Sunshielding Louvres in Thin Steel Sheets (1276) Philippe Samyn

Introduction Openwork blinds, wooden lattices, louvres, sunshields of all sorts are traditional construction elements of the building envelope, anywhere on Earth.

These elements often combine various functions beyond solar protection itself. In hot countries particularly, they form a breathing fence for the accommodation. Most of them are still made of wood.

Figure 1 Figure 2

Philippe SAMYN and PARTNERS architects & 2016-12-29/ 15h00 03/402-1 1/8 Sunshielding Louvres in Thin Steel Sheets (1276) Philippe Samyn

PVB PVB n=1.49 n=1.49 VANTELLE AIR VERRE VERRE AIR VANTELLE AIR VERRE VERRE AIR n=1.59 n=1.59 n=1.59 n=1.59 HORIZONTALE n=1 n=1 VERTICALE n=1 n=1

2013-01-07 - Definitive drawing for AGC: dimensions of the silkscreened vertical louvres. Dossier : Réf.: Echelle : Date 1ère diffusion: 2012-12-20 Projet : Architectes : SAMYN and PARTNERS 2/1 sur A3 SAI : 01/577 - BEAI : 1210/AGC © SAMYN and PARTNERS Date dernier indice: 2013-01-07 architects & engineers beai 0 2 4 6 8 10CM Emetteur : © sprl AGC-LLN 01/577 AGC LOUVAIN-LA-NEUVE architects & engineers Bureaux d'études : Stabilité: SAI + INGENIEURSBUREAU MEIJER sprl. Dessiné par : OJO* Controlé par : GA* Approuvé par : PhS* Maître d'Ouvrage : AGC GLASS EUROPE Techniques Spéciales: SAI + FLOW TRANSFER INTERNATIONEL S.A. Physique du bâtiment: DAIDALOS PEUTZ Objet : Dimensionnement des Projet Phase Partie Auteur Ci/Sfb Type doc. N° de vue Zone Indice Maître d'Ouvrage délégué : AXA S.A. Statut : DOSSIER D'EXECUTION sérigraphie - vantelles AGC.LLN X 02 A- -- D 39 - A * Pour / voor / for «Philippe Samyn and Partners sprl.bvba», architect en ingenieur, Burgerlijke Vennootschap onder vorm van Besloten Vennootschap met Beperkte Aansprakelijkheid, Société Civile ayant emprunté la forme d'une Société Privée à Responsabilité Limitée, Civil law company which took the form of a sprl - bvba - register of civil law companies which took the commercial form, n° 1877. Chée de/Stwg op Waterloo, 1537 1180 Brussels, Belgium Tel: 32-2-374 90 60 Fax: 32-2-374 75 50 www.samynandpartners.be [email protected] certified ISO 9001, ISO14001 & VALIDEO

view

view

PVB PVB n=1.49 n=1.49 VANTELLE AIR VERRE VERRE AIR VANTELLE AIR VERRE VERRE AIR n=1.59 n=1.59 n=1.59 n=1.59 n=1 PVB n=1 n=1 PVB n=1 HORIZONTALE n=1.49 VERTICALE n=1.49 VANTELLE AIR VERRE VERRE AIR VANTELLE AIR VERRE VERRE AIR n=1.59 n=1.59 n=1.59 n=1.59 HORIZONTALE n=1 n=1 VERTICALE n=1 n=1

Dossier : Réf.: Echelle : Date 1ère diffusion: 2012-12-20 Projet : SAI : 01/577 - BEAI : 1210/AGC Architectes : SAMYN and PARTNERS 2/1 sur A3 © 0 2 4 6 8 10CM SAMYN and PARTNERS Date dernier indice: 2013-01-07 architects & engineers beai Emetteur : Maximum© sprl AGC-LLN visual01/577 transparency through the louvre: Figure 3 AGC LOUVAIN-LA-NEUVE architects & engineers Bureaux d'études : Stabilité: SAI + INGENIEURSBUREAU MEIJER sprl. Dessiné (19.5/48)par : OJO* x (0.907Controlé par TL) : = GA*33.35%Approuvé par : PhS* Maître d'Ouvrage : AGC GLASS EUROPE Techniques Spéciales: SAI + FLOW TRANSFER INTERNATIONEL S.A. Physique du bâtiment: DAIDALOS PEUTZ Objet : Dimensionnement des Projet Phase Partie Auteur Ci/Sfb Type doc. N° de vue Zone Indice Maître d'Ouvrage délégué : AXA Belgium S.A. Statut : DOSSIER D'EXECUTION PVB PVB sérigraphie - vantelles AGC.LLN X 02 A- -- D 39 - A n=1.49 Dossier : Réf.: Echellen=1.49 : Date 1ère diffusion: 2012-12-20 Projet : SAI : 01/577 - BEAI : 1210/AGC Architectes : SAMYNSAMYN andand PARTNERSPARTNERS 2/1 sur A3 * Pour / voor / for «Philippe Samyn and Partners sprl.bvba», architect en ingenieur, Burgerlijke Vennootschap onder© vorm van Besloten Vennootschap met Beperkte Aansprakelijkheid,0 Société2 Civile ayant4 emprunté6 la forme8 d'une10CM Société Privée à Responsabilité Limitée,SAMYN Civil lawand company PARTNERS which took the form of a sprl - bvba - register of civil law companies which took the Datecommercial dernier form,indice: Brussels 2013-01-07 n° 1877. architects & engineers www.samynandpartners.bebeai [email protected] Emetteur : © sprlsprl AGC-LLN 01/577 certified ISO 9001, ISO14001 & VALIDEO Chée de/StwgAGC op LOUVAIN-LA-NEUVEWaterloo, 1537 1180 Brussels, Belgium Tel: 32-2-374 90 60 Fax: 32-2-374 75 50 architects & engineers VERRE VERRE VERRE VERRE VANTELLE AIR Bureaux d'études : StabilStabilité:ité: AIRSAISAI ++ INGENIEURSBUREAUINGENIEURSBUREAU MEIJERMEIJER sprl.sprl.VANTELLE AIR Dessiné par : OJO* Controlé par : GA* ApprouvéAIR par : PhS* Maître d'Ouvrage : AGC GLASS EUROPE n=1.59 n=1.59TechniquesTechniques Spéciales:Spéciales: SAISAI ++ FLOWFLOW TRANSFERTRANSFER INTERNATIONELINTERNATIONEL S.A.S.A. Objet : n=1.59 n=1.59 PhysiquePhysique dudu bâtiment:bâtiment: DAIDALOS PEUTZ DimensionnementPhilippe SAMYN des ProjetProjet andPhasePhase PARTNERSPartiePartie AuteurAuteur Ci/SfbCi/Sfb architectsTypeType doc.doc. N°N° dede vuevue ZoneZone & engineersIndiceIndice 2016-12-29/ 15h00 03/402-1 2/8 Maître d'Ouvrage délégué : AXA Belgium S.A. StatutStatut :: DOSSIER D'EXECUTION HORIZONTALE n=1 n=1 VERTICALE sérigraphie - vantellesn=1 AGC.LLN X 02 A- ---- D 39 --n=1 A ** PourPour // voorvoor // forfor «Philippe«Philippe SamynSamyn andand PartnersPartners sprl.bvba»,sprl.bvba», architectarchitect enen ingenieur,ingenieur, BurgerlijkeBurgerlijke VennootschapVennootschap onderonder vormvorm vanvan BeslotenBesloten VennootschapVennootschap metmet BeperkteBeperkte Aansprakelijkheid,Aansprakelijkheid, SociétéSociété CivileCivile ayantayant empruntéemprunté lala formeforme d'uned'une SociétéSociété PrivéePrivée àà ResponsabilitéResponsabilité Limitée,Limitée, Civil law company which took the form of a sprl - bvba - registerregister ofof civilcivil lawlaw companiescompanies whichwhich tooktook thethe commercialcommercial form,form, BrusselsBrussels n°n° 1877.1877. Chée de/Stwg op Waterloo, 1537 1180 Brussels, Belgium Tel: 32-2-374 90 60 Fax: 32-2-374 75 50 www.samynandpartners.bewww.samynandpartners.be [email protected]@samynandpartners.be certified ISO 9001, ISO14001 & VALIDEO

Dossier : Réf.: Echelle : Date 1ère diffusion: 2012-12-20 Projet : Architectes : SAMYN and PARTNERS 2/1 sur A3 SAI : 01/577 - BEAI : 1210/AGC © SAMYN and PARTNERS Date dernier indice: 2013-01-07 architects & engineers beai 0 2 4 6 8 10CM Emetteur : © sprl AGC-LLN 01/577 AGC LOUVAIN-LA-NEUVE architects & engineers Bureaux d'études : Stabilité: SAI + INGENIEURSBUREAU MEIJER sprl. Dessiné par : OJO* Controlé par : GA* Approuvé par : PhS* Techniques Spéciales: SAI + FLOW TRANSFER INTERNATIONEL S.A. Maître d'Ouvrage : AGC GLASS EUROPE Objet : Dimensionnement des Projet Phase Partie Auteur Ci/Sfb Type doc. N° de vue Zone Indice Statut : DOSSIER D'EXECUTION PVB Physique du bâtiment: DAIDALOS PEUTZ PVB Maître d'Ouvrage délégué : AXA Belgium S.A. sérigraphie - vantelles n=1.49 AGC.LLN X 02 n=1.49A- -- D 39 - A * Pour / voor / for «Philippe Samyn and Partners sprl.bvba», architect en ingenieur, Burgerlijke Vennootschap onder vorm van Besloten Vennootschap met Beperkte Aansprakelijkheid, Société Civile ayant emprunté la forme d'une Société Privée à Responsabilité Limitée, Civil law company which took the form of a sprl - bvba - register of civil law companies which took the commercial form, Brussels n° 1877. Chée de/Stwg op Waterloo, 1537 1180 Brussels, Belgium Tel: 32-2-374 90 60 Fax: 32-2-374 75 50 www.samynandpartners.be [email protected] certified ISO 9001, ISO14001 & VALIDEO VANTELLE AIR VERRE VERRE AIR VANTELLE AIR VERRE VERRE AIR n=1.59 n=1.59 n=1.59 n=1.59 HORIZONTALE n=1 n=1 VERTICALE n=1 n=1

Dossier : Réf.: Echelle : Date 1ère diffusion: 2012-12-20 Projet : Architectes : SAMYN and PARTNERS 2/1 sur A3 SAI : 01/577 - BEAI : 1210/AGC © SAMYN and PARTNERS Date dernier indice: 2013-01-07 architects & engineers beai 0 2 4 6 8 10CM Emetteur : © sprl AGC-LLN 01/577 AGC LOUVAIN-LA-NEUVE architects & engineers Bureaux d'études : Stabilité: SAI + INGENIEURSBUREAU MEIJER sprl. Dessiné par : OJO* Controlé par : GA* Approuvé par : PhS* Maître d'Ouvrage : AGC GLASS EUROPE Techniques Spéciales: SAI + FLOW TRANSFER INTERNATIONEL S.A. Physique du bâtiment: DAIDALOS PEUTZ Objet : Dimensionnement des Projet Phase Partie Auteur Ci/Sfb Type doc. N° de vue Zone Indice Maître d'Ouvrage délégué : AXA Belgium S.A. Statut : DOSSIER D'EXECUTION PVB PVB sérigraphie - vantelles AGC.LLN X 02 A- -- D 39 - A n=1.49 n=1.49 * Pour / voor / for «Philippe Samyn and Partners sprl.bvba», architect en ingenieur, Burgerlijke Vennootschap onder vorm van Besloten Vennootschap met Beperkte Aansprakelijkheid, Société Civile ayant emprunté la forme d'une Société Privée à Responsabilité Limitée, Civil law company which took the form of a sprl - bvba - register of civil law companies which took the commercial form, Brussels n° 1877. Chée de/Stwg op Waterloo, 1537 1180 Brussels, Belgium Tel: 32-2-374 90 60 Fax: 32-2-374 75 50 www.samynandpartners.be [email protected] certified ISO 9001, ISO14001 & VALIDEO VANTELLE AIR VERRE VERRE AIR VANTELLE AIR VERRE VERRE AIR n=1.59 n=1.59 n=1.59 n=1.59 HORIZONTALE n=1 n=1 VERTICALE n=1 n=1

Dossier : Réf.: Echelle : Date 1ère diffusion: 2012-12-20 Projet : Architectes : SAMYN and PARTNERS 2/1 sur A3 SAI : 01/577 - BEAI : 1210/AGC © SAMYN and PARTNERS Date dernier indice: 2013-01-07 architects & engineers beai 0 2 4 6 8 10CM Emetteur : © sprl AGC-LLN 01/577 AGC LOUVAIN-LA-NEUVE architects & engineers Bureaux d'études : Stabilité: SAI + INGENIEURSBUREAU MEIJER sprl. Dessiné par : OJO* Controlé par : GA* Approuvé par : PhS* Maître d'Ouvrage : AGC GLASS EUROPE Techniques Spéciales: SAI + FLOW TRANSFER INTERNATIONEL S.A. Physique du bâtiment: DAIDALOS PEUTZ Objet : Dimensionnement des Projet Phase Partie Auteur Ci/Sfb Type doc. N° de vue Zone Indice Maître d'Ouvrage délégué : AXA Belgium S.A. Statut : DOSSIER D'EXECUTION sérigraphie - vantelles AGC.LLN X 02 A- -- D 39 - A * Pour / voor / for «Philippe Samyn and Partners sprl.bvba», architect en ingenieur, Burgerlijke Vennootschap onder vorm van Besloten Vennootschap met Beperkte Aansprakelijkheid, Société Civile ayant emprunté la forme d'une Société Privée à Responsabilité Limitée, Civil law company which took the form of a sprl - bvba - register of civil law companies which took the commercial form, Brussels n° 1877. Chée de/Stwg op Waterloo, 1537 1180 Brussels, Belgium Tel: 32-2-374 90 60 Fax: 32-2-374 75 50 www.samynandpartners.be [email protected] certified ISO 9001, ISO14001 & VALIDEO Sunshielding Louvres in Thin Steel Sheets (1276) Philippe Samyn

S 2000

2000

Figure 4

Opaque louvres efficiently counter solar radiation, but High Resistance Steel inevitably limit daylight penetration. In order to maximise both the efficiency of sun protection and transparency, I kept thinking of a cheaper solution than these silk- it is only logical that the louvres should spin according to screened glass louvres to achieve the same result. As we the sun’s path, thereby always remaining perpendicular carried out another research aimed at reducing both the to it. weight and the quantity of material for various building If the louvres are placed horizontally on the building’s components, I was led to study the use of very thin sheets North and South facades, and vertically on the East and and wires in ultra-high resistance steel, be it stainless or West ones, they are less frequently completely shut, and not. the facade’s global transparency rises (figure 1). Those materials exist and are available on the market. For instance, wires with a 0.1 mm section, with a 4000 MPa However, since it is impossible to fully prevent them from yield strength (“Saw Wire”), are being used to slice silica closing when the sun approaches the horizon, it should blocks for photovoltaic cells. So is thin sheet metal, with be possible to significantly increase the amount of a thickness down to 0.1 mm thick and a yield strength of natural light entering the building by making the louvres 2000 MPa, used in the engineering industry. themselves slightly transparent, yet keeping an unaltered One should refer on this matter to the graph in figure 4, 4 level of sun protection. courtesy of Michael Ashby , in which the density and elastic limit of materials are compared, and where I With this in mind, I imagined as soon as 1998, for the added a green dot that corresponds to the “S2000” steel. refurbishment of the ENI Headquarters in Rome (the It can be seen from the graph that other materials also “Palazzo Mattei”, 01-375 1, figure 2), large louvres in clear present the same “Resistance / Density” specifications glass, showing on both sides white stripes, alternating and ratio. separated from each other by their width. I could carry Steel, however, offers two critical advantages compared out this concept to fruition for the headquarters of AGC to its “rivals.” To begin with, 70% of its production nowa- 5 Glass Europe 2 in Louvain-la-Neuve, in 2011 (01/577, figure days originates from recycling – and it will only go up in 3), granting a nearly zero energy building with maximum the years to come. Barely above 0% only 50 years ago, quality of light and transparency 3. this figure will rise close to 100% within a few decades. Then, it is one of the few materials that can be crafted with minimal energy.

Philippe SAMYN and PARTNERS architects & engineers 2016-12-29/ 15h00 03/402-1 3/8 Sunshielding Louvres in Thin Steel Sheets (1276) Philippe Samyn

The Louvre in Thin Steel Sheet Any size can be freely chosen: length, width or thickness of the louvre, width of the flanges and of their stiffeners on the Stainless steel sheet of 2000 MPa, 0.5 mm thick for example, webs, length of the rectangular perforations in the webs, can be fabricated into reels of different widths, and easily width of the straps, of the strips and of the U-shaped sheet corrugated by handcrafted means, anywhere on the globe. metal. This way, each and every situation is granted to find its 6 It can also be perforated, either industrially in Europe before most appropriate shape. shipment, or by hand on the place of destination.

The steel louvre consists of a piece of sheet metal profiled into “castellated” waves (squared, rectangular or trapezoidal), Advantages and Drawbacks in which the “webs” (parts perpendicular to the plane The steel louvre offers various advantages compared to of the louvre, as opposed to the “flanges”, parallel) are glass: largely hollowed. Crosswise strips stiffen them. The louvre • it is cheaper and can be hand-crafted in small displayed in the example below presents a maximum quantities, “proper transparency” (view at 45°) that reaches 83% of the • it does not need regular cleaning, one of a 25.52 mm-wide glass louvre, silkscreened according • it can deform elastically without breaking, to the same pattern. • it weights 78 g/dm², that is 7.7 times less than a 25.52 mm-thick glass louvre 7, This louvre is constructed as follows (figure 5): • it does not filter colours, which means it reaches a Parallel lines are drawn on the sheet metal, on the length of colour rendering index of 100%, the louvre to be built, and describe the castellated wave’s • its intrinsic geometric resistance is so high it can be width of the flanges and height of the webs (which can differ made up of paper in a scale 1:2 (figure 6), from one another). • it is 4.5 times more resistant when bent than its glass Large, rectangular perforations are pierced at regular counterpart with the same dimensions 8, intervals on the length of the webs. Enough matter is left on • it is air-permeable, the folds, so as to stiffen the flanges after folding. • not only can it be placed as usual in front of the window The sides of the sheet metal are extended with crosswise frame, but it can also be integrated in between single- straps placed in line with the matter left in between the glass sheets, such as in the very efficient facade perforations of the webs. system developed by the Permasteelisa Company 9, After profiling, the straps are folded up towards the centre consisting of three single-glass sheets at a distance of the louvre to constitute the shape of the long edge. The of 20 cm and two sets of louvres put between the flanges are tied together thanks to sheet metal strips, which windows. precisely cover the straps and fall into line with the edges of the webs’ openings. However, due to the presence of strips and flange Finally, two U-shaped pieces of sheet metal crown both siffeners on the webs, it is less transparent than glass ends in order to give the object its stiffness against shear and louvres. torsion.

Strap Large perforation Stiffener Flange Web

Parallel lines

Strip

U-shaped sheet metal

Figure 5 Figure 6

Philippe SAMYN and PARTNERS architects & engineers 2016-12-29/ 15h00 03/402-1 4/8 Sunshielding Louvres in Thin Steel Sheets (1276) Philippe Samyn 30 50 30 50 590 550 550 590 40 40 GH, 33.55cm WIDE, 3.27 THICK 3.27 WIDE, 33.55cm GH, 590 550 550 590 40 40 590 550 550 590 40 3600 40 3600 590 550 550 590 UNFOLDED INITIAL STEEL SHEET FOR THE LOUVER 3.6m HI LOUVER THE FOR INITIALUNFOLDED SHEET STEEL 40 40 mm 1000 590 550 550 590 800 40 40 600 400 590 550 550 4.232 590

0.129 H 200 50 30 0 50 33.8535 33.8535 38.4697 25.39 38.4697 30 1.035 H 1.17644 H 1.035 H 1.17644 H 0.7765 H 10x33.8535 + 11x38.4697 = 761.7017 23.2936 H 14x33.8535 + 13x38.4697 = 974.0551 29.7876 H

H

(77+19tg15°) x H/8 = 335.5 5

2

1

. 15° 10.2614 H 0 H/8 = 4.0875

8 3 H 5 H 0° 15° 30° 45° 60° 75° 90°

5 H

8

5 α . 3 =

5 3 7 0 45

7 3 . 8 °

. 1 .

0

0 H = 32.7 = H 6H/8 = 24.525 7H/8 = 28.6125

2 H

3 9 2 0 200 400 600 800 1000 mm . 2 (14+2tg15°) x H/8 = 59.4155 17.9535 (9tg15°+7) x H/8 = 38.4697 7(1-tg15°) x H/8 = 20.9458 tg15° x H = 8.762 4 1 . H

0

5

1.81699 H 1.17644 H 0.64054 H 0.26795 H 2

1 ° . 5 0 4

(x 12.6 H/8 = 4.0875 91.67% = EXAMPLE OF A LOUVER 3,6m HIGH, 33,55cm WIDE (1,35m/4) AND 3,27cm THICK TL 30 951 α lo .3 90° TAKING THE CIRCUMSOLAR EFFECT INTO ACCOUNT = 2 9% ngi 7.9% t udi nal) 0 20 40 60 80 100 mm PERCENTAGE OF VOIDS ON THE LENGHT OF 360cm = 6x55/360 = 91.67%. THE OVERALL MAXIMUM TRANSPARENCY IS THUS OF 30.39% x 91.67% = 27.86% (TO COMPARE WITH A 25.52mm THICK EXTRA CLEAR GLASS LOUVER, PRESENTING A MAXIMUM EXAMPLE OF A LOUVER 3,6m HIGH, 33,55cm WIDE (1,35m/4) AND 3,27cm THICK TRANSPARENCY OF 33.53%. THE STEEL LOUVER PRESENTS THUS A MAXIMUM TRANSPARENCY OF 83% OF THE GLASS LOUVER. Figure 7 Figure 8 Straight and Slanting Transparency, Circumsolar Effect Due to the five intermediary 4 cm-wide straps and the two U-shaped pieces of sheet metal at both ends, the The lines of white paint on the glass are not totally maximum transparency rate of the entire louvre is 27.86%, opaque. They allow a total of 11.2% light and 12.5% solar that is, 83% of AGC Glass Europe louvre’s (i.e. 33.53%). energy through. As far as steel louvres are concerned, the straight- Mechanism line vision transparency can easily be adapted by microperforating the flanges. This way, equal, higher or These louvres must follow the sun’s path so as to always lower transmitting values than with a glass louvre can be remain perpendicular to the solar radiation. obtained. To achieve that goal, various mechanisms have been tested out in recent years, by the Colt Company among Furthermore, with a light transmission index (LTI) of others. They came to the conclusion that only a system 90.7% 10, the 25.52 mm-thick “crystal-clear” glass is not of rods and pistons could insure the reliability and fully transparent when viewed from an angle. mechanical precision required for device-directed The aforementioned louvre achieves 83% of such louvres. transparency, a value that should be improved by This is the system we developed with that company for optimising the sheet metal perforation as well as the AGC headquarters, and which will continue to be used width of the strips. for complex applications in our wealthy countries. These steel louvres could nonetheless also be Eventually, the effect of circumsolar radiation should be manufactured and used in poor countries, for economical taken into account when sizing the folding, considering or even rudimentary buildings. that the opaque stripes must be slightly larger than the For such a use, a simple mechanism should be developed, stripes letting light through. for instance based on the principle of old counterweight and pendulum clocks, as illustrated in figures 9 and 10. Example The south louvres in figure 9 spin around their horizontal axis. In the morning at 6 a.m., they are on a plane Figures 7 and 8 illustrate a 3.6 m-high, 33.75 cm-wide (that parallel to the facade (closed position), then gradually is, 1.35 m / 4) and 3.27 cm-thick vertical louvre. open until noon (never reaching, in our latitudes, perfect The width of the flange stiffeners here is arbitrarily set at perpendicularity with the facade). It finally goes back to 1/8 of the thickness of the louvre, that is, 4.1 mm. a closed position at 6 p.m. In the sectional view, its geometry takes the circumsolar The east louvres in figure 10 spin around their vertical axis. effect into account and offers a 30.39% transparency. In the morning at 6 a.m., they are on a plane parallel

Philippe SAMYN and PARTNERS architects & engineers 2016-12-29/ 15h00 03/402-1 5/8 Sunshielding Louvres in Thin Steel Sheets (1276) Philippe Samyn

to the facade (closed position), then gradually reach a perpendicular position at noon (open position). As for the west louvres, they are perpendicular to the facade at noon, then gradually spin to be on a plane parallel to the facade at 6 p.m.

Figure 9 Figure 10

1. Numbers 01-xyz refer to the file number to insert in the “research” field on 6. For instance by RMIG, a European company, the largest metal www.samynandpartners.com for more details on the project. perforation company in the world. 2. Philippe Samyn architect and – Jan de Coninck: “AGC Glass 7. 0.01 dm x 1 dm² x 7,800 g/dm³ = 78 g for steel, and 0.24 dm x 1 dm² x Building”. Lannoo Editions, Brussels, May 2014, 256 p. (in English: ISBN 978- 2,500 g/dm³ = 600 g for glass (PVB excluded). 2-87386-884-0). 8. Two pieces of S2000 steel sheet metal (working at 120 kN/cm²), on 3. Many other types of glass louvres have been used for decades in Europe average 0.25 mm-thick and 10 cm-wide, separated by 2.4 cm, result in a without reaching the same performances. bending moment of 0.025 cm x 10 cm x 2.4 cm x 120 kN/cm² = 72 kN.cm. 4. Michael Ashby: “Materials Selection in Mechanical Design”, picture A glass sheet (working at 1.65 kN/cm²) of 24 mm-thick and 10 cm-wide extracted from the PDF file available on the internet, 3rd edition, 2005, results in a bending moment of (2.4² x 10/6) cm³ x 1.65 kN/cm² = 16 kN.cm. p.54. See also Philippe Samyn: “Etude de la morphologie des structures 9. These developments are run by its subsidiary “Scheldebouw” in the à l’aide des indicateurs de volume et de déplacement”, Académie Netherlands. Royale de Belgique – Classe des Sciences, collection in 4°, 3ème série, 10. Twice 4% are reflected in the interfaces between glass and air, twice Tome V, 2004, 482 p., ISBN 2.8031.0201.3, available in French in e-book 0.6% are absorbed by the two 12 mm-thick glass sheets, and 0.1% by the on www.samynandpartners.be): see p.23 for {Ma} function of ρ, σ and E divider made of 1.52 mm-thick PVB. It should be noted that anti-reflective (the influence of a material when designing a constructive element). glass increases light transmission up to 97%. 5. Sustainable Steel Buildings. Edited by Milan Veljkovic, Bernhard Hauke, Markus Kuhnhenne & Mark Lawson. John Wiley & Sons, Chichester, UK, 2016.

Philippe SAMYN and PARTNERS architects & engineers 2016-12-29/ 15h00 03/402-1 6/8 Sunshielding Louvres in Thin Steel Sheets (1276) Philippe Samyn 30 50 590 550 40 GH, 33.55cm WIDE, 3.27 THICK 3.27 WIDE, 33.55cm GH, 590 550 40 590 550 40 3600 590 550 UNFOLDED INITIAL STEEL SHEET FOR THE LOUVER 3.6m HI LOUVER THE FOR INITIALUNFOLDED SHEET STEEL 40 mm 1000 590 550 800 40 600 400 590 550 4.232

0.129 H 200 50 30 0 33.8535 33.8535 38.4697 25.39 38.4697 1.035 H 1.17644 H 1.035 H 1.17644 H 0.7765 H 10x33.8535 + 11x38.4697 = 761.7017 23.2936 H 14x33.8535 + 13x38.4697 = 974.0551 29.7876 H

H

(77+19tg15°) x H/8 = 335.5 5

2

1

. 15° 10.2614 H 0 H/8 = 4.0875

8 3 H 5 H

5 H

8

5 α . 3 =

5 3 7 0 45

7 3 . 8 °

. 1 .

0

0 H = 32.7 = H 6H/8 = 24.525 7H/8 = 28.6125

2 H

3 9 2 . 2 (14+2tg15°) x H/8 = 59.4155 17.9535 (9tg15°+7) x H/8 = 38.4697 7(1-tg15°) x H/8 = 20.9458 tg15° x H = 8.762 4 1 . H

0

5

1.81699 H 1.17644 H 0.64054 H 0.26795 H 2

1 ° . 5 0 4

(x 12.6 H/8 = 4.0875 91.67% = TL 30 951 α lo .3 90° = 2 9% ngi 7.9% t udi nal) 0 20 40 60 80 100 mm

EXAMPLE OF A LOUVER 3,6m HIGH, 33,55cm WIDE (1,35m/4) AND 3,27cm THICK

Figure 7

Philippe SAMYN and PARTNERS architects & engineers 2016-12-29/ 15h00 03/402-1 7/8 Sunshielding Louvres in Thin Steel Sheets (1276) Philippe Samyn 30 50 550 590 40 550 590 40 550 590 40 3600 550 590 40 550 590 40 550 590 50 30

0° 15° 30° 45° 60° 75° 90°

0 200 400 600 800 1000 mm

EXAMPLE OF A LOUVER 3,6m HIGH, 33,55cm WIDE (1,35m/4) AND 3,27cm THICK TAKING THE CIRCUMSOLAR EFFECT INTO ACCOUNT

PERCENTAGE OF VOIDS ON THE LENGHT OF 360cm = 6x55/360 = 91.67%. THE OVERALL MAXIMUM TRANSPARENCY IS THUS OF 30.39% x 91.67% = 27.86% (TO COMPARE WITH A 25.52mm THICK EXTRA CLEAR GLASS LOUVER, PRESENTING A MAXIMUM TRANSPARENCY OF 33.53%. THE STEEL LOUVER PRESENTS THUS A MAXIMUM TRANSPARENCY OF 83% OF THE GLASS LOUVER.

Figure 8

Philippe SAMYN and PARTNERS architects & engineers 2016-12-29/ 15h00 03/402-1 8/8