Acute Porphyrias and Porphyric Neuropathy.Indd

Total Page:16

File Type:pdf, Size:1020Kb

Acute Porphyrias and Porphyric Neuropathy.Indd REVIEW Acute porphyrias and porphyric neuropathy Doungporn Ruthirago MD, Parunyou Julayanont MD, Supannee Rassameehiran MD ABSTRACT The porphyrias are a group of uncommon inherited metabolic disorders of heme biosynthesis. Acute porphyrias are specific types of porphyrias characterized by the presence of acute attacks that usually present with abdominal pain, psychiatric symp- toms, and neuropathy. The nonspecific porphyria presentations, the complexity of heme biosynthesis, and difficulty in interpreting the laboratory tests make the diagnosis of por- phyria challenging. Treatment of acute porphyria and avoidance of precipitating factors should be initiated early to prevent potentially severe long-term sequelae from nerve dam- age. Porphyric neuropathy is one such complication and is characterized by an axonal neuropathy with predominant motor involvement. Sensory neuropathy is also found but is less common. Although the exact pathophysiology of porphyric neuropathy remains uncertain, neural energy failure from heme deficiency and neurotoxicity from porphyrin precursors are probably the two main mechanisms. The understanding of porphyric neu- ropathy and manifestations of each type of porphyria along with timely implementation of appropriate tests can significantly assist in the diagnosis of these rare diseases. Key words: porphyria; porphyric neuropathy; neuropathy; nervous system; heme INTRODUCTION The porphyrias are groups of uncommon dis- and psychiatric manifestations.1 Each presentation is eases occurring secondary to an autosomal dominant nonspecific, mimicking other diseases that are much inherited deficiency of enzymes in the heme biosyn- more common and making the diagnosis of porphyr- thetic pathway. Each porphyria is caused by a differ- ias challenging. A high index of suspicion and appro- ent enzymatic alteration that leads to accumulation of priate laboratory investigation at the proper time are heme precursors, causing various clinical symptoms. essential to establish the diagnosis. Porphyrias have a high degree of symptom variance, including gastrointestinal, neurological, cutaneous, Porphyrias can be broadly categorized into acute porphyrias and non-acute porphyrias depend- ing on the presence of acute porphyric attacks. Pa- tients who present with acute attacks need more ur- Corresponding author: Doungporn Ruthirago , MD gent diagnosis and treatment to prevent potentially Contact Information: [email protected] severe long-term sequelae. The well-known triad of DOI: 10.12746/swrccc2016.0415.197 The Southwest Respiratory and Critical Care Chronicles 2016;4(15) 21 Doungporn Ruthirago,et al Acute porphyrias and porphyric neuropathy abdominal pain, neuropathy,and psychiatric distur- coproporphyrinogen oxidase (CPOX) enzyme to pro- bances helps the clinician recognize acute porphyr- toporphyrinogen. Protoporphyrinogen is changed into ias.2 However, in many cases patients present with protoporphyrin IX by protoporphyrinogen oxidase only one or two symptoms. Sensory or motor neu- (PPOX). The last step of synthesis is adding iron to ropathy may be the most objective clinical manifesta- protoporphyrin IX by the ferrochelatase (FECH) en- tion that assists in the diagnosis of these uncommon zyme to form heme (Table).7 diseases. Comprehensive reviews of the porphyrias 3, 4 are currently available in other literatures. The ob- Enzymatic defects in each step of the heme jective of this article is to simplify the understanding of biosynthetic pathway cause susceptibility to different the acute porphyrias and porphyric neuropathy. types of porphyria. The specific deficiency predicts which heme precursors or intermediates will accumu- The word “ porphyria” is derived from the late and later be excreted in the feces or urine. These Greek word “ porphura” which means purple.5 This excess metabolites are sometimes oxidized into pig- is from the observation that the urine of porphyria mented porphyrins and produce red/purple urine.1 patients has a red-purple color and becomes darker Environmental factors also have an important role in when exposed to light. Due to their enzymatic defi- development of acute porphyrias. Acute attacks occur ciency these patients have excess porphyrins and from events that induce ALAS directly or increase the porphyrin precursors which accumulate in the body requirements of heme synthesis which indirectly dis- and are later excreted into urine and feces.6 inhibit ALAS.8 For example, porphyrinogenic drugs, such as barbiturates and sulfa antibiotics, induce PATHOPHYSIOLOGY cytochrome P450, causing increased hepatic heme turnover. Infection and inflammation induce the ex- HEME BIOSYNTHESIS pression of hepatic acute phase protein that catabo- lizes heme.3 Transcription of ALAS is stimulated by Heme is an oxygen carrier which is important peroxisome proliferator-activated receptor gamma to all aerobic reactions. It also functions as a source of coactivator 1-alpha (PGC-1α), which involves energy electrons in the mitochondrial electron transport chain. metabolism and explains why acute porphyria is pre- 9 Heme is synthesized in the bone marrow and liver and cipitated by starvation. is required for the synthesis of hemoproteins-hemo- globin, myoglobin, and cytochromes, etc. Heme syn- PATHOPHYSIOLOGY OF PORPHYRIC NEUROpaTHY thesis starts in the mitochondria where succinyl coen- zyme A combines with glycine to form aminolevulinic Every symptom of acute porphyrias can be acid (ALA). This process is catalyzed by aminolevu- explained by dysfunction of the nervous system.3 Ab- linic acid synthase (ALAS) which is the rate-limiting dominal pain during acute attacks reflects autonomic step of heme synthesis. Aminolevulinic acid synthase neuropathy that causes ileus, abdominal distension, is inhibited by heme in a negative feedback pathway. followed by pain, constipation, nausea, and vomiting. When the requirement for heme increases or the Psychiatric disturbances can be explained by central reserves are depleted, ALAS is disinhibited and the nervous system involvement. Acute porphyric neuro- heme metabolic pathway is activated. The next steps visceral attacks develop in genetic-susceptible indi- occur in the cytoplasm where two ALAs are converted viduals when environmental triggers activate ALAS1, to porphobilinogen (PBG) by aminolevulinic acid de- making deficient enzymes in later steps of heme bio- hydratase (ALAD). Four PBGs are combined to form synthesis become the rate-limiting step, leading to uroporphyrinogen by uroporphyrinogen cosynthase accumulation of porphyrin precursors, such as ALA (UROS) enzyme. Uroporphyrinogen is later changed and PBG.10 to coproporphyrinogen by the uroporphyrinogen de- carboxylase (UROD) enzyme. Coproporphyrinogen Porphyric neuropathy may be explained by enters the mitochondria where it is converted by the 2 mechanisms.10 The first mechanism is direct neu- 22 The Southwest Respiratory and Critical Care Chronicles 2016;4(15) Doungporn Ruthirago,et al Acute porphyriasandporphyricneuropathy DoungpornRuthirago,etal Table Clinical presentation Laboratory findings (increased level) Mode of Neuro- Enzymatic defects Genes Diseases Cutaneous inheritance visceral Urine Feces Plasma Erythrocyte Mito- involvement involvement chon- Glycine + Succinyl CoA X-linked dominant dria ALA synthase ALA synthase gene protoporphyria X-linked Free and Zn No Yes NA Protoporphyrin Protoporphyrin dominant protoporphyrin (increased enzyme) (gain of function) (XLP) ALA dehydratase ALA, Delta-Aminolevulinic acid ALA dehydratase Zn protopor- ALA dehydratase deficiency por- AR Yes No NA NA gene phyrin phyria (ADP) Coproporphyrin III Acute intermittent Porphobilinogen, Uroporphyrin Uroporphyrin Porphobilinogen Porphobilinogen Porphobilinogen porphyria Uroporphyrin AD Yes No deaminase deaminase gene (AIP) ALA, (sometimes) (sometimes) (sometimes) Uroporphyrin Hydroxymethylbilane Cyto- Congenital eryth- Uroporphyrin I, Uroporphyrin, Uroporphyrinogen Uroporphyrinogen Uroporphyrin I, ropoietic porphyria AR No Yes Coproporphyrin I plasm III cosynthase III cosynthase gene Coproporphyrin I (CEP) Coproporphyrin I Coproporphyrin Uroporphyrinogen III Hepatoerythro- Uroporphyrin III, Isocoproporphy- Uroporphyrin, Uroporphyrinogen Uroporphyrinogen poietic porphyria rin, Heptacar- ± Zn protopor- AR No Yes Uroporphyrinogen I decarboxylase decarboxylase gene boxyl porphyrin, phyrin IX I Heptacarboxyl Coproporphyrin I Heptacarboxyl (HEP) porphyrin porphyrin Familial porphyria Coproporphyrinogen I Uroporphyrin, Isocoproporphy- Uroporphyrin, Uroporphyrinogen Uroporphyrinogen cutanea tarda AD No Yes rin, Heptacarbox- NA decarboxylase decarboxylase gene Heptacarboxyl yl porphyrin Heptacarboxyl (fPCT) Coproporphyrinogen porphyrin porphyrin Hereditary copro- Coproporphy- Coproporphyrin III, porphyria rin III, Coproporphyrinogen Coproporphyrinogen Coproporphyrin Coproporphyrin AD Yes Yes NA oxidase oxidase gene (HCP) Porphobilinogen, III/ Coproporphy- (sometimes) Protoporphyrinogen rin I ratio >2 Mito- ALA chon- Coproporphyrin III, Coproporphyrin, dria Protoporphyrin Protoporphyrinogen Protoporphyrinogen Variegate por- AD Yes Yes IX > Copropor- Protoporphyrin NA oxidase oxidase gene phyria (VP) Porphobilinogen, Protoporphyrin IX phyrin III (sometimes) ALA 2+ Erythropoietic Fe Ferrochelatase Ferrochelatase gene protoporphyria AR No Yes NA Protoporphyrin Protoporphyrin Protoporphyrin Heme (EPP) The23 Southwest Respiratory and Critical Care Chronicles 2016;4(15) Doungporn Ruthirago,et al Acute porphyrias and porphyric
Recommended publications
  • Urobiliverdin, a New Bile Pigment Deriving from Uroporphyrin Eva Benedikt and Hans-Peter Köst Botanisches Institut, Universität München, Menzingerstr
    Urobiliverdin, a New Bile Pigment Deriving from Uroporphyrin Eva Benedikt and Hans-Peter Köst Botanisches Institut, Universität München, Menzingerstr. 67, D-8000 München 19, Bundesrepublik Deutschland Z. Naturforsch. 38 c, 753-757 (1983); received May 4, 1983 Semisynthetic Bile Pigments, Urobiliverdin III, Coprobiliverdin III, Biliverdin IX, Uroporphyrin III 5-Aminolevulinic acid is incubated with a crude enzyme extract from Rhodopseudomonas spheroides, mutant R 26. The formed porphyrins (main product: uroporphyrin III) are isolated. Incorporation of iron, ring-splitting by coupled oxydation and subsequent iron removal leads to a mixture of pigments, from which urobiliverdin, a new bile pigment with eight carboxylic acid side chains, is isolated. It is characterized by its chromatographic behaviour, chromic acid degra­ dation and UV-vis spectroscopy. Introduction the photosynthetic bacteria, Rhodopseudomonas spheroides, mutant R26 was a gift from Prof. Naturally occurring open chained tetrapyrrolic H. Scheer, Munich. Marker porphyrins were pur­ systems (bile pigments) usually bear two carboxylic chased from Porphyrin products (Logan, USA). acid side chains, namely propionic acid side chains. Chromic acid degradation was performed accord­ Examples are phycocyanobilin [1-5], phycoerythro- ing to the procedure developed by Rüdiger [21]; the bilin [5, 6], phytochromobilin [7, 8], the biliar pig­ degradation products were separated on silicagel 60 ment bilirubin ([9], here older literature) and sterco- coated HPTLC plates (E. Merck, Darmstadt, FRG) bilin [9] which is encountered in the faeces. using the solvent system chloroform-ethyl acetate- All of these pigments probably derive from proto­ cyclohexane = 6:3:1. The imides formed were heme as has been shown experimentally in a identified by comparison with authentic standards.
    [Show full text]
  • PDF File Includes: Main Text Figures 1 to 4 Supplemental Text Supplemental Figures S1 to S8 Supplemental Tables
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.414581; this version posted December 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE Takayuki Nagaea, Masashi Unnob, Taiki Koizumic, Yohei Miyanoirid, Tomotsumi Fujisawab, Kento Masuif, Takanari Kamof, Kei Wadae, Toshihiko Ekif, Yutaka ItoC, Yuu Hirosef and Masaki Mishimac aSynchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya 464-8603, Japan; bDepartment of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan; cDepartment of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan; dInstitute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan; eDepartment of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan; fDepartment of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan 1To whom correspondence should be addressed 1Masaki Mishima Email: [email protected] 1Yuu Hirose Email: [email protected] 1 Masashi Unno Email: [email protected] Takayuki Nagae: 0000-0001-7016-5183 Tomotsumi Fujisawa: 0000-0002-3282-6814 Masashi Unno: 0000-0002-5016-6274 Yohei Miyanoiri: 0000-0001-6889-5160 Yuu Hirose: 0000-0003-1116-8979 Kei Wada: 0000-0001-7631-4151 Yutaka Ito: 0000-0002-1030-4660 Masaki Mishima: 0000-0001-7626-7287 Classification Biological Sciences Keywords cyanobacteriochrome, phytochrome, bilin, NMR, crystallography Author Contributions MM, YH, and MU designed the research and wrote the manuscript.
    [Show full text]
  • Clinical and Biochemical Characteristics and Genotype – Phenotype Correlation in Finnish Variegate Porphyria Patients
    European Journal of Human Genetics (2002) 10, 649 – 657 ª 2002 Nature Publishing Group All rights reserved 1018 – 4813/02 $25.00 www.nature.com/ejhg ARTICLE Clinical and biochemical characteristics and genotype – phenotype correlation in Finnish variegate porphyria patients Mikael von und zu Fraunberg*,1, Kaisa Timonen2, Pertti Mustajoki1 and Raili Kauppinen1 1Department of Medicine, Division of Endocrinology, University Central Hospital of Helsinki, Biomedicum Helsinki, Helsinki, Finland; 2Department of Dermatology, University Central Hospital of Helsinki, Biomedicum Helsinki, Helsinki, Finland Variegate porphyria (VP) is an inherited metabolic disease resulting from the partial deficiency of protoporphyrinogen oxidase, the penultimate enzyme in the heme biosynthetic pathway. We have evaluated the clinical and biochemical outcome of 103 Finnish VP patients diagnosed between 1966 and 2001. Fifty-two per cent of patients had experienced clinical symptoms: 40% had photosensitivity, 27% acute attacks and 14% both manifestations. The proportion of patients with acute attacks has decreased dramatically from 38 to 14% in patients diagnosed before and after 1980, whereas the prevalence of skin symptoms had decreased only subtly from 45 to 34%. We have studied the correlation between PPOX genotype and clinical outcome of 90 patients with the three most common Finnish mutations I12T, R152C and 338G?C. The patients with the I12T mutation experienced no photosensitivity and acute attacks were rare (8%). Therefore, the occurrence of photosensitivity was lower in the I12T group compared to the R152C group (P=0.001), whereas no significant differences between the R152C and 338G?C groups could be observed. Biochemical abnormalities were significantly milder suggesting a milder form of the disease in patients with the I12T mutation.
    [Show full text]
  • IS IT AIP Symptoms Checker Summary
    Acute Intermittent Porphyria: Symptoms, Triggers, and Other Factors Common symptoms of acute intermittent porphyria (AIP) AIP can cause many different symptoms that tend to come and go. When someone with AIP has symptoms, the episode is called an AIP attack. A person may have certain symptoms during one attack but different symptoms during another attack. Severe abdominal pain • Severe abdominal pain is the most common symptom of AIP. More than 85% of people have abdominal pain during AIP attacks. • The pain often lasts for hours or days. • The pain tends to begin slowly and become worse. • The pain tends to be all over and not in one small area. • The pain may start in the chest or back and move to the abdomen. • Pain medicines such as Advil® (ibuprofen) or Tylenol® (acetaminophen) usually don’t help much. This is because the pain is caused by nerves. Nausea or vomiting • Nausea or vomiting is common during AIP attacks. • People with AIP often have nausea or vomiting along with abdominal pain. Constipation • Constipation is common during AIP attacks. • Loss of bladder control may go along with constipation. Dark or reddish urine • Urine that turns reddish or dark over time when exposed to light and air is common during AIP attacks. • The change in urine color is due to certain chemicals in the urine during AIP attacks. Muscle weakness • Muscle weakness is common during AIP attacks. • Muscle weakness usually begins in the arms and often in the shoulders. 1 Common symptoms of AIP (cont.) Pain in the arms, legs, back, chest, neck, or head • Abdominal pain is the most common symptom of AIP.
    [Show full text]
  • Retrograde Bilin Signaling Enables Chlamydomonas Greening and Phototrophic Survival
    Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival Deqiang Duanmua, David Caserob,c, Rachel M. Dentd, Sean Gallahere, Wenqiang Yangf, Nathan C. Rockwella, Shelley S. Martina, Matteo Pellegrinib,c, Krishna K. Niyogid,g,h, Sabeeha S. Merchantb,e, Arthur R. Grossmanf, and J. Clark Lagariasa,1 aDepartment of Molecular and Cellular Biology, University of California, Davis, CA 95616; bInstitute for Genomics and Proteomics, cDepartment of Molecular, Cell and Developmental Biology, and eDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095; dDepartment of Plant and Microbial Biology, gHoward Hughes Medical Institute, and hPhysical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720; and fDepartment of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305 Contributed by J. Clark Lagarias, December 20, 2012 (sent for review October 30, 2012) The maintenance of functional chloroplasts in photosynthetic share similar mechanisms for light sensing and retrograde sig- eukaryotes requires real-time coordination of the nuclear and naling. However, many chlorophyte genomes lack phytochromes plastid genomes. Tetrapyrroles play a significant role in plastid-to- (21–24), a deficiency offset by a larger complement of flavin- and nucleus retrograde signaling in plants to ensure that nuclear gene retinal-based sensors (25–30). expression is attuned to the needs of the chloroplast. Well-known Despite the absence of phytochromes, all known chlorophyte sites of synthesis of chlorophyll for photosynthesis, plant chlor- genomes retain cyanobacterial-derived genes for the two key oplasts also export heme and heme-derived linear tetrapyrroles enzymes required for bilin biosynthesis (Fig. 1A): a heme oxygen- (bilins), two critical metabolites respectively required for essential ase (HMOX1) and a ferredoxin-dependent bilin reductase (PCYA).
    [Show full text]
  • Porphyria: a Difficult Disease to Diagnose by Marelda Abney RN
    1 Porphyria: A difficult disease to diagnose By Marelda Abney RN, BSN A Manuscript submitted in partial fulfillment ofthe requirement for the degree Master ofNursing Washington State University Intercollegiate College ofNursing Spokane, Washington July 2003 11 To the faculty ofWashington State University: The members ofthe committee appointed to examine the Intercollegiate College of Nursing research requirements and manuscript of MARELDA MARY ABNEY fmd it satisfactory and recommend that it be accepted. ,~~ 5ctl(.~~v~ Lorna Schumann, PhD, FAANP, ARNP ~~ 2u J:~ AhJ5uv Billie Severtsen, PhD, RN _~-/A~-t~£0 Sheila Masteller, MN, BSN, RN 111 Acknowledgements I would like to thank everyone who has supported me in one way or another in completing my manuscript and fulfilling my dream ofbecoming a family nurse practitioner. My deepest gratitude goes out to those who served on my committee for my clinical project. Dr. Billie Severtsen, committee member, whom I fIrst met in my undergraduate program. She was an inspiration then as she is now, in the ways ofmedical ethics and compassionate care. I have been forttmate to have had her be a part ofmy education from the beginning ofmy career through to the end ofthis project. Sheila Masteller, committee nlember and role model. I have been privileged to work with Sheila at Visiting Nurses Association where she is president and an exemplary leader in home health care. Her concern for the welfare ofpatients and staffhas made her the ideal example of leadership. Lorna Schumann, committee member and mentor. Lorna has always been there for me as I struggled down this path. She has listened when I just needed to talk which is a priceless gift.
    [Show full text]
  • Expanding the Eggshell Colour Gamut: Uroerythrin and Bilirubin from Tinamou (Tinamidae) Eggshells Randy Hamchand1, Daniel Hanley2, Richard O
    www.nature.com/scientificreports OPEN Expanding the eggshell colour gamut: uroerythrin and bilirubin from tinamou (Tinamidae) eggshells Randy Hamchand1, Daniel Hanley2, Richard O. Prum3 & Christian Brückner1* To date, only two pigments have been identifed in avian eggshells: rusty-brown protoporphyrin IX and blue-green biliverdin IXα. Most avian eggshell colours can be produced by a mixture of these two tetrapyrrolic pigments. However, tinamou (Tinamidae) eggshells display colours not easily rationalised by combination of these two pigments alone, suggesting the presence of other pigments. Here, through extraction, derivatization, spectroscopy, chromatography, and mass spectrometry, we identify two novel eggshell pigments: yellow–brown tetrapyrrolic bilirubin from the guacamole- green eggshells of Eudromia elegans, and red–orange tripyrrolic uroerythrin from the purplish-brown eggshells of Nothura maculosa. Both pigments are known porphyrin catabolites and are found in the eggshells in conjunction with biliverdin IXα. A colour mixing model using the new pigments and biliverdin reproduces the respective eggshell colours. These discoveries expand our understanding of how eggshell colour diversity is achieved. We suggest that the ability of these pigments to photo- degrade may have an adaptive value for the tinamous. Birds’ eggs are found in an expansive variety of shapes, sizes, and colourings 1. Te diverse array of appearances found across Aves is achieved—in large part—through a combination of structural features, solid or patterned colorations, the use of two diferent dyes, and diferential pigment deposition. Eggshell pigments are embedded within the white calcium carbonate matrix of the egg and within a thin outer proteinaceous layer called the cuticle2–4. Tese pigments are believed to play a key role in crypsis5,6, although other, possibly dynamic 7,8, roles in inter- and intra-species signalling5,9–12 are also possible.
    [Show full text]
  • Phyllobilins – the Abundant Bilin-Type Tetrapyrrolic Catabolites Of
    Chemical Society Reviews Phyllobilins – the Abundant Bilin -Type Tetrapyrrolic Catabolites of the Green Plant Pigment Chlorophyll Journal: Chemical Society Reviews Manuscript ID: CS-TRV-02-2014-000079.R1 Article Type: Tutorial Review Date Submitted by the Author: 02-May-2014 Complete List of Authors: Krautler, Bernhard; University of Innsbruck, Institute of Organic Chemistry Page 1 of 30 Chemical Society Reviews Phyllobilins-TutRev-BKräutler 2-May-14 1 Phyllobilins – the Abundant Bilin-type Tetrapyrrolic Catabolites of the Green Plant Pigment Chlorophyll Bernhard Kräutler Institute of Organic Chemistry and Centre of Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria E-mail: [email protected] Abstract . The seasonal disappearance of the green plant pigment chlorophyll in the leaves of deciduous trees has long been a fascinating biological puzzle. In the course of the last two and a half decades, important aspects of the previously enigmatic breakdown of chlorophyll in higher plants were elucidated. Crucial advances in this field were achieved by the discovery and structure elucidation of tetrapyrrolic chlorophyll catabolites, as well as by complementary biochemical and plant biological studies. Phyllobilins, tetrapyrrolic, bilin-type chlorophyll degradation products, are abundant chlorophyll catabolites, which occur in fall leaves and in ripe fruit. This tutorial review outlines ‘how’ chlorophyll is degraded in higher plants, and gives suggestions as to ‘why’ the plants dispose of their valuable green pigments during senescence and ripening. Insights into chlorophyll breakdown help satisfy basic human curiosity and enlighten school teaching. They contribute to fundamental questions in plant biology and may have practical consequences in agriculture and horticulture.
    [Show full text]
  • ABSTRACT ZHANG, SHAOFEI. Synthesis Of
    ABSTRACT ZHANG, SHAOFEI. Synthesis of Bacteriochlorins and the Full Skeleton of Bacteriochlorophylls. (Under the direction of Professor Jonathan S. Lindsey.) Bacteriochlorins, the core macrocycle ring of natural bacteriochlorophylls, are characterized by their ability to absorb near infrared light (700 – 900 nm), which makes them attractive candidates in variety of photophysical studies and applications. The previously established de novo synthesis, which relies on the acid-catalyzed self-condensation of dihydrodipyrrin–acetal, provides access towards diverse bacteriochlorins, but has its limitations. This dissertation describes the development of new strategies for bacteriochlorin synthesis. Firstly, a route towards previously unknown tetra-alkyl bacteriochlorins (e.g., alkyl = Me, or –CH2CO2Me) is established (Ch. 2). Secondly, explorations of synthetic approaches to unsymmetrically substituted bacteriochlorins through electrocyclic reactions of linear tetrapyrrole intermediates are described. Four new unsymmetrically substituted bacteriochlorins and one new tetradehydrocorrin were produced, albeit in low yields (Ch. 3). Thirdly, a new method to construct bacteriochlorin macrocycle with concomitant Nazarov cyclization to form the annulated isocyclic ring, is established. Five new bacteriochlorins, which are closely anlogues of bacteriochlorophyll a, bearing various substituents (alkyl/alkyl, aryl, and alkyl/ester) at positions 2 and 3 and 132 carboalkoxy groups (R = Me or Et) were constructed in 37−61% yield from the bilin analogues
    [Show full text]
  • Phycoerythrin-Specific Bilin Lyase–Isomerase Controls Blue-Green
    Phycoerythrin-specific bilin lyase–isomerase controls blue-green chromatic acclimation in marine Synechococcus Animesh Shuklaa, Avijit Biswasb, Nicolas Blotc,d,e, Frédéric Partenskyc,d, Jonathan A. Kartyf, Loubna A. Hammadf, Laurence Garczarekc,d, Andrian Gutua,g, Wendy M. Schluchterb, and David M. Kehoea,h,1 aDepartment of Biology, Indiana University, Bloomington, IN 47405; bDepartment of Biological Sciences, University of New Orleans, New Orleans, LA 70148; cUPMC-Université Paris 06, Station Biologique, 29680 Roscoff, France; dCentre National de la Recherche Scientifique, Unité Mixte de Recherche 7144 Adaptation et Diversité en Milieu Marin, Groupe Plancton Océanique, 29680 Roscoff, France; eClermont Université, Université Blaise Pascal, Unité Mixte de Recherche Centre National de la Recherche Scientifique 6023, Laboratoire Microorganismes: Génome et Environnement, 63000 Clermont-Ferrand, France; fMETACyt Biochemical Analysis Center, Department of Chemistry, Indiana University, Bloomington, IN 47405; gDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; and hIndiana Molecular Biology Institute, Indiana University, Bloomington, IN 47405 Edited by Alexander Namiot Glazer, University of California, Berkeley, CA, and approved October 4, 2012 (received for review July 10, 2012) The marine cyanobacterium Synechococcus is the second most Marine Synechococcus are divided into three major pigment abundant phytoplanktonic organism in the world’s oceans. The types, with type 1 PBS rods containing only PC, type 2 containing ubiquity of this genus is in large part due to its use of a diverse PC and PEI, and type 3 containing PC, PEI, and PEII (4). Type 3 set of photosynthetic light-harvesting pigments called phycobilipro- can be further split into four subtypes (3 A–D)onthebasisofthe teins, which allow it to efficiently exploit a wide range of light ratio of the PUB and PEB chromophores bound to PEs.
    [Show full text]
  • Safe Use of Sodium Valproate
    VOLUME 37 : NUMBER 4 : AUGUST 2014 ARTICLE Safe use of sodium valproate Ahamed Zawab Advanced trainee1 SUMMARY John Carmody Staff specialist1 Valproate is an anticonvulsant drug which is approved for use in epilepsy and bipolar disorder. It Clinical associate professor2 has also been used for neuropathic pain and migraine prophylaxis. 1 Neurology Department Gastrointestinal adverse effects are common, particularly at the start of therapy. Important Wollongong Hospital adverse effects include pancreatitis, hepatitis, weight gain and sedation. There is an increased risk 2 Graduate School of Medicine of fetal abnormalities if valproate is taken in pregnancy. University of Wollongong Measuring concentrations of serum valproate is often unnecessary. They do not correlate closely New South Wales with its therapeutic effects. Key words If withdrawal of valproate is required, this should be done slowly if possible. Rapid cessation may adverse effects, bipolar provoke seizures in patients with epilepsy. disorder, birth defects, epilepsy Introduction Indications Aust Prescr 2014;37:124–7 Sodium valproate (valproate) was first marketed as Although there is clinical experience with valproate in an anticonvulsant almost 50 years ago in France. Its epilepsy, some of its other accepted indications, such indications have expanded and it is now the most as migraine prophylaxis, have not been approved by prescribed antiepileptic drug worldwide.1 However, it the Therapeutic Goods Administration. has many potential adverse effects. Epilepsy Pharmacology Valproate is a broad spectrum antiepileptic drug and Valproate is available in tablet (immediate-release or is used to treat either generalised or focal seizures. This article has a continuing 4 5-7 professional development enteric coated), syrup and intravenous formulations.
    [Show full text]
  • Initial Excited-State Relaxation of the Bilin Chromophores of Phytochromes: a Computational Study
    Linköping University Post Print Initial excited-state relaxation of the bilin chromophores of phytochromes: a computational study Angela Strambi and Bo Durbeej N.B.: When citing this work, cite the original article. Original Publication: Angela Strambi and Bo Durbeej, Initial excited-state relaxation of the bilin chromophores of phytochromes: a computational study, 2011, PHOTOCHEMICAL and PHOTOBIOLOGICAL SCIENCES, (10), 4, 569-579. http://dx.doi.org/10.1039/c0pp00307g Copyright: Royal Society of Chemistry http://www.rsc.org/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-67548 Initial excited-state relaxation of the bilin chromophores of phytochromes: a computational study† Angela Strambia and Bo Durbeej Division of Computational Physics, IFM, Linköping University, SE-581 83 Linköping, Sweden E-mail: [email protected]; Fax: +46-(0)13-13 75 68; Tel: +46-(0)13-28 24 97 a Current address: Istituto Toscano Tumori, Via Fiorentina 1, I-53100 Siena, Italy † Electronic supplementary information (ESI) available: Cartesian coordinates of optimized structures. 1 Graphical abstract: Quantum chemical calculations show that the intrinsic reactivity of the bilin chromophores of phytochromes is qualitatively very different from their reactivity in the protein, and even favors a different photoisomerization reaction than that known to initiate the photocycles of phytochromes. 2 Abstract: The geometric relaxation following light absorption of the biliverdin, phycocyanobilin and phytochromobilin tetrapyrrole chromophores of bacterial, cyanobacterial and plant phytochromes has been investigated using density functional theory methods. Considering stereoisomers relevant for both red-absorbing Pr and far-red-absorbing Pfr forms of the photoreceptor, it is found that the initial excited-state evolution is dominated by torsional motion at the C10–C11 bond.
    [Show full text]