TS 102 819 V1.3.1 (2005-10) Technical Specification

Total Page:16

File Type:pdf, Size:1020Kb

TS 102 819 V1.3.1 (2005-10) Technical Specification ETSI TS 102 819 V1.3.1 (2005-10) Technical Specification Digital Video Broadcasting (DVB); Globally Executable MHP version 1.0.2 (GEM 1.0.2) European Broadcasting Union Union Européenne de Radio-Télévision EBU·UER 2 ETSI TS 102 819 V1.3.1 (2005-10) Reference RTS/JTC-DVB-183 Keywords API, broadcasting, digital, DVB, interaction, multimedia, profile, video ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2005. © European Broadcasting Union 2005. All rights reserved. DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members. TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. ETSI 3 ETSI TS 102 819 V1.3.1 (2005-10) Contents Intellectual Property Rights..............................................................................................................................10 Foreword...........................................................................................................................................................10 1 Scope ......................................................................................................................................................11 2 References ..............................................................................................................................................11 2.1 Superseding references.....................................................................................................................................12 3 Definitions and abbreviations.................................................................................................................12 3.1 Definitions........................................................................................................................................................12 3.1.1 Definitions from MHP................................................................................................................................12 3.1.2 Definitions introduced by GEM..................................................................................................................12 3.2 Abbreviations ...................................................................................................................................................13 4 General considerations and conventions ................................................................................................14 4.1 General considerations .....................................................................................................................................14 4.1.1 Purpose .......................................................................................................................................................14 4.1.2 Format.........................................................................................................................................................14 4.1.3 Inclusion of MHP features..........................................................................................................................15 4.1.3.1 Subsetting prohibited ............................................................................................................................15 4.1.3.2 Supersetting permitted ..........................................................................................................................15 4.1.4 Addition of non-GEM interfaces ................................................................................................................15 4.1.4.1 DVB-J enumerations.............................................................................................................................15 4.1.4.2 Competitive APIs..................................................................................................................................15 4.1.4.2.1 Illustration of Complementary Functional Equivalents...................................................................16 4.1.4.2.2 Illustration of Competitive APIs......................................................................................................16 4.1.5 Application areas........................................................................................................................................16 4.1.6 Profiles........................................................................................................................................................16 4.1.7 Full conformance with the present document .............................................................................................17 4.2 Conventions......................................................................................................................................................17 4.2.1 References within the MHP specification...................................................................................................17 4.2.2 Terminology in the MHP specification.......................................................................................................18 4.2.2.1 MHP......................................................................................................................................................18 4.2.2.2 Resident navigator.................................................................................................................................18 4.2.2.3 DVB service..........................................................................................................................................18 4.2.3 Inclusion of clauses of the MHP specification............................................................................................18 4.2.4 Conventions within the present document..................................................................................................18 5 Basic architecture ...................................................................................................................................18 6 Transport protocols.................................................................................................................................18 6.1 Introduction ......................................................................................................................................................18 6.2 Broadcast channel protocols.............................................................................................................................19 6.2.1 MPEG-2 transport stream ...........................................................................................................................19 6.2.2 MPEG-2 sections ........................................................................................................................................19 6.2.3 DSM-CC private data .................................................................................................................................19 6.2.4 DSM-CC data carousel ...............................................................................................................................19 6.2.5 Object carousel ...........................................................................................................................................19 6.2.5.1 DVB-J class files...................................................................................................................................19 6.2.5.2 DVB-HTML document files .................................................................................................................20 6.2.5.3 Loss of carousel behaviour....................................................................................................................20 6.2.6 Protocol for delivery of IP multicast over the broadcast channel ...............................................................20 6.2.7 Internet Protocol (IP) ..................................................................................................................................20 6.2.8 User Datagram Protocol (UDP)..................................................................................................................20
Recommended publications
  • History of the DVB Project
    History of the DVB Project (This article was written by David Wood around 2013.) Introduction The DVB Project is an Alliance of about 200 companies, originally of European origin but now worldwide. Its objective is to agree specifications for digital media delivery systems, including broadcasting. It is an open, private sector initiative with an annual membership fee, governed by a Memorandum of Understanding (MoU). Until late 1990, digital television broadcasting to the home was thought to be impractical and costly to implement. During 1991, broadcasters and consumer equipment manufacturers discussed how to form a concerted pan-European platform to develop digital terrestrial TV. Towards the end of that year, broadcasters, consumer electronics manufacturers and regulatory bodies came together to discuss the formation of a group that would oversee the development of digital television in Europe. This so-called European Launching Group (ELG) expanded to include the major European media interest groups, both public and private, the consumer electronics manufacturers, common carriers and regulators. It drafted the MoU establishing the rules by which this new and challenging game of collective action would be played. The concept of the MoU was a departure into unexplored territory and meant that commercial competitors needed to appreciate their common requirements and agendas. Trust and mutual respect had to be established. The MoU was signed by all ELG participants in September 1993, and the Launching Group renamed itself as the Digital Video Broadcasting Project (DVB). Development work in digital television, already underway in Europe, moved into top gear. Around this time a separate group, the Working Group on Digital Television, prepared a study of the prospects and possibilities for digital terrestrial television in Europe.
    [Show full text]
  • R-Rec-Bt.1722-1-200712-S!!
    Rec. ITU-R BT.1722-1 1 RECOMMENDATION ITU-R BT.1722-1 Harmonization of the instruction set for the execution engine for interactive TV applications (Question ITU-R 13/6) (2005-2007) Scope This Recommendation is intended to harmonize the application environment for interactive TV applications. The potential for commonality in the executable application environment is based on the analysis of the common core identified in the work leading to this Recommendation. Such commonality would benefit content providers through knowledge of commonly adopted executable functionality and economies of scale. The ITU Radiocommunication Assembly, considering a) the need to avoid proliferation of protocols for interactive multimedia services; b) that digital broadcasting services (satellite, terrestrial and cable) are becoming widely available and offer multimedia applications; c) that multimedia applications comprising video, audio, still-picture, text, graphics, etc. associated with interactive features have been developed; d) that multimedia applications planned or deployed in some Regions are using the executable application environment; e) that common instruction sets are desirable for production and international exchange of multimedia content; f) that continuous work and review of Application Programming Interfaces (APIs) is being carried out in the ITU-R and ITU-T Sectors; g) that ITU-T Recommendation J.200 defines the high-level architecture for a harmonized set of interactive instruction sets and APIs and identifies the structure of application environment comprising the executable application environment and the declarative application environment for digital television services; h) that ITU-T Recommendation J.202 defines the executable application environment within ITU-T Recommendation J.200 and is the corresponding Recommendation to Recommendation ITU-R BT.1722, recommends 1 that the harmonized instruction set for the execution engines specified in Annex 1 should be used for interactive TV applications in the executable application environment.
    [Show full text]
  • EBU Recommendation on MHP
    EBU R 106 rev2-2008 EBU Recommendation on MHP (Multimedia Home Platform) Geneva November 2008 1 Page intentionally left blank. This document is paginated for recto-verso printing EBU R 106r2-2008 Statement on the use of DVB-MHP EBU Recommendation on Interactive Multimedia for Digital Broadcasting Geneva, November 2008 Considering: a) Earlier in 2008, the EBU withdrew its Recommendation for the use of MHP in new digital broadcasting services because of uncertainties about licence fees (see overleaf). b) Recently the licence holder Via Licensing announced that its licences for the MHP system will be free of licence charges for free-to-air broadcasters. The EBU Recommends; MHP is considered an appropriate system for interactive television services for new digital broadcasting services by EBU Members. 3 Statement on the use of DVB-MHP EBU R 106r2-2008 4 EBU R 106r2-2008 Statement on the use of DVB-MHP EBU Statement on MHP (Multimedia Home Platform) Geneva, March 2008 MHP At the end of the 1990s, the DVB Project developed, in open discussion, an API termed MHP (Multimedia Home Platform). MHP development was supported by the EBU, and was seen as a 'future proof' API that would evolve over time in different versions. A major element of MHP is the use of the JAVA programming language, developed by Sun Microsystems. In 2001, the EBU issued R106, in which it recommended that MHP should be the API of choice for new digital broadcast services by EBU members, accepting that those who had already started using alternative APIs might not be able to change them.
    [Show full text]
  • Oc-Sp-Ocap-Fpext-I05-110512
    OpenCable™ Application Platform Specifications OCAP Extensions OCAP Front Panel Extension OC-SP-OCAP-FPEXT-I05-110512 ISSUED Notice This OpenCable specification is the result of a cooperative effort undertaken at the direction of Cable Television Laboratories, Inc. for the benefit of the cable industry and its customers. This document may contain references to other documents not owned or controlled by CableLabs. Use and understanding of this document may require access to such other documents. Designing, manufacturing, distributing, using, selling, or servicing products, or providing services, based on this document may require intellectual property licenses from third parties for technology referenced in this document. Neither CableLabs nor any member company is responsible to any party for any liability of any nature whatsoever resulting from or arising out of use or reliance upon this document, or any document referenced herein. This document is furnished on an "AS IS" basis and neither CableLabs nor its members provides any representation or warranty, express or implied, regarding the accuracy, completeness, noninfringement, or fitness for a particular purpose of this document, or any document referenced herein. 2005-2011 Cable Television Laboratories, Inc. All rights reserved. OC-SP-OCAP-FPEXT-I05-110512 OCAP Extensions Document Status Sheet Document Control Number: OC-SP-OCAP-FPEXT-I05-110512 Document Title: OCAP Front Panel Extension Revision History: I01 – Released 6/24/05 I02 – Released 12/20/07 I03 – Released 6/12/09 I04 – Released 6/3/10 I05 – Released 5/12/11 Date: May 12, 2011 Status: Work in Draft Issued Closed Progress Distribution Restrictions: Author CL/Member CL/ Member/ Public Only Vendor Key to Document Status Codes Work in Progress An incomplete document, designed to guide discussion and generate feedback that may include several alternative requirements for consideration.
    [Show full text]
  • MPEG LA Further Expands Call for Blu-Ray Disc TM Patents
    250 Steele Street Suite 300 Denver, Colorado 80206 303 331.1880 FAX 303 331.1879 For Immediate Release CONTACT: Michelle Ott MPEG LA, LLC Tel: 301.986.6660 Fax: 301.986.8575 [email protected] MPEG LA Further Expands Call for Blu-ray DiscTM Patents Hybrid Disc and Blu-ray Disc™ Portions of DVB-GEM Included (Denver, Colorado, USA – 27 July 2006) – Responding to marketplace interest in accessing as much essential intellectual property as possible in a single license, MPEG LA, LLC today expanded its call for patents essential to the implementation of the Blu-ray DiscTM standard to include the Hybrid Blu-ray Disc format and portions of the DVB-GEM specification that pertain to BD-J referenced in Blu-ray Disc Read- Only Format, Part 3: (1) Blu-ray Disc, Hybrid Format, Part 1: Basic Format Specifications, version 1.01 December 2005 (2) DVB-GEM [ETSI TS 102 819 V1.3.1 (2005-10) - Digital Video Broadcasting (DVB); Globally Executable MHP version 1.0.2 (GEM 1.0.2); A095: Errata (1) to Globally Executable MHP (TS 102 819 V1.3.1)] as referenced in Blu-ray Disc Read-Only Format, Part 3 Inclusion of these specifications is in addition to other Blu-ray DiscTM specifications encompassed by previous calls for patents issued by MPEG LA [see http://www.mpegla.com/news/n_06-04- 05_bluray.pdf]. Patents essential to additional Blu-ray DiscTM specifications may be called for in the future. LIMITED LIABILITY COMPANY WORLD HEADQUARTERS DENVER COLORADO USA MPEG LA first announced its plan for facilitating formation of a joint patent portfolio license in a 9 November 2005 news release [see http://www.mpegla.com/news/n_05-11-09_bluray.pdf].
    [Show full text]
  • Ginga-J: the Procedural Middleware for the Brazilian Digital TV System
    Ginga-J: The Procedural Middleware for the Brazilian Digital TV System Guido Lemos de Souza Filho, Luiz Eduardo Cunha Leite, Carlos Eduardo Coelho Freire Batista Digital Video Applications Lab Department of Informatics Federal University of Paraíba Campus I – Cidade Universitária Phone: +55 (83) 3216 7093 – Ext 26 (FAX) Zip 58.035-000 – João Pessoa – PB – BRAZIL {guido, leduardo, bidu}@lavid.ufpb.br Abstract Terrestrial (ISDTV-T). ISDTV-T is currently being adopted as Brazilian's official system for Terrestrial The recent development of the research on digital Digital TV. terrestrial television in Brazil has led the country’s The applications to be executed over Ginga are government to state a series of premises in which the classified into two categories depending upon the way government shows to care not only for technology they are written. Procedural applications are those improvement, but also to use this development as a tool written using the Java language and declarative for ameliorating the Brazilian social context, in what applications are those written using the NCL language. concerns digital inclusion. These premises and Ginga application execution environments are similarly necessities have generated some peculiarities in the classified into two categories depending upon whether development process, which directly influenced in the they process declarative or procedural applications, and functionalities granted by the Brazilian’s middleware are called Ginga-J [19] and Ginga-NCL [18], choice. This paper, thus, seeks to explain all the respectively. architecture of the Java part – called Ginga-J – of the Ginga middleware, highlighting the new features, Ginga-NCL is a logical subsystem of the Ginga especially when confronting the Brazilian middleware middleware which is responsible for processing and with the other middlewares worldwide defined.
    [Show full text]
  • TEN YEARS of INNOVATION DVB Celebrates Tenth Anniversary at IBC
    PRESS RELEASE Contact: Harold Bergin Tel: +44 (0)20 7799 3100 WHD Public Relations E-mail: [email protected] P.O. Box 3035, London SW1P 3BH United Kingdom TEN YEARS OF INNOVATION DVB Celebrates Tenth Anniversary at IBC Amsterdam – 12 September – At this year’s IBC, DVB is celebrating ten years of creating standards that have formed the backbone for cable, satellite and terrestrial digital transmissions around the world. The DVB Project provided the forum for gathering the major television interests into one group to develop a complete set of digital television standards based on a unified approach. Ten years on DVB is globally the most important force in the on-going development of the digital broadcasting world which now boasts over one hundred million digital homes worldwide. Today, there are forty-five DVB created standards/specifications that are published by the European Telecommunications Standards Institute and a further twenty implementation guidelines. The successful work of the DVB Project is demonstrated in the fact that DVB-S, the specification for digital satellite and DVB-C, the specification for digital cable systems, are available and in use on every continent. The standard for digital terrestrial television, DVB-T, goes from strength to strength and is highlighted by the recent overnight switch from analogue to digital in Berlin, the one hundred thousand a month take-up in the United Kingdom, and the rapid deployment of services in other countries around the world. For example, the mobile capabilities of DVB-T are employed in Singapore for the public transport system to provide customer information.
    [Show full text]
  • 2 World of Digital Interactive TV
    2 World of Digital Interactive TV 2.1 Broadcast Multimedia Broadcast multimedia is discussed here in the context of digital television standards. Europe, North America and Japan have established the basic stan- dardization efforts for digital television. The basic technology for realizing dig- italization in broadcast services is the MPEG-2 standard. MPEG-2 defines the basic concepts for the provision of digital A/V services in all the digital TV standardization efforts. MPEG-2 defines a signal compression, packetization and multiplexing standard for digital audio and video as well as rudimentary mechanisms for conveying other data in a digital A/V stream. 2.1.1 MPEG-2 The systems part of the ISO/IEC 13181 standard, which defines MPEG-2, addresses the combination of single or multiple elementary streams (ES) of video, audio, and other data into streams suitable for storage or transmission. The specification basically enforces syntactical and semantic rules for systems coding and establishes two stream definitions for packet–oriented multiplexes: transport stream (TS) and program stream (PS). Both stream definitions have a specific set of application areas. The most important application area of the TS is digital TV [1]. The basic packet–oriented multiplexing approach for video, audio, and other data defined in MPEG-2 is illustrated in Fig. 2.1. Digital video and audio data is encoded into compressed MPEG-2 video and audio elemen- tary streams as defined in the ISO/IEC 13181-2 and 13181-3, respectively. These elementary streams are packetized to produce video and audio pack- etized elementary stream (PES) packets.
    [Show full text]
  • "HBB in the MHP Environment - Status and Prospects"
    "HBB in the MHP environment - Status and Prospects" Anthony Smith-Chaigneau – Managing Director Alticast GmbH 2009 Hybrid Hype Alticast GmbH Hybrid Services are NOT a NEW invention There are Many Countries and Operators in the World that Have Already Deployed Hybrid Services « Hybrid IPTV ² In Italy the number of hybrid (IP+DTT) shipments surpassed those of pure IPTV STBs* ² The majority of IP set top boxes shipping in Europe 2008 have had terrestrial tuners* ² In 2008 there were 14.4 M hybrid devices installed, worldwide* ² In 2012 the forecast is 22. 8 M hybrid devices, worldwide* ² In 2013, 48% of all Sat-STBs will have Internet connection* ² Hyy()gbrid Set Top Boxes (DTT/DTH+IP) becoming the norm* ² The number of IPTV services in DTT/DTH networks will increase significantly *source In-Sat This 2009 and we are Digital Alticast GmbH EMEA Hybrid Broadband – Broadcast – DigitalTV is a Complex Market Place Watching Video on any device in a Catch-Up TV environment is not Interactive TV it is merely VOD. • The BBC recently noted that it must support 14 different video formats and four different Digital Rights Management or DRM formats to ensure that its online ‘catch-up TV’ service, the iPlayer, will work across different internet and mobile platforms. • With such a scenario, the BBC’s desire for the use of a single specification to access its content can be better understood and perhaps explains its instigation of the Canvas Project. “Tim Berners-Lee says Television Channels are History ” • Telco Marketeers BELIEVE this statement to be true
    [Show full text]
  • Multimedia Home Platform
    Multimedia Home Platform NokiaOKIA DVB-MPH NOKIA between the broadcasting, tel- market where users have the choice DVB agrees open interactive TV ecommunications and computing of buying a basic mobile phone for standard technologies in the horizontal mar- voice communications or a more ket.” At present, the digital TV mar- advanced model that also offers in- A new interactive broadcasting ket is developing along ‘vertical’ teractive services using the very standard is set to revolutionise the lines where broadcasters subsidise latest WAP technology.” Compat- market for digital television and proprietary set-top boxes in return ible with all of the DVB platforms, convergence services worldwide. for customers subscribing to pay- MHP will be implemented by dig- Called DVB-MHP (Multimedia TV channels. ital terrestrial (DVB-T), cable (DVB- Home Platform), this Java-based C) and satellite (DVB-S) broadcast- technology will use open software Open standard According to Timo ers both in Europe and the rest of architecture to provide interactive Lahnalampi, Product Manager, the world. “America’s OpenCable services to digital TV customers re- Nokia Multimedia Terminals, MHP consortium is currently looking for gardless of the service provider and offers several benefits over propri- a common API and is considering STB (Set Top Box) supplier. Types etary platforms - both to customer Java based approach,” states Mr of services that will be launched and service providers alike. “The Lahnalampi. Spain’s digital terres- once MHP is fully available range open approach means that the end- trial service, Quiero TV (formerly from digital text services - com- user can buy a set-top box from ONDA digital) has already stated it plete with high quality pictures and any vendor and still receive a wide will migrate to MHP from the animation - to interactive shopping range of interactive applications.” OpenTV API as soon as the manu- and Internet access.
    [Show full text]
  • DVB- Multimedia Home Platform Specifications
    From Digital Television to Internet? A general technical overview of the- DVB- Multimedia Home Platform Specifications Vita Hinze-Hoare Abstract • System Core This paper provides a general technical The MHP is based around a Java virtual machine overview of the Multimedia Home Platform specification from Sun Microsystems to provide (MHP) specifications. MHP is a generic generic application program interface. interface between digital applications and user machines, whether they happen to be set top • MHP Profiles boxes, digital TV sets or Multimedia Pc’s. MHP This is a specification to provide a consistent set of extends the DVB open standards. Addressed features and functions. Enhanced broadcast profile are MHP architecture, System core, and MHP concerns one-way services. Interactive broadcast Profiles. profile supports the interactive services (two- way). The Internet access profile provides a gateway to Keywords: Digital Video Broadcasting, the World Wide Web. Interactive Television, MHP. 2. MHP Overview 1. Introduction MHP is produced by the Digital Video Broadcasting Multimedia Home Platform (MHP) extends Project (DVB) a European based Consortium and existing Digital Video Broadcasting (DVB) the standards (about 1400 pages long) are standards and defines a generic interface published by the European Telecommunications between interactive digital applications and a 2 Standards Institute (ETSI). range of terminals such as set top boxes, integrated digital TV sets and multimedia PC’s. DVB-MHP adopts the Java programming language and has created the DVB-Java version for broadcast application. Existing application formats can be “The Multimedia Home Platform attempts to 3 supported using optional plug – in decoders. adapt existing Internet and Web standards to digital Television.
    [Show full text]
  • Globally Executable MHP (GEM) Specification 1.1.1
    Globally Executable MHP (GEM) Specification 1.1.1 DVB Document A103 Rev. 1 May 2007 2 Contents 1 Scope........................................................................................................................................................9 2 References..............................................................................................................................................10 2.1 Superseding references .................................................................................................................................... 10 3 Definitions and abbreviations.................................................................................................................11 3.1 Definitions ....................................................................................................................................................... 11 3.1.1 Definitions from MHP ............................................................................................................................... 11 3.1.2 Definitions introduced by GEM................................................................................................................. 11 3.2 Abbreviations................................................................................................................................................... 12 4 General considerations and conventions................................................................................................13 4.1 General considerations....................................................................................................................................
    [Show full text]