Application of Interpro for the Functional Classification of the Proteins of Fish Origin in SWISS-PROT and Trembl

Total Page:16

File Type:pdf, Size:1020Kb

Application of Interpro for the Functional Classification of the Proteins of Fish Origin in SWISS-PROT and Trembl Application of InterPro for the functional classification of the proteins of fish origin in SWISS-PROT and TrEMBL MARGARET BISWAS*, ALEX KANAPIN and ROLF APWEILER EMBL Outstation, The European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK *Corresponding author (Fax, +44-1223 494 468; Email, [email protected]). InterPro (http://www.ebi.ac.uk/interpro/) is an integrated documentation resource for protein families, domains and sites, developed initially as a means of rationalizing the complementary efforts of the PROSITE, PRINTS, Pfam and ProDom database projects. It is a useful resource that aids the functional classification of proteins. Almost 90% of the actinopterygii protein sequences from SWISS-PROT and TrEMBL can be classified using InterPro. Over 30% of the actinopterygii protein sequences currently in SWISS-PROT and TrEMBL are of mito- chondrial origin, the majority of which belong to the cytochrome b/b6 family. InterPro also gives insights into the domain composition of the classified proteins and has applications in the functional classification of newly determined sequences lacking biochemical characterization, and in comparative genome analysis. A comparison of the actinopterygii protein sequences against the sequences of other eukaryotes confirms the high representation of eukaryotic protein kinase in the organisms studied. The comparisons also show that, based on InterPro families, the trans-species evolution of MHC class I and II molecules in mammals and teleost fish can be recognized. 1. Introduction rently, sequences from the pufferfish make up about 3% and those from the zebrafish account for more than 12% The current SWISS-PROT and TrEMBL protein sequence of the actinopterygii sequences in SWISS-PROT and databases (October 2000) have 462,453 entries; 88,753 in TrEMBL. SWISS-PROT and 373,700 in TrEMBL. SWISS-PROT In comparison with the genome of other vertebrate contains high quality annotation, is non-redundant and is species, the Fugu rubripes genome comprises less repeti- cross-referenced to many other databases. TrEMBL is a tive DNA sequence, smaller intergenic regions and computer-annotated supplement to SWISS-PROT that smaller introns (Brenner et al 1993). As a result of this contains translations of all coding sequences present in observation the genome of Fugu rubripes is a model of a EMBL Nucleotide Sequence Database, that are not yet minimalist vertebrate genome and is currently being integrated into SWISS-PROT (Bairoch and Apweiler employed in several comparative sequence studies. The 2000). There are 23,984 entries for protein sequences zebrafish (D. rerio) too offers special advantages for from vertebrates that are not mammalian. Of these, the genetic and developmental analysis at single cell resolu- sequences of fish origin make up just over 40%. By far tion. The zebrafish, nearly unique among commonly stu- the largest number of fish sequences are for the actino- died vertebrates, contains large numbers of identifiable pterygii (ray-finned fishes) with all other being much less cells, some of which have already been characterized in well represented (figure 1). Two of the organisms at the terms of their detailed anatomical, physiological, deve- focus of the genome projects, Fugu rubripes (pufferfish) lopmental and genetic properties (Lekven et al 2000). and Danio rerio (zebrafish) belong to this group. Cur- Clearly, a large number of sequences from these two Keywords. Actinopterygii (ray-finned fish); fish proteins; functional classification; InterPro; SWISS-PROT; TrEMBL ________________ Abbreviations used: GPCRs, G-coupled protein receptors; PKD, polycystic kidney disease; MHC, major histocompatibility complex. J. Biosci. | Vol. 26 | No. 2 | June 2001 | 277–284 | © Indian Academy of Sciences 277 278 Margaret Biswas, Alex Kanapin and Rolf Apweiler organisms will begin to find their way into the databases. means of rationalising the complementary efforts of the It is, therefore, an interesting time to take stock of what is PROSITE (Hofmann et al 1999), PRINTS (Attwood et al currently available and to attempt to classify the informa- 2000), Pfam (Bateman et al 2000) and ProDom (Corpet tion that is available in the sequence databases. The appli- et al 2000) database projects. These four databases are cation of InterPro for such an analysis is demonstrated in currently the member databases of InterPro. this paper. A comparative analysis of the three complete InterPro is implemented as a relational database in Ora- eukaryotic proteomes was the first application of InterPro cle and users have direct access via Java servlets. The (Rubin et al 2000). The InterPro analysis plus manual InterPro database is distributed as XML-formatted flat inspection of the data enabled the successful classification files and as exports of the relational database. The Inter- of over 50% of the proteins of the proteomes of Droso- Pro database provides an integrated layer on top of the phila melanogaster, Caenorhabditis elegans and Sac- most commonly used signature databases to provide a charomyces cerevisiae. user-friendly interface for text-based searches and sequence scans. InterPro contains manually curated documentation, combined with diagnostic signatures from different data- 2. Source databases and methods bases to create a unique, non-redundant characterization 2.1 Database of actinopterygii sequences of a given protein family, domain or functional site. A sample InterPro entry is shown in figure 2. A subset of the SWISS-PROT and TrEMBL databases An InterPro-based statistical analysis of the actino- containing only the sequences of actinopterygii has been pterygii sequences has been carried out and includes assembled. This subset was selected using SRS (Etzold information under the following categories: et al 1996) to query the two databases for these sequences. · General statistics – all InterPro entries with matches to The list describing the subset membership was stored in the actinopterygii subset. The total number of matches Oracle and has been used in this analysis. of each of the signatures and the number of proteins matched for each InterPro entry is available. 2.2 InterPro · InterPro entries with the highest number of actino- InterPro (http://www.ebi.ac.uk/interpro/) (Apweiler et al pterygii protein matches. 2001) is an integrated documentation resource of protein · Actinopterygii proteins with the highest occurrence of a families, domains and sites that has been developed as a given domain. Figure 1. Distribution of fish sequences in SWISS-PROT and TrEMBL. J. Biosci. | Vol. 26 | No. 2 | June 2001 Classification of fish proteins using InterPro 279 Figure 2. Sample InterPro entry and graphical view of cell division protein kinase 2 (EC 2.7.1.-) from Carassius auratus (goldfish). J. Biosci. | Vol. 26 | No. 2 | June 2001 280 Margaret Biswas, Alex Kanapin and Rolf Apweiler Actinopterygii proteins with the highest occurrence of flatfile may be retrieved from the EBI anonymous-ftp different signatures. server ftp://ftp.ebi.ac.uk/pub/databases/interpro. Information about protein matches for member database signatures is stored in the InterPro Oracle tables. This 3. Results and discussion data is compiled using a set of Perl scripts to generate static HTML pages based on the data extracted from the Almost 90% of the actinopterygii protein sequences can Oracle database and filed according to the type of ana- be classified using InterPro (Release 2.0, October 2000) lysis. Match information includes the protein sequence with 757 of the 3204 InterPro entries having matches to accession number, the accession number of the method the actinopterygii protein sequences. (PROSITE, PRINTS, Pfam or ProDom), the position of the signature on the protein sequence and the status of the 3.1 InterPro entries with the highest number of matches match [true (T), false positive (F), false negative (N) or unknown (?)]. The top twenty InterPro entries with the highest number The database is accessible for text- and sequence-based of matches to proteins from the subset of actinopterygii searches at http://www.ebi.ac.uk/interpro/. The InterPro protein sequences are shown in figure 3. More than 30% Figure 3. Top twenty InterPro entries with the highest number of matches to proteins from the subset of acti- nopterygii protein sequences. J. Biosci. | Vol. 26 | No. 2 | June 2001 Classification of fish proteins using InterPro 281 of the actinopterygii protein sequences with InterPro 3.3 Actinopterygii proteins with the highest occurrence matches are of mitochondrial origin reflecting the interest of different signatures in using these sequences, in particular cytochrome b, in evolutionary analysis (see, for example, Wang et al 2000). 3.3a Multi-domain proteins: InterPro can give some Over 20% of the actinopterygii protein sequences belong insights into the domain composition of the classified pro- to the cytochrome b/b6 family (IPR000179). Cytochrome teins. Some multi-domain proteins can be especially com- b is the central redox catalytic subunit of the quinol: cyto- plex. For example, the protein from the F. rubripes chrome c or plastocyanin oxidoreductases. It is a mito- polycystic kidney disease 1 (PKD1) gene (O42181) is chondrial protein for which the evolution and structure an integral membrane glycoprotein with multiple evolu- has been widely studied. Other mitochondrial enzymes tionary conserved domains and with hits to 7 different that have a high number of matches to InterPro families InterPro
Recommended publications
  • The ELIXIR Core Data Resources: ​Fundamental Infrastructure for The
    Supplementary Data: The ELIXIR Core Data Resources: fundamental infrastructure ​ for the life sciences The “Supporting Material” referred to within this Supplementary Data can be found in the Supporting.Material.CDR.infrastructure file, DOI: 10.5281/zenodo.2625247 (https://zenodo.org/record/2625247). ​ ​ Figure 1. Scale of the Core Data Resources Table S1. Data from which Figure 1 is derived: Year 2013 2014 2015 2016 2017 Data entries 765881651 997794559 1726529931 1853429002 2715599247 Monthly user/IP addresses 1700660 2109586 2413724 2502617 2867265 FTEs 270 292.65 295.65 289.7 311.2 Figure 1 includes data from the following Core Data Resources: ArrayExpress, BRENDA, CATH, ChEBI, ChEMBL, EGA, ENA, Ensembl, Ensembl Genomes, EuropePMC, HPA, IntAct /MINT , InterPro, PDBe, PRIDE, SILVA, STRING, UniProt ● Note that Ensembl’s compute infrastructure physically relocated in 2016, so “Users/IP address” data are not available for that year. In this case, the 2015 numbers were rolled forward to 2016. ● Note that STRING makes only minor releases in 2014 and 2016, in that the interactions are re-computed, but the number of “Data entries” remains unchanged. The major releases that change the number of “Data entries” happened in 2013 and 2015. So, for “Data entries” , the number for 2013 was rolled forward to 2014, and the number for 2015 was rolled forward to 2016. The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences ​ 1 Figure 2: Usage of Core Data Resources in research The following steps were taken: 1. API calls were run on open access full text articles in Europe PMC to identify articles that ​ ​ mention Core Data Resource by name or include specific data record accession numbers.
    [Show full text]
  • Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the Human Interactome Edward L. Huttlin1*, Raphael J. Bruckner1,3, Jose Navarrete-Perea1, Joe R. Cannon1,4, Kurt Baltier1,5, Fana Gebreab1, Melanie P. Gygi1, Alexandra Thornock1, Gabriela Zarraga1,6, Stanley Tam1,7, John Szpyt1, Alexandra Panov1, Hannah Parzen1,8, Sipei Fu1, Arvene Golbazi1, Eila Maenpaa1, Keegan Stricker1, Sanjukta Guha Thakurta1, Ramin Rad1, Joshua Pan2, David P. Nusinow1, Joao A. Paulo1, Devin K. Schweppe1, Laura Pontano Vaites1, J. Wade Harper1*, Steven P. Gygi1*# 1Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA. 2Broad Institute, Cambridge, MA, 02142, USA. 3Present address: ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, 02115, USA. 4Present address: Merck, West Point, PA, 19486, USA. 5Present address: IQ Proteomics, Cambridge, MA, 02139, USA. 6Present address: Vor Biopharma, Cambridge, MA, 02142, USA. 7Present address: Rubius Therapeutics, Cambridge, MA, 02139, USA. 8Present address: RPS North America, South Kingstown, RI, 02879, USA. *Correspondence: [email protected] (E.L.H.), [email protected] (J.W.H.), [email protected] (S.P.G.) #Lead Contact: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Sequence Motifs, Correlations and Structural Mapping of Evolutionary
    Talk overview • Sequence profiles – position specific scoring matrix • Psi-blast. Automated way to create and use sequence Sequence motifs, correlations profiles in similarity searches and structural mapping of • Sequence patterns and sequence logos evolutionary data • Bioinformatic tools which employ sequence profiles: PFAM BLOCKS PROSITE PRINTS InterPro • Correlated Mutations and structural insight • Mapping sequence data on structures: March 2011 Eran Eyal Conservations Correlations PSSM – position specific scoring matrix • A position-specific scoring matrix (PSSM) is a commonly used representation of motifs (patterns) in biological sequences • PSSM enables us to represent multiple sequence alignments as mathematical entities which we can work with. • PSSMs enables the scoring of multiple alignments with sequences, or other PSSMs. PSSM – position specific scoring matrix Assuming a string S of length n S = s1s2s3...sn If we want to score this string against our PSSM of length n (with n lines): n alignment _ score = m ∑ s j , j j=1 where m is the PSSM matrix and sj are the string elements. PSSM can also be incorporated to both dynamic programming algorithms and heuristic algorithms (like Psi-Blast). Sequence space PSI-BLAST • For a query sequence use Blast to find matching sequences. • Construct a multiple sequence alignment from the hits to find the common regions (consensus). • Use the “consensus” to search again the database, and get a new set of matching sequences • Repeat the process ! Sequence space Position-Specific-Iterated-BLAST • Intuition – substitution matrices should be specific to sites and not global. – Example: penalize alanine→glycine more in a helix •Idea – Use BLAST with high stringency to get a set of closely related sequences.
    [Show full text]
  • Beta Diversity Patterns of Fish and Conservation Implications in The
    A peer-reviewed open-access journal ZooKeys 817: 73–93 (2019)Beta diversity patterns of fish and conservation implications in... 73 doi: 10.3897/zookeys.817.29337 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China Jiajun Qin1,*, Xiongjun Liu2,3,*, Yang Xu1, Xiaoping Wu1,2,3, Shan Ouyang1 1 School of Life Sciences, Nanchang University, Nanchang 330031, China 2 Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engi- neering, Nanchang University, Nanchang 330031, China 3 School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China Corresponding author: Shan Ouyang ([email protected]); Xiaoping Wu ([email protected]) Academic editor: M.E. Bichuette | Received 27 August 2018 | Accepted 20 December 2018 | Published 15 January 2019 http://zoobank.org/9691CDA3-F24B-4CE6-BBE9-88195385A2E3 Citation: Qin J, Liu X, Xu Y, Wu X, Ouyang S (2019) Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China. ZooKeys 817: 73–93. https://doi.org/10.3897/zookeys.817.29337 Abstract The Luoxiao Mountains play an important role in maintaining and supplementing the fish diversity of the Yangtze River Basin, which is also a biodiversity hotspot in China. However, fish biodiversity has declined rapidly in this area as the result of human activities and the consequent environmental changes. Beta diversity was a key concept for understanding the ecosystem function and biodiversity conservation. Beta diversity patterns are evaluated and important information provided for protection and management of fish biodiversity in the Luoxiao Mountains.
    [Show full text]
  • Annual Scientific Report 2013 on the Cover Structure 3Fof in the Protein Data Bank, Determined by Laponogov, I
    EMBL-European Bioinformatics Institute Annual Scientific Report 2013 On the cover Structure 3fof in the Protein Data Bank, determined by Laponogov, I. et al. (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nature Structural & Molecular Biology 16, 667-669. © 2014 European Molecular Biology Laboratory This publication was produced by the External Relations team at the European Bioinformatics Institute (EMBL-EBI) A digital version of the brochure can be found at www.ebi.ac.uk/about/brochures For more information about EMBL-EBI please contact: [email protected] Contents Introduction & overview 3 Services 8 Genes, genomes and variation 8 Molecular atlas 12 Proteins and protein families 14 Molecular and cellular structures 18 Chemical biology 20 Molecular systems 22 Cross-domain tools and resources 24 Research 26 Support 32 ELIXIR 36 Facts and figures 38 Funding & resource allocation 38 Growth of core resources 40 Collaborations 42 Our staff in 2013 44 Scientific advisory committees 46 Major database collaborations 50 Publications 52 Organisation of EMBL-EBI leadership 61 2013 EMBL-EBI Annual Scientific Report 1 Foreword Welcome to EMBL-EBI’s 2013 Annual Scientific Report. Here we look back on our major achievements during the year, reflecting on the delivery of our world-class services, research, training, industry collaboration and European coordination of life-science data. The past year has been one full of exciting changes, both scientifically and organisationally. We unveiled a new website that helps users explore our resources more seamlessly, saw the publication of ground-breaking work in data storage and synthetic biology, joined the global alliance for global health, built important new relationships with our partners in industry and celebrated the launch of ELIXIR.
    [Show full text]
  • The Biogrid Interaction Database
    D470–D478 Nucleic Acids Research, 2015, Vol. 43, Database issue Published online 26 November 2014 doi: 10.1093/nar/gku1204 The BioGRID interaction database: 2015 update Andrew Chatr-aryamontri1, Bobby-Joe Breitkreutz2, Rose Oughtred3, Lorrie Boucher2, Sven Heinicke3, Daici Chen1, Chris Stark2, Ashton Breitkreutz2, Nadine Kolas2, Lara O’Donnell2, Teresa Reguly2, Julie Nixon4, Lindsay Ramage4, Andrew Winter4, Adnane Sellam5, Christie Chang3, Jodi Hirschman3, Chandra Theesfeld3, Jennifer Rust3, Michael S. Livstone3, Kara Dolinski3 and Mike Tyers1,2,4,* 1Institute for Research in Immunology and Cancer, Universite´ de Montreal,´ Montreal,´ Quebec H3C 3J7, Canada, 2The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada, 3Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA, 4School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK and 5Centre Hospitalier de l’UniversiteLaval´ (CHUL), Quebec,´ Quebec´ G1V 4G2, Canada Received September 26, 2014; Revised November 4, 2014; Accepted November 5, 2014 ABSTRACT semi-automated text-mining approaches, and to en- hance curation quality control. The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein in- INTRODUCTION teractions curated from the primary biomedical lit- Massive increases in high-throughput DNA sequencing erature for all major model organism species and technologies (1) have enabled an unprecedented level of humans. As of September 2014, the BioGRID con- genome annotation for many hundreds of species (2–6), tains 749 912 interactions as drawn from 43 149 pub- which has led to tremendous progress in the understand- lications that represent 30 model organisms.
    [Show full text]
  • The Interpro Database, an Integrated Documentation Resource for Protein
    The InterPro database, an integrated documentation resource for protein families, domains and functional sites R Apweiler, T K Attwood, A Bairoch, A Bateman, E Birney, M Biswas, P Bucher, L Cerutti, F Corpet, M D Croning, et al. To cite this version: R Apweiler, T K Attwood, A Bairoch, A Bateman, E Birney, et al.. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Research, Oxford University Press, 2001, 29 (1), pp.37-40. 10.1093/nar/29.1.37. hal-01213150 HAL Id: hal-01213150 https://hal.archives-ouvertes.fr/hal-01213150 Submitted on 7 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. © 2001 Oxford University Press Nucleic Acids Research, 2001, Vol. 29, No. 1 37–40 The InterPro database, an integrated documentation resource for protein families, domains and functional sites R. Apweiler1,*, T. K. Attwood2,A.Bairoch3, A. Bateman4,E.Birney1, M. Biswas1, P. Bucher5, L. Cerutti4,F.Corpet6, M. D. R. Croning1,2, R. Durbin4,L.Falquet5,W.Fleischmann1, J. Gouzy6,H.Hermjakob1,N.Hulo3, I. Jonassen7,D.Kahn6,A.Kanapin1, Y. Karavidopoulou1, R.
    [Show full text]
  • The HUPO Proteomics Standards Initiative Meeting: Towards Common Standards for Exchanging Proteomics Data Hinxton, Cambridge, UK, 19–20 October 2002
    Comparative and Functional Genomics Comp Funct Genom 2003; 4: 16–19. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.232 Feature Meeting Review: The HUPO Proteomics Standards Initiative meeting: towards common standards for exchanging proteomics data Hinxton, Cambridge, UK, 19–20 October 2002 Sandra Orchard, Paul Kersey, Henning Hermjakob* and Rolf Apweiler EMBL Outstation–European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK *Correspondence to: Abstract Henning Hermjakob, EMBL Outstation–European The Proteomics Standards Initiative (PSI) aims to define community standards Bioinformatics Institute, for data representation in proteomics and to facilitate data comparison, exchange Wellcome Trust Genome and verification. Initially the fields of protein–protein interactions (PPI) and mass Campus, Hinxton, Cambridge, spectroscopy have been targeted and the inaugural meeting of the PSI addressed the UK. questions of data storage and exchange in both of these areas. The PPI group rapidly E-mail: reached consensus as to the minimum requirements for a data exchange model; an [email protected] XML draft is now being produced. The mass spectroscopy group have achieved major advances in the definition of a required data model and working groups are currently taking these discussions further. A further meeting is planned in January 2003 to Received: 14 November 2002 advance both these projects. Copyright 2003 John Wiley & Sons, Ltd. Accepted: 14 November 2002 Keywords: proteomics; spectroscopy; protein–protein interactions Introduction process, before splitting into two working parties to address the issues facing their respective fields. The Proteomics Standards Initiative was estab- lished following a meeting in April 2002, jointly organized by HUPO and NAS, at which the urgent Protein–protein interactions (PPI) group need for standardization of proteomics data was recognized.
    [Show full text]
  • Multiple Sequence Alignment
    ELB18S Entry Level Bioinformatics 05-09 November 2018 (Second 2018 run of this Course) Basic Bioinformatics Sessions Practical 6: Multiple Sequence Alignment Sunday 4 November 2018 Practical 6: Multiple Sequence Alignment Sunday 4 November 2018 Multiple Sequence Alignment Here we will look at some software tools to align some protein sequences. Before we can do that, we need some sequences to align. I propose we try all the human homeobox domains from the well annotated section of UniprotKB. Getting the sequences is a trifle clumsy, so concentrate now! There used to be a much easier way, but that was made redundant by foolish people intent on making the future ever more tricky!! So, begin by going to the home of Uniprot: http://www.uniprot.org/ Choose the option of the button. First specify that you are only interested in Human proteins. To do this, set the first field to Organism [OS] and Term to Human [9606]. Set the second field selector to Reviewed and the corresponding Term to Reviewed (that is, only SwissProt entries). If required, Click on the button to request a further field selection option. Set the new field to Function. Set the type of Function to DNA binding. Set the Term selection to Homeobox. From previous investigations, you should be aware that a Homeobox domain is generally 60 amino acids in length. To avoid partial and/or really weird Homeobox proteins, set the Length range settings to recognise only homeoboxs between 50 and 70 amino acids long. Leave the Evidence box as Any assertion method, one does not wish to be too fussy! Address the button with authority to get the search going.
    [Show full text]
  • 屏東縣萬安溪台灣石魚賓(Acrossocheilus Paradoxus )之棲
    生物學報(2006)41(2): 103-112 屏東縣萬安溪台灣石魚賓(Acrossocheilus paradoxus)之棲地利用 1 2* 孔麒源 戴永禔 1 國立屏東科技大學野生動物保育研究所 2 中原大學景觀學系 (收稿日期:2006.5.3,接受日期:2006.12.19) 摘 要 自 2005 年 7 月至 12 月以浮潛觀察法於屏東縣萬安溪調查台灣石魚賓 之棲地利用。依體長區分小 魚(1-4cm)、中魚(5-9cm)、大魚(>10cm)三種體型。棲地利用測量變數包括上層遮蔽度、水深、底層 水溫、溶氧與底質。小魚選擇各項棲地變數之平均值分別為:上層遮蔽度 16%、水深 85.2cm、底 層水溫 23.5℃、溶氧 9.2mg/L;中魚則為上層遮蔽度 17%、水深 105.8cm、底層水溫 23.6℃、溶氧 9.5 mg/L;大魚選擇上層遮蔽度、水深、底層水溫、溶氧則分別為 18%、106.9cm、23.9℃、8.9 mg/L。 三種體型台灣石魚賓 皆選擇岩壁(Bedrock)及大巨石(Boulder)為底質需求。小魚在雨、旱季間選擇水 深顯著不同;中、大魚則無差異。本研究結果顯示,台灣石魚賓 對棲地選擇依據二階段生活史而異; 對岩壁及大巨石之偏好與覓食無關,而與躲藏及障蔽功能有關。 關鍵詞:台灣石魚賓 、棲地利用、生態工法、水深、生活史、淡水魚、溪流、底質 緒 言 Day, 1996; 1997)。台 灣 石 魚賓 於不同溪流之族群之 間已有分化之現象,遺傳變異性以後龍溪為分界 台灣石魚賓 (Acrossocheilus paradoxus)屬鯉科 可分為南北二群集 (Tseng et al., 2000),然而依粒 (Cyprinidae) ,魚賓 亞科(Barbinae) ,光唇魚屬 腺體 DNA 則可分為北中南三大群類;濁水溪為 (Acrossocheilus),俗稱石斑、石賓或秋斑(Günther, 台灣石魚賓 親緣關係的輻射中心 (Hsu et al., 1868; Oshima, 1919; Sung, 1992; Sung et al., 1993; 2000)。 Tzeng, 1986b; Chen and Fang, 1999)。本種魚體延 台灣石魚賓 依賴視覺覓食,其主要覓食對象為 長且略為側扁,口下位,具 2 對鬚。體色黃綠, 水生節肢動物(Ciu and Wang, 1996)。台灣石魚賓 對 腹部略白,體側有 7 條黑色橫帶,幼魚期特別明 於環境因子之耐受限度,最高致死水溫在 35.5 至 顯,成魚時因體色變深而較不明顯。性成熟之 36.5℃之間,與魚體大小無關;最低致死水溫則 雌、雄個體吻部均有追星,尤以雄魚特別明顯且 在 5.5 至 7.0℃之間,並與魚體大小呈反比。台灣 尖刺(Tzeng, 1986b; Chen and Fang, 1999)。成 熟 雄 石魚賓 對於水中溶氧的消耗與水溫成正比;其致死 魚臀鰭基部與鰭條間薄膜上亦有角質化瘤狀凸 溶氧量亦與水溫高低有關。其養殖適溫約在 25 起(Ciu and Wang, 1996)。胸腰部脊椎骨間有成對 至 30℃之間(Peng, 1992)。台灣石魚賓 對 於 銅、鎘、 轉移關節突、腹鰭最外側鰭條並有韌帶與肋骨相 鋅等重金屬離子的急性毒性反應可作為水質檢 連接,此些構造皆有助於台灣石魚賓 適存在急流亂 測時的一項指標(Chen and Yuan, 1994)。 瀨之溪流環境中(Ciu and Wang, 1996)。 台灣北部南勢溪支流桶后溪台灣石魚賓 之生殖 台灣石魚賓 為台灣特有種之初級淡水魚。本種 季自 3 月至 10 月、生殖高峰在 4 至 6 月之時, 分布甚廣,台灣島西半部主要河川如淡水河、頭
    [Show full text]
  • The European Bioinformatics Institute in 2020: Building a Global Infrastructure of Interconnected Data Resources for the Life Sciences Charles E
    Published online 8 November 2019 Nucleic Acids Research, 2020, Vol. 48, Database issue D17–D23 doi: 10.1093/nar/gkz1033 The European Bioinformatics Institute in 2020: building a global infrastructure of interconnected data resources for the life sciences Charles E. Cook *, Oana Stroe, Guy Cochrane ,EwanBirney and Rolf Apweiler European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Received September 21, 2019; Revised October 18, 2019; Editorial Decision October 21, 2019; Accepted November 06, 2019 ABSTRACT ature. EMBL-EBI’s data resources collate, integrate, curate and make freely available to the public the world’s scientific Data resources at the European Bioinformatics In- data. stitute (EMBL-EBI, https://www.ebi.ac.uk/)archive, Our resources (www.ebi.ac.uk/services) include archival organize and provide added-value analysis of re- or deposition databases that store primary experimental search data produced around the world. This year’s data submitted by researchers, as well as knowledgebases update for EMBL-EBI focuses on data exchanges that integrate and add value to experimental data, with among resources, both within the institute and with many having both functions (1,2). All EMBL-EBI data re- a wider global infrastructure. Within EMBL-EBI, data sources, are open access and freely available to any user resources exchange data through a rich network of worldwide at any time, and EMBL-EBI strongly supports data flows mediated by automated systems. This net- the concept of FAIR data (findable, accessible, interopera- work ensures that users are served with as much ble, and resuable) (3).
    [Show full text]
  • 2003 Mulder Nucl Acids Res {22
    The InterPro Database, 2003 brings increased coverage and new features Nicola J Mulder, Rolf Apweiler, Teresa K Attwood, Amos Bairoch, Daniel Barrell, Alex Bateman, David Binns, Margaret Biswas, Paul Bradley, Peer Bork, et al. To cite this version: Nicola J Mulder, Rolf Apweiler, Teresa K Attwood, Amos Bairoch, Daniel Barrell, et al.. The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Research, Oxford University Press, 2003, 31 (1), pp.315-318. 10.1093/nar/gkg046. hal-01214149 HAL Id: hal-01214149 https://hal.archives-ouvertes.fr/hal-01214149 Submitted on 9 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. # 2003 Oxford University Press Nucleic Acids Research, 2003, Vol. 31, No. 1 315–318 DOI: 10.1093/nar/gkg046 The InterPro Database, 2003 brings increased coverage and new features Nicola J. Mulder1,*, Rolf Apweiler1, Teresa K. Attwood3, Amos Bairoch4, Daniel Barrell1, Alex Bateman2, David Binns1, Margaret Biswas5, Paul Bradley1,3, Peer Bork6, Phillip Bucher7, Richard R. Copley8, Emmanuel Courcelle9, Ujjwal Das1, Richard Durbin2, Laurent Falquet7, Wolfgang Fleischmann1, Sam Griffiths-Jones2, Downloaded from Daniel Haft10, Nicola Harte1, Nicolas Hulo4, Daniel Kahn9, Alexander Kanapin1, Maria Krestyaninova1, Rodrigo Lopez1, Ivica Letunic6, David Lonsdale1, Ville Silventoinen1, Sandra E.
    [Show full text]