Open Thesis.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Open Thesis.Pdf The Pennsylvania State University The Graduate School College of Medicine UTILIZATION OF CELLULAR PROTEINS BY ROUS SARCOMA VIRUS DURING REPLICATION A Thesis in Microbiology and Immunology by Jared Lynn Spidel © 2005 Jared Lynn Spidel Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2005 The thesis of Jared Lynn Spidel was reviewed and approved* by the following: John W. Wills Professor of Microbiology and Immunology Thesis Adviser Chair of Committee Richard J. Courtney Professor of Microbiology and Immunology Head of the Department of Microbiology and Immunology Leslie J. Parent Associate Professor of Medicine Associate Professor of Microbiology and Immunology David J. Spector Associate Professor of Microbiology and Immunology Vincent Chau Professor of Cellular and Molecular Physiology *Signatures are on file in the Graduate School ABSTRACT The goal of this dissertation was to analyze the role of cellular proteins during the final stages of budding leading up to membrane fission. Studies have already identified some of the cellular proteins which interact with various late (L) domains. The L domain of Rous sarcoma virus (RSV) interacts with a ubiquitin (Ub) ligase, a cellular enzyme which conjugates Ub to a target lysine. Indeed, all retroviruses examined so far contain ~100 molecules of Ub, suggesting Ub might have a role during budding. However, unlike all other retroviruses, Ub conjugated to RSV Gag has never been detected. This observation seems inconsistent with the observation that budding of this virus (and many others) is dependent on the presence of free cellular Ub. Therefore, the role of Ub during RSV budding was examined. If transient ubiquitination of RSV Gag is required during budding, the five lysines located just upstream of the RSV L domain in matrix (MA) would be the most likely targets of ubiquitination based on known sites of ubiquitination of Gag in other viruses. These residues were changed to arginines to eliminate the potential for ubiquitination. As predicted, substitution of these five residues with arginine (mutant 1-5KR) reduced budding by 80-90%. The block to budding was found to be on the plasma membrane, and the few virions released had normal size, morphology, and infectivity. Budding was restored when any one of the residues was changed back to lysine or when lysines were inserted in novel positions within the region of the original five substituted residues or C- terminal in the p10 region. Similar to an L domain mutant, the 1-5KR mutant could be rescued into particles by coexpression of budding-competent Gag molecules. These data suggest that ubiquitination of Gag is likely important for budding. iii Through examination of lysines involved in RSV budding, a lysine (K244) in capsid (CA) was found to be required for efficient replication. Analysis of the amino acids flanking K244 revealed it resides in a sumoylation consensus sequence ΨKxE, where Ψ is a hydrophobic residue and x is any residue (243IKTE246 in RSV CA). Small Ub-like MOdifier (SUMO)-1 is a member of the Ub-like protein family that transiently modifies lysines of various target proteins in a manner similar to Ub. Sumoylation of target proteins is important for nuclear events such as nuclear entry, subnuclear structure formation, and modulation of transcriptional activity. The enzyme Ubc9 is capable of conjugating SUMO-1 to a target lysine within the sumoylation consensus sequence. Indeed, sumoylation has been hypothesized to be involved in the replication of Mason- Pfizer monkey virus where CA was shown to interact and colocalize with Ubc9 in vivo. The RSV mutants K244R and E246A were found to be normal for budding and assembly but were reduced in infectivity, revealing a potential role for sumoylation of Gag or CA in replication. The virions contained normal amounts of Pol, Env, and RNA and were normal in core morphology. The defect was during reverse transcription and possibly nuclear import of the preintegration complex (PIC). Revertant viruses of the mutants K224R and E246A were isolated, and the genomes sequenced to identify second-site suppressors. The K244R phenotype was suppressed by the double mutation R325C/C431R; the E246A phenotype was suppressed by a N343D mutation. C431 is thought to be involved in CA-CA interactions based on its position in the predicted dimerization helix. The involvement of C431 in the suppression of the K244R phenotype suggests the K244R and E246A substitutions may disrupt intra- or intermolecular interactions in CA which is repaired in the suppressors. iv Further experimentation is required to determine if the K244 and E246 are important in the structural stability of CA or if the suppressors allow for SUMO-independent replication. Whatever the function of K244 and E246, these data support a model whereby CA plays an active role during reverse transcription and/or nuclear import of the PIC. The exact function of Ub in retrovirus budding is unknown. Ub has many cellular functions, including involvement in cellular budding events that produce multivesicular bodies (MVBs), and, interestingly, viral budding is similar in topology to this budding. Therefore, the cellular proteins which interact with Ub to mediate MVB formation could feasibly be involved in viral release. Ubiquitination of a target protein acts to recruit complexes known as ESCRT-I, -II, and -III to facilitate sorting of the target protein into the budding vesicles. To determine the role of the ESCRT complexes during RSV budding, dominant-negative forms of these proteins were coexpressed with RSV Gag. ESCRT-I protein Tsg101, the ESCRT-III proteins CHMP3, CHMP4A, CHMP4B, CHMP4C, and CHMP6, and Vps4A inhibit RSV budding implicating a role for these proteins during budding. During the course of this study it was noticed that RSV Gag also contains a YPxL sequence that may allow binding to AIP1/ALIX which itself interacts with ESCRT-III and is important for HIV and EIAV budding. Substituting this sequence with alanines had a modest effect on budding suggesting this sequence may have a slight role during budding. This site may interact with AIP1/ALIX to stabilize ESCRT complexes with RSV Gag, and failure to do so results in inefficient budding. Therefore, from these data it appears that RSV and HIV utilize a similar mechanism and cellular proteins for their release. v TABLE OF CONTENTS LIST OF FIGURES ..........................................................................................................x LIST OF TABLES......................................................................................................... xii LIST OF ABBREVIATIONS....................................................................................... xiii ACKNOWLEDGEMENTS......................................................................................... xvii CHAPTER I: LITERATURE REVIEW...........................................................................1 Introduction.................................................................................................................2 Organization of the RSV Genome ..............................................................................6 Particle Morphology and Structure...........................................................................10 The Immature Virion ..........................................................................................11 Maturation...........................................................................................................12 The Mature Virion ..............................................................................................15 Entry..........................................................................................................................21 Attachment..........................................................................................................21 Fusion and Uncoating .........................................................................................24 Reverse Transcription.........................................................................................25 Nuclear Targeting and Entry...............................................................................34 Integration...........................................................................................................36 Transcription.............................................................................................................37 Translation ................................................................................................................41 Virus Assembly.........................................................................................................42 Gag Trafficking and the M Domain....................................................................43 Gag-Gag Interactions and the I domain..............................................................49 RNA Packaging ..................................................................................................51 vRNA Used For Packaging...........................................................................52 RNA Dimerization........................................................................................53 Packaging of the tRNA Primer .....................................................................54 Pol Incorporation ................................................................................................55 Env Incorporation ...............................................................................................56
Recommended publications
  • Purification, Crystallization and Preliminary X-Ray Diffraction Analysis of Exodeoxyribonuclease III from Crenarchaeon Sulfolobus Tokodaii Strain 7
    Crystal Structure Theory and Applications, 2013, 2, 155-158 Published Online December 2013 (http://www.scirp.org/journal/csta) http://dx.doi.org/10.4236/csta.2013.24021 Purification, Crystallization and Preliminary X-Ray Diffraction Analysis of Exodeoxyribonuclease III from Crenarchaeon Sulfolobus tokodaii Strain 7 Shuichi Miyamoto1*, Chieko Naoe2, Masaru Tsunoda3, Kazuo T. Nakamura2 1Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan 2School of Pharmacy, Showa University, Tokyo, Japan 3Faculty of Pharmacy, Iwaki Meisei University, Iwaki, Japan Email: *[email protected] Received October 13, 2013; revised November 12, 2013; accepted December 6, 2013 Copyright © 2013 Shuichi Miyamoto et al. This is an open access article distributed under the Creative Commons Attribution Li- cense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Exodeoxyribonuclease III (EXOIII) acts as a 3’→5’ exonuclease and is homologous to purinic/apyrimidinic (AP) en- donuclease (APE), which plays an important role in the base excision repair pathway. To structurally investigate the reaction and substrate recognition mechanisms of EXOIII, a crystallographic study of EXOIII from Sulfolobus tokodaii strain 7 was carried out. The purified enzyme was crystallized by using the hanging-drop vapor-diffusion method. The crystals belonged to space group C2, with unit-cell parameters a = 154.2, b = 47.7, c = 92.4 Å, β = 125.8˚ and diffracted to 1.5 Å resolution. Keywords: Crenarchaeon; Crystallization; Exodeoxyribonuclease; Sulfolobus tokodaii; X-Ray Diffraction 1. Introduction formational change upon protein binding that permits complex formation and activation of attacking water, A variety of mechanisms exist to repair damaged DNA leading to incision, in the presence of Mg2+ [10,11].
    [Show full text]
  • The Rnase H-Like Superfamily: New Members, Comparative Structural Analysis and Evolutionary Classification Karolina A
    4160–4179 Nucleic Acids Research, 2014, Vol. 42, No. 7 Published online 23 January 2014 doi:10.1093/nar/gkt1414 The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification Karolina A. Majorek1,2,3,y, Stanislaw Dunin-Horkawicz1,y, Kamil Steczkiewicz4, Anna Muszewska4,5, Marcin Nowotny6, Krzysztof Ginalski4 and Janusz M. Bujnicki1,3,* 1Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland, 2Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA USA-22908, USA, 3Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland, 4Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, PL-02-089 Warsaw, Poland, 5Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, PL-02-106 Warsaw, Poland and 6Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland Received September 23, 2013; Revised December 12, 2013; Accepted December 26, 2013 ABSTRACT revealed a correlation between the orientation of Ribonuclease H-like (RNHL) superfamily, also called the C-terminal helix with the exonuclease/endo- the retroviral integrase superfamily, groups together nuclease function and the architecture of the numerous enzymes involved in nucleic acid metab- active site. Our analysis provides a comprehensive olism and implicated in many biological processes, picture of sequence-structure-function relation- including replication, homologous recombination, ships in the RNHL superfamily that may guide func- DNA repair, transposition and RNA interference.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented.
    [Show full text]
  • (51) International Patent Classification: A61K 8/66 (2006.01) A61Q 11/00
    ( (51) International Patent Classification: A61K 8/66 (2006.01) A61Q 11/00 (2006.01) (21) International Application Number: PCT/EP20 19/08 1186 (22) International Filing Date: 13 November 2019 (13. 11.2019) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 18206133.3 14 November 2018 (14. 11.2018) EP (71) Applicant: NOVOZYMES A/S [DK/DK]; Krogshoejvej 36, 2880 Bagsvaerd (DK). (72) Inventors: DURHUUS, Thomas, Thomasen; Krogshoe¬ jvej 36, 2880 Bagsvaerd (DK). PALMEN, Lorena, Gonzalez,; Krogshoejvej 36, 2880 Bagsvaerd (DK). REISER, Anna, Verena,; Krogshoejvej 36, 2880 Bagsvaerd (DK). STREICHER, Werner, W,; Krogshoe¬ jvej 36, 2880 Bagsvaerd (DK). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available) : ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Prediction of Novel Inhibitors Against Exodeoxyribonuclease І of H
    International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 217 ISSN 2229-5518 Prediction of Novel Inhibitors against Exodeoxyribonuclease І of H. influenzae through In Silico Approach Shaik Parveen, Natarajan Pradeep, Kanipakam Hema and Amineni Umamaheswari Abstract — These Haemophilus influenzae is a Gram-negative bacterium which causes pneumonia in humans. Due to its multidrug resistance to peni- cillin, rifampin and polymyxin and adverse effects of existing treatments, the condition became an open challenge for many researchers to discover novel antagonists for the treatment of pneumonia caused by H. influenzae. 5 potential sRNA candidates were identified in H. influenzae using sRNA predict tool, among them3 were enzymes and 2 were non-enzymes. Among the three identified enzymes exodeoxyribonuclease І of H. influenzae was non- homologous to humans was selected as novel drug target in the present study. Exodeoxyribonuclease І is an enzyme involved in the mismatch repair mechanism of H. influenzae. The 3D structure of the exodeoxyribonuclease І was modeled based on the crystal structure of 4JRP using Modeler 9v13 and built model was validated using PROCHECK analysis, ProQ and ProSA. The existing eight inhibitors of exodeoxyribonuclease І were searched in 3D ligand database through shape screening against ASINEX database using Phasev3.2 module and structural analogs were docked with exodeoxyri- bonuclease І in Maestro v9.6 virtual screening workflow, that implements three stage Glide docking protocol. The docking results revealed that 11 leads were having better docking and ∆G scores when compared with the eight existing inhibitors among them lead 1 was having ∆G score of -68.78 kcal/mol.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Polyamines Mitigate Antibiotic Inhibition of A.Actinomycetemcomitans Growth
    Polyamines Mitigate Antibiotic Inhibition of A.actinomycetemcomitans Growth THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Allan Wattimena Graduate Program in Dentistry The Ohio State University 2017 Master's Examination Committee: Dr John Walters, Advisor Dr Purnima Kumar Dr Sara Palmer Dr Shareef Dabdoub Copyright by Allan Wattimena 2017 Abstract Polyamines are ubiquitous polycationic molecules that are present in all prokaryotic and eukaryotic cells. They are the breakdown products of amino acids and are important modulators of cell growth, stress and cell proliferation. Polyamines are present in higher concentrations in the periodontal pocket and may affect antibiotic resistance of bacterial biofilms. The effect of polyamines was investigated with amoxicillin (AMX), azithromycin (AZM) and doxycycline (DOX) on the growth of Aggregatibacter actinomycetemcomitans (A.a.) Y4 strain. Bacteria were grown in brain heart infusion broth under the following conditions: 1) A.a. only, 2) A.a. + antibiotic, 3) A.a. + antibiotic + polyamine mix (1.4mM putrescine, 0.4mM spermidine, 0.4mM spermine). Growth curve analysis, MIC determination and metatranscriptomic analysis were carried out. The presence of exogenous polyamines produced a small, but significant increase in growth of A.a. Polyamines mitigated the inhibitory effect of AMX, AZM and DOX on A.a. growth. Metatranscriptomic analysis revealed differing transcriptomic profiles when comparing AMX and AZM in the presence of polyamines. Polyamines produced a transient mitigation of AMX inhibition, but did not have a significant effect on gene transcription. Many gene transcription changes were seen when polyamines were in the presence of AZM.
    [Show full text]
  • WGCNA Module Annotation
    WGCNA module annotation 1. C. dipterum, D. melanogaster and S. maritima module annotations Module colour and annotated names…………………………………………………….page 2 2. C. dipterum module RNA-seq expression and GO terms………………………………..page 3 3. D. melanogaster module RNA-seq expression and GO terms………………………page 14 4. S. maritima module RNA-seq expression and GO terms……………………………...page 23 C. dipterum WGCNA modules annotation D. melanogaster WGCNA modules annotation S.maritima WGCNA modules annotation Module Colour Module annotated name Module Colour Module annotated name Module Colour Module annotated name grey60 Vesicle transport darkgrey Gut lightcyan Head greenyellow Brain darkturquoise Larval CNS saddlebrown Adult male sienna3 Cytoskeleton salmon Jump Muscle greenyellow Neurogenesis lightgreen Pre-nymph red Salivary glands red Fat body yellow Wing blue Brain- Synapsis darkgreen membrane steelblue Malpighian tube greenyellow Wing Disc skyblue Embryo/Nerve cord brown Gills cyan 12-14 hpf embryo orange Protein synthesis orange Cuticle black Flight muscle black Nerve cord- Synapsis blue Muscle magenta 4-6 h embryo- Transcription midnightblue Splicing skyblue Chitin purple Adult heads- visual perception blue Gut yellowgreen Trachea green Ovaries grey60 Malpighian tubes black Gut lightcyan Fat body purple Fat body B- Translation paleturquoise Gut/Malpighian white Muscle- Cell metabolism white Proteasome cyan Protein synthesis brown Testis lightgreen Cellular respiration tan 10 dpf embryo- Neurogenesis pink Malpighian tubule magenta Ovaries-Replication darkolivegreen Brain B- Lipid metabolism skyblue Adult gut lightyellow Fatty acid metabolism magenta Male Head- Phototransduction grey60 Larval gut royalblue Cellular metabolism turquoise Ovaries darkorange Fat body- Post-translation modification darkmagenta Female Head- Fatty acid metabolism brown Embryogenesis red 4 dpf embryo- Autophagy turquoise Testis-Cilium saddlebrown Embryogenesis- Synapsis darkgrey Transcription green Testis C.
    [Show full text]
  • Bacterial Retrons Encode Tripartite Toxin/Antitoxin Systems
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.22.160168; this version posted June 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Bacterial retrons encode tripartite toxin/antitoxin systems 2 3 Jacob Bobonis1,2, André Mateus1, Birgit Pfalz1, Sarela Garcia-Santamarina1, Marco Galardini3, 4 Callie Kobayashi4, Frank Stein5, Mikhail M. Savitski1,5,6, Johanna R. Elfenbein7,8*, Helene 5 Andrews-Polymenis4* and Athanasios Typas1,6* 6 7 * Correspondence: [email protected], [email protected] & [email protected] 8 9 1 European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany 10 2 Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences 11 3 European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK 12 4 Texas A&M University, Department of Microbial Pathogenesis and Immunology, Texas, USA 13 5 European Molecular Biology Laboratory, Proteomics Core Facility, Heidelberg, Germany 14 6 European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, 15 Germany 16 7 University of Wisconsin-Madison, Department of Pathobiological Sciences, Madison, WI, USA 17 8 North Carolina State University, Department of Clinical Sciences, Raleigh, NC, USA 18 19 ABSTRACT 20 Retrons are genetic retroelements, commonly found in bacterial genomes and recently 21 repurposed as genome editing tools. Their encoded reverse transcriptase (RT) produces a 22 multi-copy single-stranded DNA (msDNA). Despite our understanding of their complex 23 biosynthesis, the function of msDNAs and therefore, the physiological role of retrons has 24 remained elusive.
    [Show full text]
  • Enzyme-Pore Constructs
    (19) TZZ Z_T (11) EP 2 682 460 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.01.2014 Bulletin 2014/02 C12N 9/12 (2006.01) C12N 9/22 (2006.01) C12N 9/52 (2006.01) C12Q 1/68 (2006.01) (21) Application number: 13187149.3 (22) Date of filing: 06.07.2009 (84) Designated Contracting States: • Cheley, Stephen AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Oxford HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL Oxfordshire OX4 4GA (GB) PT RO SE SI SK SM TR •McKeown,Brian Oxford (30) Priority: 07.07.2008 US 78695 P Oxfordshire OX4 4GA (GB) • White, James (62) Document number(s) of the earlier application(s) in Oxford accordance with Art. 76 EPC: Oxfordshire OX4 4GA (GB) 09784644.8 / 2 307 540 • Clarke, James Oxford (71) Applicant: Oxford Nanopore Technologies Oxfordshire OX4 4GA (GB) Limited Oxford Science Park (74) Representative: Chapman, Lee Phillip Oxford J A Kemp OX4 4GA (GB) 14 South Square Gray’s Inn (72) Inventors: London WC1R 5JJ (GB) • Jayasinghe, Lakmal Oxford Remarks: Oxfordshire OX4 4GA (GB) This application was filed on 02-10-2013 as a •Bayley,Hagan divisional application to the application mentioned Oxford under INID code 62. Oxfordshire OX4 4GA (GB) (54) Enzyme-pore constructs (57) The invention relates to constructs comprising a transmembrane protein pore subunit and a nucleic acid handling enzyme. The pore subunit is covalently at- tached to the enzyme such that both the subunit and enzyme retain their activity.
    [Show full text]