Geology and Ore Depostts of the Darwin Quadrangle Inyo County

Total Page:16

File Type:pdf, Size:1020Kb

Geology and Ore Depostts of the Darwin Quadrangle Inyo County BUREAU OF MINES LIBRARY SPOK.'lr.'~ \1, 11 ('., S£p 1 0 19.r~ 1 fLEASE ifT lJ;. ro ueRAP. Geology and Ore Depostts ofthe Darwin Quadrangle Inyo County, California GEOLOGICAL SURVEY PROFESSIONAL PAPER 368 Prepared in cooperation with the ~ytate of California, Department of Natural Resources, Division of Mines \. I !; i :•j i Geology and Ore Deposits ofthe Darwin Quadrangle Inyo County, California By WAYNE E. HALL and E. M. MAcKEVETT, ]R. G E 0 L 0 G I CAL S U R.V E.Y P R 0 FE S S I 0 N A L PAPER 3 6 8 Prepared in cooperation with the State of California, Department of Natural Resources, Division of Mines I UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEW~RT L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page 1 Cenozoic rocks-Continued Abstract------------------------------------------- Pleistocene ____________________________________ _ Introduction ______________________________________ _ 2 36 Location ______________________________________ _ 2 Olivine basalt. ____________________________ _ 36 Purpose and scope ___________________________ - __ _ 3 Old fanglomerate marginal to Darwin Wash ___ _ ;37 Climate and vegetation _____ - _______________ -- __ - 3 37 RecentLakebeds.--------------------------------- _______________________________________ _ TopographY------------------------------------ 4 39 Water supply __________ ---------- ______ ---_----- 4 Unconsolidated gravels and alluvium _________ _ 39 Previous work and acknowledgments ______________ _ 4 Structure _____ ..,.- ________________________ ·__________ _ 39 Fieldwork _________________ - ___________________ _ 5 Structure of the pre-Tertiary rocks _______________ _ 39 Paleozoic rocks ____________________________________ _ 5 Unconformities ____________________________ _ 39 General features ___________ - ___________________ _ 5 40 Ordovician. system _____________________________ _ 6 Folds-------------------------------------- Darwin Wash syncline~---- _____________ _ 40 Pogonip group _____________________________ _ 6 Darwin Hills overturned syncline ________ _ Eureka quartzite ___________________________ _ 9 40 Ely Springs dolomite _______________________ _ Talc City Hills syncline ________________ _ 42 10 Santa Rosa Hills warp __________________ _ Silurian and Devonian systems ________________ - __ _ 42 11 Faults ____________________________________ _ Hidden Valley dolomite _____________________ _ 11 42 Thrust faults __________________________ _ Devonian system ______________________________ _ 12 42 Lost Burro formatio.n. ______________________ _ 12 Talc City thrust ___________________ _ 42 Davis thrust ______________________ _ Mississippian system _________ p _________________ _ 14 43 Tin Mountain limestone. _______________ - __ -_ 14 Strike-slip faults _______________________ _ 43 Perdido formation. _________________________ _ 17 Mineralized steep strike faults ___________ _ 44 Mississippian and Pennsylvanian(?) systems. ______ _ Foliation ____________ ------- __ ------------- 45 18 Summary _________________________________ _ J.. ee Flat limestone _________________________ _ 18 45 Pcnnsylvanin.n(?) system ________________________ _ 19 Cenozoic structures ____________________________ _ 45 Rest Spring shale. _________________________ _ 19 Metamorphism----------------~-------------------- 46 Pennsylvanian and Permian systems. ____________ _ 21 lgneous metamorphism _________________________ _ 46 Keeler Canyon formation ___________________ _ 22 Metam~rphism within the igneous rocks ______ _ 46 Lower unit. ___________________________ _ 22 Metamorphism of limestone _________________ _ Upper unit ____________________________ _ 46 22 Recrystallization to marble _____________ _ 46 Owens Valley formation ____________________ _ 24 Dolomitization ________________________ _ Lower unit. ___________________________ _ 47 24 Alteration to calc-hornfels, calc-silicate Middle unit ___________________________ _ 27 rock, and tactite _____________________ _ Upper unit ____________________________ _ 47 28 Alteration to feldspathic rock ___________ _ 50 Undifferentin.ted Paleozoic silicated limestone ______ _ 28 Alteration to amphibolite _______________ _ G.neiss. _______________________________________ _ 50 28 Geologic history ___________________________________ _ Mesozoic rocks ____________ -.- __________________ - ___ _ 51 28 Ore deposits _______________________________________ _ Intrusive rocks. _______________________________ _ 28 52 History and production _________________________ _ Biotite-hornblende-quartz monzonite _________ _ 29 52 Lead-silver-zinc deposits ________________________ _ Leucocratic quartz monzonite. ______________ _ 31 55 Distribution ______________________________ _ Aplite and leucogmnite _____________________ _ 31 55 Character of ore ___________________________ _ Dikes·----------------------------------------- 32 55 Alt.ered andesite porphyry dikes. ____________ _ 32 Forms of ore bodies. _______________________ _ 56 Diorite ___________ - __________ - __ - __ - __ ----- 32 Bedded deposits _______________________ _ 56 Cenozoic rocks. ____________________________________ _ 33 Irregular replacement ore bodies _________ _ 56 Vein deposits __________________________ _ Pliocene (?) _____________________ --------------- 33 56 Pyroclastic rocks ___________________________ _ 33 Ore bodies in flat-lying fractures _________ _ 56 Lower pyroclastic unit __________________ _ 33 Ore controls _______________________________ _ 57 Upper pyroclastic unit __________________ _ 34 Nearness to intrusive contacts ___________ _ 57 Andesite ____________________ --------------- 35 Relationship of ore deposits to s~ratigraphy _ 57 Old fanglomerate from the lnyo Mountains. __ _ 36 Relationship of ore to folds. ____________ _ 57 Coso formation ____________________________ _ 36 Relationship of ore to faults _____________ _ 58 Ill IV CONTENTS Page Page Ore deposits-Continued Ore deposits-Continued Lead-silver-zinc deposits-Continued Tungsten deposits _____________________________ _ 76 ~ineralogy _______________________________ _ 58 Distribution _______________________________ _ 76 Hypogene minerals _____________________ _ 59 Previous work and acknowledgments _________ _ 76 Ore and sulfide minerals ____________ _ 59 Deposits in the Darwin district ______________ _ Gangue minerals ___________________ _ 62 76 Supergene minerals ____________________ _ 63 Geology~------------------------------ 76 Ore bodies ____________________________ _ 77 Sulfide zone _______________________ _ 63 Grade ________________________________ _ Oxide zone ________________________ _ 63 77 Paragenesis ___________________________ _ Ore controls--~- _______________________ _ 77 64 ~ineralogy ___________________________ _ Primary zoning ________________ - ____ -- __ -_-- 77 66 Deposits in the Coso Range _________________ _ Oxidation and enrichment __________________ _ 66 79 Other deposits _________________________________ _ Classification and origin ____________________ _ 68 79 Darwin lead-silver-zinc district ______________ _ 69 Nonmetallic commodities ___________________________ _ 79 Geochemical prospecting ___ ._ ____________ _ 71 Steatite-grade talc _____________________________ _ 80 Future of the district ___________________ _ 72 Geology __________________________________ _ 80 Zinc Hill district ___________________________ _ 73 Talc ore bodies ____________________________ _ 80 Lee district _______________________________ _ Origin ____________________________________ _ 74 81 Deposits in the Inyo ~ountains and Talc City Chlorite deposits ______________________ .:. ________ _ 75 81 Hills------------------------------------ Literature cited ____________________________________ _ Santa Rosa mine ______________________ _ 75 81 Deposits in the Talc City Hills __________ _ 76 Index--------------------------------------------- 85 ILLUSTRATIONS [Plates are In pocket] PLATE 1. Geologic map and sections of the Darwin quadrangle Inyo County, Calif. 2. Geologic map of the Talc City' Hills. 3. Geologic map and sections of the Darwin mine area. 4. Map of part of 400 level and section of the 430-stope ore body of the Defiance workings. 5. Maps of the No. 6 and No. 10 levels of the Christmas Gift mine, showing localization of ore. 6. Map showing. distribution of total copper-lead-zinc from soil samples over th~ Defiance and Bernon workings of the .. : Darwin mine. 7. Map showing distribution of antimony, bismuth, and silver in residual soil over the Defiance-Bernon workings of the Darwin mine 8. Maps and section of upper workings of the Zinc Hill mine. 9. Geologic map and sections of the Main stope of the Silver Reid mine. 10. Geologic map of the Durham, Fernando, and St. Charles mines, Darwin district, Calif. Page FIGURE 1. Index map showing location of the Darwin quadrangle _____________ ,_____________________________________ 2 2. Index map sho.wing the location-of lnyo County lead-silver-zinc deposits__________________________________ 3 3. Simplified geologic map of the Darwin quadrangle showing the geologic setting of the ore deposits____________ 7 4. Photograph or'the Talc City Hills near the Viking mine showing the overturned Paleozoic section of the Pogonip group, Eureka quartzite, Ely Springs dolomite, and Hidden Valley dolomite_____________________________ 9 5. Lee Flat limestone viewed south from the Lee mine_____________________________________________________
Recommended publications
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • CREEDITE from NEVADA Wrrrrrlr F. Fosnac,L Uni.Ted. States Ivati.Onal
    CREEDITE FROM NEVADA WrrrrRlr F. Fosnac,l Uni.ted.States IVati.onal Muspum. The mineial creedite was first found by Esper S. Larsen in the fluorite mines of Wagon Wheel Gap, CreedeQuadrangle, Colorado, and describedby Larsen2and Wells as a new mineral speciesof the composition CaSOn.2CaF z. 2AI(F,OH)a. 2HzO. Later, better ma- terial was obtained and the mineral further investigated by the present writerr confirming the composition as found by Wells and determining the crystal symmetry and elements.The mineral was found to be monoclinic. Several crystal habits were found, all pris- matic but differing somewhat in the relative sizes of the terminaL faces. The mineral is associated with fluorite or embedded in a white halloysite clay. During geological field work for the U. S. Geological Survey in the Tonopah Quadrangle,Nevada, Mr. StanleyH. Cathcart visited the small gold camp of Granite (now abandoned), northwest of Tonopah in the northwestern corner of the Tonopah quadrangle and collected some specimensof the high grade ore found in the small veins of the district. These specimens showed scattered bunchesof a colorlessprismatic mineral which were determined by Dr. Clarence S. Ross, from their optical properties, to be creedite. The specimens were then turned over to the present writer for further study and are now in the collections of the U. S. National Museum (No.96489). The two specimens suggest that the gold bearing deposits of Granite are fluorite-quartz veins with free gold. The specimensare from the oxidized zone and are discolored by a clayey manganese wad. Visible flakes of gold are embedded both in the wad and in the fluorite.
    [Show full text]
  • Stratigraphy and Geochemistry of Volcanic Rocks in the Lava Mountains, California: Implications for the Miocene Development of the Garlock Fault
    Geological Society of America Memoir 195 2002 Stratigraphy and geochemistry of volcanic rocks in the Lava Mountains, California: Implications for the Miocene development of the Garlock fault Eugene I. Smith Alexander Sa´nchez Deborah L. Keenan Department of Geoscience, University of Nevada, Las Vegas, Nevada 89154-4010, USA Francis C. Monastero Geothermal Program Office, Naval Air Weapons Station, China Lake, California 93555-6001, USA ABSTRACT Volcanism in the Lava Mountains occurred between 11.7 and 5.8 Ma and was contemporaneous with sinistral motion on the Garlock fault. Volcanic rocks, equiv- alent in age and chemistry to those in the Lava Mountains, crop out 40 km to the southwest in the El Paso Mountains across the Garlock fault. Three chemical groups of volcanic rocks erupted in the Lava Mountains over a period of 5 m.y. These are (1) andesite of Summit Diggings, Almond Mountain volcanic section, and Lava Moun- tains Andesite, (2) basalt of Teagle Wash, and (3) tuffs in the northeastern Lava Moun- tains and dacite in the Summit Range. Volcanic rocks of each group have distinctive chemical signatures useful for correlation of units across the Garlock fault. Our work demonstrated that tuffs in the Almond Mountain volcanic section may be equivalent to a tuff in member 5 of the Miocene Dove Spring Formation, El Paso Mountains. The basalt of Teagle Wash probably correlates with basalt flows in member 4, and tuffs in the northeast Lava Mountains may be equivalent to tuff of member 2. Cor- relation of these units across the Garlock fault implies that the Lava Mountains were situated south of the El Paso Mountains between 10.3 and 11.6 Ma and that 32–40 km of offset occurred on the Garlock fault in ϳ10.4 m.y., resulting in a displacement rate of 3.1 to 3.8 mm/yr.
    [Show full text]
  • Acknowledgments
    DATING TECHNIQUES 3 Schultz's definition (1937, p.79) of the Coso should be clarified because the lava flows in the Coso Range have a wide age range. We believe that the lava flows referred to by Schultz are the rhyodacite flows on the Haiwee Ridge (fig. 1) described in the section on Pliocene rhyodacite lava flows. Parts of the Coso Formation have been described by Hopper (1947), Power (1959, 1961), Bacon and Duffield (1978), Duffield, Bacon, and Roquemore (1979), Duffield, Bacon, and Dalrymple (1980), and Giovannetti (1979a, b). Deposits mapped as the Coso (fig. 1) Occur in the Haiwee Reservoir (Stinson, 1977a), Keeler (Stinson, 1977b), and Darwin (Hall and MacKevett, 1962) 15-minute quadrangles and have been mapped in the Coso volcanic field (Duffield and Bacon, 1981). Potassium-argon dating of volcanic rocks intercalated with, and overlying, the Coso Formation has been used by Evernden, Savage, Curtis, and James (1964), Bacon, Giovannetti, Duffield, and Dalrymple (1979), and Duffield, Bacon, and Dalrymple (1980) to constrain the age of the Coso. In this report, we review these potassium-argon ages and present additional data that provide more accurate limits on the age of the Coso Formation. ACKNOWLEDGMENTS We thank C. A. Repenning for advice on paleontologic aspects of this study. G. R. Roquemore contributed valuable observations offieldrela- tions of pyroclastic rocks near Sugar Loaf. J. Metz painstakingly prepared and analyzed glass fractions of tuffs. C. E. Meyer and M. J. Woodward kindly determined fission-track ages of zircons. Part of this report is based on the second author's M. S.
    [Show full text]
  • 2021 Magazine
    July 2021 Welcome to the July 2021 edition of BADWATER® Magazine! We are AdventureCORPS®, producers of ultra-endurance sports events and adventure travel across the globe, and the force behind the BADWATER® brand. This magazine celebrates the entire world-wide Badwater® / AdventureCORPS® series of races, all the Badwater Services, Gear, Drinks, and Clothing, and what we like to call the Badwater Family and the Badwater Way of Life. Adventure is our way of life, so – after the sad and disastrous 2020 when we were not able to host any of our life-changing events – we are pleased to be fully back in action in 2021! Well, make that almost fully: Due to pandemic travel bans still in place, international participation in our USA-based events is not where we want it and that’s really unfortunate. Badwater 135 is the de facto Olympics of Ultrarunning and the 135-Mile World Championship, so we always want as many nationalities represented as possible. (The inside front cover of this magazine celebrates all sixty-one nationalities which have been represented on the Badwater 135 start line over the years.) Our new six-day stage race across Armenia – Artsakh Ultra – will have to wait yet another year to debut in 2022, two years later than planned. But it will be incredible, the ultimate stage race with six days of world-class trail running through several millennia of incredible culture and history, and across the most dramatic and awe-inspiring landscapes. This year, we are super excited to have brought two virtual races to life, first for the 31 days of January, and then for 16 days in April.
    [Show full text]
  • Revision 1 New Insights Into the Crystal Chemistry of Sauconite (Zn
    This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7460. http://www.minsocam.org/ Revision 1 New insights into the crystal chemistry of sauconite (Zn-smectite) from the Skorpion zinc deposit (Namibia) via a multi-methodological approach Emanuela Schingaro1*, Gennaro Ventruti1, Doriana Vinci1, Giuseppina Balassone2, Nicola Mondillo2, Fernando Nieto3, Maria Lacalamita1, Matteo Leoni4,5 1Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via Orabona 4, I-70125, Bari, Italy 2Dipartimento di Scienze della Terra dell’Ambiente e delle Risorse, Università “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126, Napoli, Italy 3Departamento de Mineralogía y Petrología, IACT, Universidad de Granada-CSIC, Av. Fuentenueva s/n, 18002, Granada, Spain 4Saudi Aramco Research and Development Center, P.O. Box 5000, 31311, Dhahran, Saudi Arabia 5Dipartimento di Ingegneria Civile, Ambientale e Meccanica, Università di Trento, Via Mesiano, 77, Trento, 38123, Italy *Corresponding author: Emanuela Schingaro, e-mail: [email protected] RUNNING TITLE: New insights into the crystal chemistry of sauconite 1 Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld This is the peer-reviewed, final accepted version for American Mineralogist,
    [Show full text]
  • Minerals of the San Luis Valley and Adjacent Areas of Colorado Charles F
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/22 Minerals of the San Luis Valley and adjacent areas of Colorado Charles F. Bauer, 1971, pp. 231-234 in: San Luis Basin (Colorado), James, H. L.; [ed.], New Mexico Geological Society 22nd Annual Fall Field Conference Guidebook, 340 p. This is one of many related papers that were included in the 1971 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • The Geochemistry and Mobility of Zinc in the Regolith. Advances in Regolith 2003 289
    Advances in Regolith 2003 287 THE GEOCHEMISTRY AND MOBILITY OF ZINC IN THE REGOLITH D. C. McPhail1, Edward Summerhayes1, Susan Welch1 & Joël Brugger2 CRC LEME, Department of Geology, Australian National University, Canberra, ACT, 0200 1South Australian Museum and Adelaide University, Adelaide, SA 5000 INTRODUCTION The mobility of zinc in the regolith is important for several reasons, including the weathering of zinc deposits, formation of non-sulphide zinc deposits and contamination of soils and waters from human impact. The mobility of zinc is also important more generally to geologists and geochemists, both exploration and otherwise, because of the need to understand the formation of zinc ore deposits, such as Mississippi Valley Type (MVT), volcanic-hosted massive sulphide (VHMS), zinc oxide and others in which zinc occurs. This means that exploration geochemists, economic geologists and environmental scientists need to understand how zinc exists in the regolith, different lithologies and water, how it is mobilized or trapped, how far it can be transported and whether it is bioavailable and acts as either a micronutrient or a toxin to plant and animal life. In economic geology, there is presently an increasing interest in the formation of zinc oxide, or non- sulphide zinc deposits, and this is reflected in a recent special issue in the journal Economic Geology (Sangster 2003). Although the mobility of zinc in the regolith depends on the transporting process (e.g., groundwater advection or convection, sediment or airborne physical transport, biotic), it depends substantially on the geochemistry of zinc, i.e., how does zinc exist in groundwater and the regolith materials and what are the important geochemical reactions between water and solid.
    [Show full text]
  • Aurichalcite (Zn, Cu)5(CO3)2(OH)6 C 2001-2005 Mineral Data Publishing, Version 1
    Aurichalcite (Zn, Cu)5(CO3)2(OH)6 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic, pseudo-orthorhombic by twinning. Point Group: 2/m. As acicular to lathlike crystals with prominent {010}, commonly striated k [001], with wedgelike terminations, to 3 cm. Typically in tufted divergent sprays or spherical aggregates, may be in thick crusts; rarely columnar, laminated or granular. Twinning: Observed in X-ray patterns. Physical Properties: Cleavage: On {010} and {100}, perfect. Tenacity: “Fragile”. Hardness = 1–2 D(meas.) = 3.96 D(calc.) = 3.93–3.94 Optical Properties: Transparent to translucent. Color: Pale green, greenish blue, sky-blue; colorless to pale blue, pale green in transmitted light. Luster: Silky to pearly. Optical Class: Biaxial (–). Pleochroism: Weak; X = colorless; Y = Z = blue-green. Orientation: X = b; Y ' a; Z ' c. Dispersion: r< v; strong. α = 1.654–1.661 β = 1.740–1.749 γ = 1.743–1.756 2V(meas.) = Very small. Cell Data: Space Group: P 21/m. a = 13.82(2) b = 6.419(3) c = 5.29(3) β = 101.04(2)◦ Z=2 X-ray Powder Pattern: Mapim´ı,Mexico. 6.78 (10), 2.61 (8), 3.68 (7), 2.89 (4), 2.72 (4), 1.827 (4), 1.656 (4) Chemistry: (1) CO2 16.22 CuO 19.87 ZnO 54.01 CaO 0.36 H2O 9.93 Total 100.39 (1) Utah; corresponds to (Zn3.63Cu1.37)Σ=5.00(CO3)2(OH)6. Occurrence: In the oxidized zones of copper and zinc deposits. Association: Rosasite, smithsonite, hemimorphite, hydrozincite, malachite, azurite.
    [Show full text]
  • Nickeloan Hydrozincite" a New Variety
    MINERALOGICAL MAGAZINE, SEPTEMBER I979, VOL. 43, PP. 397-8 Nickeloan hydrozincite" a new variety A. K. ALWAN AND P. A. WILLIAMS Department of Inorganic Chemistry, University College, PO Box 78, Cardiff CFI IXL, Wales SU M M A R Y. Extensive substitution of Ni for Zn in hydro- specimen are of the order of I mm in thickness and zincite from the Parc Mine, North Wales, has been have a pure white streak. No difficulty was ex- observed. This is the first time that a substantial concen- perienced in obtaining specimens suitable for ana- tration of another transition metal in this mineral has lysis which were free from limonite, which is also been reported. The average composition of the nickeloan present in large quantities in the workings as a hydrozincite is Zn4.63Nio.37(CO3h(OH)6. The relation- ship of this new variety to other secondary carbonate- result of oxidation of the sulphide orebody (Alwan containing nickel minerals is discussed, as is the and Williams, i979). The material obtained was possibility of substitution of other transition metal ions analysed by atomic absorption spectrophotometry, into the hydrozincite lattice. using a Varian AA6 instrument fitted with a carbon rod analyser, after dissolution in Analar| 0.05 mol dm-3HNO3. A summary of the analytical results are given in Table I. Very minor amounts of Cu and DURING the course of a study (Alwan and Fe were found to be present. Concentrations of Co, Williams, I979) on the formation of hydrozincite, Ca, and Mg are less than the detection limit, and A1 Zns(CO3)2(OH)6, from aqueous solution in the was not detected.
    [Show full text]
  • 5 Day Itinerary
    by a grant from Travel Nevada. Travel from grant a by possible made brochure This JUST 98 MILES NORTH OF LAS VEGAS ON HIGHWAY 95. HIGHWAY ON VEGAS LAS OF NORTH MILES 98 JUST www.beattynevada.org Ph: 1.866.736.3716 Ph: Studio 401 Arts & Salon & Arts 401 Studio Mama’s Sweet Ice Sweet Mama’s Smash Hit Subs Hit Smash VFW Chow VFW Smokin’ J’s BBQ J’s Smokin’ shoot out or two performed by our local cowboys. cowboys. local our by performed two or out shoot Gema’s Café Gema’s historical area you might catch a glimpse of a a of glimpse a catch might you area historical Death Valley Coffee Time Coffee Valley Death of our local eateries. If you are in the downtown downtown the in are you If eateries. local our of Roadhouse 95 Roadhouse After your day trips into the Valley, relax at one one at relax Valley, the into trips day your After Sourdough Saloon & Eatery & Saloon Sourdough lunch at Beatty’s Cottonwood Park. Park. Cottonwood Beatty’s at lunch Hot Stuff Pizza Stuff Hot Store or enjoy walking your dog or having a picnic picnic a having or dog your walking enjoy or Store Mel’s Diner Mel’s Town, the Famous Death Valley Nut and Candy Candy and Nut Valley Death Famous the Town, Happy Burro Chili & Beer & Chili Burro Happy open daily from 10 am to 3 pm, Rhyolite Ghost Ghost Rhyolite pm, 3 to am 10 from daily open The Death Valley Nut & Candy Store Candy & Nut Valley Death The can find in our little town, the Beatty Museum, Museum, Beatty the town, little our in find can LOCAL SHOPS & EATERIES & SHOPS LOCAL Day area, be sure to visit the unique businesses that you you that businesses unique the visit to sure be area, BEATTY Between trips to explore the Death Valley Valley Death the explore to trips Between your plan for each day, and set up a check in time.
    [Show full text]
  • USGS Scientific Investigations Map 3040, Pamphlet
    Surficial Geologic Map of the Darwin Hills 30’ x 60’ Quadrangle, Inyo County, California By A.S. Jayko Pamphlet to accompany Scientific Investigations Map 3040 2009 U.S. Department of the Interior U.S. Geological Survey Introduction This map shows the distribution of surficial deposits within the Darwin Hills 30’ x 60’ quadrangle, Inyo County, California, located between 36o to 36.5o latitude and 117o to 118o longitude. The quadrangle extends from the southern Owens Valley and Coso Range on the west to the northern and central Panamint Range on the east. Four additional 7.5’ quadrangles are included along the westernmost edge of the quadrangle adjacent to the Sierra Nevada range front to completely show the west side of the Owens Valley basin area. A limited time period was available for mapping the quadrangle; field studies were conducted during the field seasons from 2001 until 2004. Remote sensing images, digital orthophoto quadrangles, and 1:80,000-scale air photos were used extensively to delineate map units in addition to field observations. The map area consists of four principal geologic and geomorphic domains: Quaternary and Pliocene basin deposits, Quaternary and Pliocene volcanic rocks, late Miocene and early Pliocene erosional surfaces or peneplains, and Mesozoic or older plutonic and metamorphic rocks. There is no preserved lithologic record between about 80 Ma and 13 Ma in the map area and most of the Tertiary record is not much older than about 6 to 7 Ma, or early Pliocene and very latest Miocene age. Late Miocene rocks of about 12 to 13 Ma have been identified on the east flank of the Argus Range near Shepherd Canyon, but they occupy less than 1 percent of the map area, although they do occur in much greater abundance in adjacent regions south and east of the map area.
    [Show full text]