integer overflows, and used it to conduct the first detailed between mathematical and bit-level operations can often be empirical study of the prevalence and patterns of occurrence quite blurry. Wraparound behavior using unsigned integers of integer overflows in C and C++ code. Our results show that intentional uses of wraparound behaviors are more common is legal and well-defined, and there are code idioms that than is widely believed; for example, there are over 200 deliberately use it. -
5. Data Types
IEEE FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011 5. Data types The e language has a number of predefined data types, including the integer and Boolean scalar types common to most programming languages. In addition, new scalar data types (enumerated types) that are appropriate for programming, modeling hardware, and interfacing with hardware simulators can be created. The e language also provides a powerful mechanism for defining OO hierarchical data structures (structs) and ordered collections of elements of the same type (lists). The following subclauses provide a basic explanation of e data types. 5.1 e data types Most e expressions have an explicit data type, as follows: — Scalar types — Scalar subtypes — Enumerated scalar types — Casting of enumerated types in comparisons — Struct types — Struct subtypes — Referencing fields in when constructs — List types — The set type — The string type — The real type — The external_pointer type — The “untyped” pseudo type Certain expressions, such as HDL objects, have no explicit data type. See 5.2 for information on how these expressions are handled. 5.1.1 Scalar types Scalar types in e are one of the following: numeric, Boolean, or enumerated. Table 17 shows the predefined numeric and Boolean types. Both signed and unsigned integers can be of any size and, thus, of any range. See 5.1.2 for information on how to specify the size and range of a scalar field or variable explicitly. See also Clause 4. 5.1.2 Scalar subtypes A scalar subtype can be named and created by using a scalar modifier to specify the range or bit width of a scalar type. -
A Library for Interval Arithmetic Was Developed
1 Verified Real Number Calculations: A Library for Interval Arithmetic Marc Daumas, David Lester, and César Muñoz Abstract— Real number calculations on elementary functions about a page long and requires the use of several trigonometric are remarkably difficult to handle in mechanical proofs. In this properties. paper, we show how these calculations can be performed within In many cases the formal checking of numerical calculations a theorem prover or proof assistant in a convenient and highly automated as well as interactive way. First, we formally establish is so cumbersome that the effort seems futile; it is then upper and lower bounds for elementary functions. Then, based tempting to perform the calculations out of the system, and on these bounds, we develop a rational interval arithmetic where introduce the results as axioms.1 However, chances are that real number calculations take place in an algebraic setting. In the external calculations will be performed using floating-point order to reduce the dependency effect of interval arithmetic, arithmetic. Without formal checking of the results, we will we integrate two techniques: interval splitting and taylor series expansions. This pragmatic approach has been developed, and never be sure of the correctness of the calculations. formally verified, in a theorem prover. The formal development In this paper we present a set of interactive tools to automat- also includes a set of customizable strategies to automate proofs ically prove numerical properties, such as Formula (1), within involving explicit calculations over real numbers. Our ultimate a proof assistant. The point of departure is a collection of lower goal is to provide guaranteed proofs of numerical properties with minimal human theorem-prover interaction.