Beginners' Guide to the Macro-Moths of Otago

Total Page:16

File Type:pdf, Size:1020Kb

Beginners' Guide to the Macro-Moths of Otago Moonlight The effect of light A suggested experiment How to set up a Beginners' guide to the Heath Moth trap The phase of the moon affects the Moths are well known for their A scientific experiment needs: 1. Slot the four sides together and macro-moths of Otago number and type of moths that are attraction to light. Lights come in slide them on to the base. flying. Moths tend to be more different colours. The different colours 1. A QUESTION (e.g, what effect does an orange street light have on the moth 2. Push the small funnel into the abundant on the new moon (when are related to the wavelength of the community?) centre hole in the base. This stops there is no moon light) and less on the light. Longer wavelengths look 2. A TREATMENT designed to test the question, e.g. a trap under a bright street water collecting in the trap Why are moths important? full moon. To fairly compare catches orange/red. Shorter wavelengths look light. 3. Fit the lid over the trap. We know relatively little about the we need to take into account the moon blue/violet. Moths can see further into 3. A CONTROL for anything that might affect the results – aside from the one 4. Carefully place six to eight egg distribution of moths across New phase. For a small experiment we can the short (Ultra-Violet) wavelengths thing we want to test. The treatment and control should be as similar as cartons in the trap. Make sure Moths play an important role in the Zealand, moth ecology or the potential set the moth traps on the same night than we can. possible in every way – EXCEPT the thing that we want to test, e.g. a moth trap they overlap but do not cover the ecosystem, as food for native birds and impacts of artificial light on moth or in the same moon phase. For a wide- under a street light and another one away from the light, but the same in every small funnel. These help the pollinators for plants. communities. There are all sorts of artificial lights ranging or long-term study we need to other way (see factors that might affect moths). moths settle calmly in the trap. around our houses, schools and record the moon phase (or work it out 4. A RESPONSE that can be COUNTED or MEASURED to quantify the difference 5. Place the large funnel in the top of Lepidoptera (moths and butterflies) are streets. Some give off yellow/orange What determines which later) to take it into account using between the treatment and the control, e.g. the number of moth species or the the trap. the third largest group of insects in New light like classic street lights. Newer moths are where? statistics. number of individual moths of each species. 6. Open out the fins of the vane unit Zealand with over 2000 known species. LED street lights come in a range of Moths vs Butterflies 5. REPLICATION allows you to show that the effect of the treatment is real and and slide the clip on to hold them Most New Zealand moths are found We can test the effect of the moon colours including white-blue. not down to chance differences between the treatment and the control. Small in place. nowhere else in the world (92% phase by trapping in the same place Each moth species has specific food Recent evidence from overseas differences need more replication to be detectable. 7. Place the vane unit in the top of endemic). Otago is a hotspot for moth every few days over the cycle of moon and environmental requirements that suggests that type and amount of the funnel. Moths and butterflies have three main species within New Zealand. phases. it needs to survive. Important artificial light affect the relative 8. Clip the Solar unit onto the trap. body parts: the head, thorax and environmental factors for moths are abundances of moths. 9. Attach the RED (positive) contact Their largely nocturnal behaviour abdomen. The two pairs of wings and food-plants, nectar sources to the 12V battery, followed by means moths are often overlooked, but six legs are attached to the thorax. temperature, humidity, and wind the BLACK (negative) contact. they make great subjects for speed. 10. Cover the Solar unit completely Moths and butterflies are all environmental monitoring. Their short and slowly count to 30. The Lepidoptera. Although most butterflies life-cycle and good mobility mean their We can use the information about the ACTINIC bulb should glow fly during the day so do a lot of moths. distributions often show clear environment where we find moths to white/blue. Butterflies tend to be more brightly geographic relationships with better understand the ecology of 11. Place the trap in your chosen coloured, but not always – some moths measurable environmental factors. moths. Once we understand the location. The solar cell will ensure are very brightly coloured. Butterflies relationship between the species’ the trap bulb switches on at dusk have clubbed antennae, whereas Despite the many unique and intriguing presence and the environment we can and off at dawn. moths have feathery or simple moth species in New Zealand, we have start to make predictions about how 12. Come back in the morning and antennae. only a small number of professional moths will be affected by climate check the trap. lepidopterists. change. Recording Cloud Cover: Making a collection Labelling the samples Further information What does that environmental data UNSURE |CLEAR| MOSTLY CLEAR | To make a reference collection: A word mean? reference collection makes it easier to FOG CLOUDY | MOSTLY CLOUDY | OVERCAST Once you have your moths, put them identify the different species and study Lepidoptera: Moths and butterflies Date: The label is what makes the moth a This guide contains only the most in a cool place or in the fridge. They them. Endemic: Found only in that place Precipitation on trap night: specimen. All labels need: common larger moths in the Otago will calm down so you can look at them Ecosystem: all biological and physical Location: UNSURE | NONE |DRIZZLE | LIGHT To catalogue species: It’s important to region; there are many more moths. If more easily. If you are confident that What: A unique code that refers to just processes interacting in an area RAIN | MODERATE RAIN | HEAVY RAIN ensure that when we talk to other you find a moth that is not on this Region code: DN | OL | SL this one specimen. Include the species Nocturnal: Happens at night many are the same species, you can entomologists we can check we are all guide it may be rare, sparse name if you know it and the name of Community: A group of different Air temperature (°C) count them and release most of them. calling the same species the same (widespread but never very numerous), Latitude: the person who identified it. species in an area Ave.: Min.: Max.: Keep a couple of each species and put name. Sometimes two species look a range extension (not normally in the Longitude: the rest on some vegetation close to very similar and we need a specimen to Otago region), a ‘micro-moth’ or a new Relative humidity (%) Where: The location where the Acknowledgements where you trapped them. be sure of the species identity. Other species (there are many moth species Ave.: Min.: Max.: specimen was trapped. By convention in New Zealand still to be properly We have to kill moths to make a times species are very variable and two a region code (see map), The “Shedding Light on the Night” project is a 4. Place a piece of tracing paper over described and named). partnership between Landcare Research, the Botany Wind Speed (km/h) collection so we do it as quickly and individuals of the same species may the wings and pin the paper (not and Geography Departments of the University of Ave.: Min.: Max.: look very different. Therefore we need When: The collection date, by painlessly as possible. the wings) in place. MothNet resources, guides & posters Otago, Orokonui Ecosanctuary, and a collection of a range of specimens to know the convention this is the day the trap was Otago schools. “Shedding Light on the Night” is funded on the Landcare Research website: Surrounding vegetation: Put the moths in the freezer for a variability of a species. set, not the following morning. 5. Place the moth somewhere cool, by The Curious Minds Participatory Science Platform – www.landcareresearch.co.nz/mothnet Otago Pilot. NON-IRRIGATED PASTURE | PASTURE | couple of hours; they will go to sleep dark and dry and away from live SCHOOL FIELD | NATIVE GRASSLAND | To compare variation traits: To Who: The name of collector. insects. and then die peacefully. Moths breed Take a photo and post on Facebook The “Beginners’ Guide to the Macro-Moths of Otago” COASTAL | RIVERSIDE | fast so as long as you don’t trap for understand the ecology and evolution 6. Depending on the moisture in the was produced by Landcare Research for the “Shedding MothNet group and ask for help. Light on the Night” project. The overall text, content, of species we often need to study the air, it may take 1–3 weeks for the EXOTIC GARDEN | NATIVE GARDEN | more than a few nights in a row in the and design, by Drs Barbara Anderson and Robert Pinning Facebook.com/MothNetNZ SHRUBLAND | FOREST same place you won’t impact the local variation between individuals within a wings to completely dry in place. Hoare, are part of the ongoing research into the ecology, distributions, and ecological interactions of moth population.
Recommended publications
  • Entomology of the Aucklands and Other Islands South of New Zealand: Lepidoptera, Ex­ Cluding Non-Crambine Pyralidae
    Pacific Insects Monograph 27: 55-172 10 November 1971 ENTOMOLOGY OF THE AUCKLANDS AND OTHER ISLANDS SOUTH OF NEW ZEALAND: LEPIDOPTERA, EX­ CLUDING NON-CRAMBINE PYRALIDAE By J. S. Dugdale1 CONTENTS Introduction 55 Acknowledgements 58 Faunal Composition and Relationships 58 Faunal List 59 Key to Families 68 1. Arctiidae 71 2. Carposinidae 73 Coleophoridae 76 Cosmopterygidae 77 3. Crambinae (pt Pyralidae) 77 4. Elachistidae 79 5. Geometridae 89 Hyponomeutidae 115 6. Nepticulidae 115 7. Noctuidae 117 8. Oecophoridae 131 9. Psychidae 137 10. Pterophoridae 145 11. Tineidae... 148 12. Tortricidae 156 References 169 Note 172 Abstract: This paper deals with all Lepidoptera, excluding the non-crambine Pyralidae, of Auckland, Campbell, Antipodes and Snares Is. The native resident fauna of these islands consists of 42 species of which 21 (50%) are endemic, in 27 genera, of which 3 (11%) are endemic, in 12 families. The endemic fauna is characterised by brachyptery (66%), body size under 10 mm (72%) and concealed, or strictly ground- dwelling larval life. All species can be related to mainland forms; there is a distinctive pre-Pleistocene element as well as some instances of possible Pleistocene introductions, as suggested by the presence of pairs of species, one member of which is endemic but fully winged. A graph and tables are given showing the composition of the fauna, its distribution, habits, and presumed derivations. Host plants or host niches are discussed. An additional 7 species are considered to be non-resident waifs. The taxonomic part includes keys to families (applicable only to the subantarctic fauna), and to genera and species.
    [Show full text]
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Report-VIC-Croajingolong National Park-Appendix A
    Croajingolong National Park, Victoria, 2016 Appendix A: Fauna species lists Family Species Common name Mammals Acrobatidae Acrobates pygmaeus Feathertail Glider Balaenopteriae Megaptera novaeangliae # ~ Humpback Whale Burramyidae Cercartetus nanus ~ Eastern Pygmy Possum Canidae Vulpes vulpes ^ Fox Cervidae Cervus unicolor ^ Sambar Deer Dasyuridae Antechinus agilis Agile Antechinus Dasyuridae Antechinus mimetes Dusky Antechinus Dasyuridae Sminthopsis leucopus White-footed Dunnart Felidae Felis catus ^ Cat Leporidae Oryctolagus cuniculus ^ Rabbit Macropodidae Macropus giganteus Eastern Grey Kangaroo Macropodidae Macropus rufogriseus Red Necked Wallaby Macropodidae Wallabia bicolor Swamp Wallaby Miniopteridae Miniopterus schreibersii oceanensis ~ Eastern Bent-wing Bat Muridae Hydromys chrysogaster Water Rat Muridae Mus musculus ^ House Mouse Muridae Rattus fuscipes Bush Rat Muridae Rattus lutreolus Swamp Rat Otariidae Arctocephalus pusillus doriferus ~ Australian Fur-seal Otariidae Arctocephalus forsteri ~ New Zealand Fur Seal Peramelidae Isoodon obesulus Southern Brown Bandicoot Peramelidae Perameles nasuta Long-nosed Bandicoot Petauridae Petaurus australis Yellow Bellied Glider Petauridae Petaurus breviceps Sugar Glider Phalangeridae Trichosurus cunninghami Mountain Brushtail Possum Phalangeridae Trichosurus vulpecula Common Brushtail Possum Phascolarctidae Phascolarctos cinereus Koala Potoroidae Potorous sp. # ~ Long-nosed or Long-footed Potoroo Pseudocheiridae Petauroides volans Greater Glider Pseudocheiridae Pseudocheirus peregrinus
    [Show full text]
  • CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
    WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties.
    [Show full text]
  • Desassi Thesis.Pdf (2.362Mb)
    Biotic interactions in a changing world: the role of feeding interactions in the response of multitrophic communities to rising temperature and nitrogen deposition A thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in the University of Canterbury by Claudio de Sassi School of Biological Sciences University of Canterbury 2012 We can't solve problems by using the same kind of thinking we used when we created them A. Einstein Table of contents Table of contents ........................................................................................................ ii List of figures .............................................................................................................. v List of tables .............................................................................................................. vi Abstract ..................................................................................................................... vii Acknowledgements ................................................................................................... ix Authorship declaration ............................................................................................. xi Chapter I: Introduction ............................................................................................. 1 1.1 A perspective of climate change in ecological research.................................. 1 1.2 How does climate change affect us?...............................................................
    [Show full text]
  • Developing Host Range Testing for Cotesia Urabae
    1 Appendix 2 Appendix 2: Risks to non-target species from potential biological control agent Cotesia urabae against Uraba lugens in New Zealand L.A. Berndt, A. Sharpe, T.M. Withers, M. Kimberley, and B. Gresham Scion, Private Bag 3020, Rotorua 3046, New Zealand, [email protected] Introduction Biological control of insect pests is a sustainable approach to pest management that seeks to correct ecological imbalances that many new invaders create on arrival in a new country. This is done by introducing carefully selected natural enemies of the pest, usually from its native range. This method is the only means of establishing and maintaining self-sustaining control of pest insects and it is highly cost effective in the long term (Greathead, 1995). However there is considerable concern for the risk new biological control agents might pose to other species in the country of introduction, and most countries now have regulations to manage decisions on whether to allow biological control introductions (Sheppard et al., 2003). A key component of the research required to gain approval to release a new agent is host range testing, to determine what level of risk the agent might pose to native and valued species in the country of introduction. Although methods for this are well developed for weed biological control, protocols are less established for arthropod biological control, and the challenges in conducting tests are greater (Van Driesche and Murray, 2004; van Lenteren et al., 2006; Withers and Browne, 2004). This is because insect ecology and taxonomy are relatively poorly understood, and there are many more species that need to be considered.
    [Show full text]
  • FORM NOR Application for Approval to IMPORT for RELEASE OR
    ER-AF-NOR-1-2 09/05 FORM NOR Application for approval to IMPORT FOR RELEASE OR RELEASE FROM CONTAINMENT ANY NEW ORGANISM INCLUDING A GENETICALLY MODIFIED ORGANISM BUT EXCLUDING CONDITIONAL RELEASE AND RAPID ASSESSMENT [Short title is: New Organism Unconditional Release] under section 34 of the Hazardous Substances and New Organisms Act 1996 Application Title: Release of Cotesia urabae for biological control of the pest gum leaf skeletoniser. Applicant Organisation: Scion (Forest Research Institute Ltd) ERMA Office use only Application Code: Formally received:____/____/____ ERMA NZ Contact: Initial Fee Paid: $ Application Status: 20 Customhouse Quay, Cnr Waring Taylor & Customhouse Quay PO Box 131, Wellington Phone: 04-916 2426 Fax: 04-914 0433 Email: [email protected] Website: www.ermanz.govt.nz Application for approval to import for release or release ER-AF-NOR-1-2 09/05 from containment any new organism including a genetically modified organism but excluding conditional Page 1 release and rapid assessment, under section 34 of the Hazardous Substances and New Organisms Act 1999 IMPORTANT 1. An associated User Guide is available for this form. You should read the User Guide before completing the form. If you need further guidance in completing this form please contact ERMA New Zealand. 2. This application form covers importation for release or release from containment of any new organism (i.e. full or unconditional release) including genetically modified organisms but excluding conditional release and rapid assessment, under section 34 of the HSNO Act 1996. If you are making an application to import for release or release from containment any new organism with controls (i.e.
    [Show full text]
  • Spillover and Species Interactions Across Habitat Edges Between Managed and Natural Forests
    SPILLOVER AND SPECIES INTERACTIONS ACROSS HABITAT EDGES BETWEEN MANAGED AND NATURAL FORESTS ____________________________________________________ A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at the University of Canterbury by Carol M. Frost ____________________________________________________ School of Biological Sciences University of Canterbury 2013 Table of Contents Table of Contents………………………………………………………………………...ii List of Tables………………………………………………………………………...…..vi List of Figures…………………………………………………………………………..vii Abstract………………………………………………………………………………...viii Acknowledgements……………………………………………………………………....x Chapter I: Introduction………………………………………………………………….1 1.1 Land-use change as the leading cause of biodiversity loss………………………….1 1.2 Biodiversity conservation versus agricultural production…………………………..2 1.3 Spillover edge effects as a mechanism of change in remnant natural ecosystems….3 1.4 Measuring ecological change: species interactions underlie ecosystem function…..5 1.5 Predicting indirect interactions……………………………………………………...6 1.6 Thesis objectives, study system, and outline………………………………………..9 Chapter II: Community-level spillover of natural enemies.........................................14 2.1 Abstract…………………………………………………………………………….14 2.2 Introduction………………………………………………………………………...15 2.3 Methods…………………………………………………………………………….18 2.3.1 Study system…………………………………………………………………...18 2.3.2 Sampling herbivore abundance and parasitism levels…………………………20 2.3.3 Measuring spillover of natural
    [Show full text]
  • PDF (7 MB Screen)
    2 Hoare (2017) Noctuinae part 1: Austramathes, Cosmodes, Proteuxoa, Physetica. EDITORIAL BOARD Dr R. M. Emberson, c/- Department of Ecology, P.O. Box 84, Lincoln University, New Zealand Dr M. J. Fletcher, NSW Agricultural Scientific Collections Unit, Forest Road, Orange, NSW 2800, Australia Prof. G. Giribet, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, U.S.A. Dr R. J. B. Hoare, Landcare Research, Private Bag 92170, Auckland, New Zealand Dr M.-C. Larivière, Landcare Research, Private Bag 92170, Auckland, New Zealand Mr R. L. Palma, Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington, New Zealand Dr C. J. Vink, Canterbury Museum, Rolleston Ave, Christchurch, New Zealand CHIEF EDITOR Prof Z.-Q. Zhang, Landcare Research, Private Bag 92170, Auckland, New Zealand Associate Editors Dr T. R. Buckley, Dr R. J. B. Hoare, Dr M.-C. Larivière, Dr R. A. B. Leschen, Dr D. F. Ward, Dr Z. Q. Zhao, Landcare Research, Private Bag 92170, Auckland, New Zealand Honorary Editor Dr T. K. Crosby, Landcare Research, Private Bag 92170, Auckland, New Zealand Fauna of New Zealand 73 3 Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 73 Noctuinae (Insecta: Lepidoptera: Noctuidae) part 1: Austramathes, Cosmodes, Proteuxoa, Physetica by R.J.B. Hoare1 with colour photographs by B.E. Rhode 1 Landcare Research, Private Bag 92170, Auckland, New Zealand [email protected] Auckland, New Zealand 2017 4 Hoare (2017) Noctuinae part 1: Austramathes, Cosmodes, Proteuxoa, Physetica. Copyright © Landcare Research New Zealand Ltd 2017 No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, elec- tronic, or mechanical, including photocopying, recording, taping information retrieval systems, or otherwise) without the written permission of the publisher.
    [Show full text]
  • Beginners' Guide to the Macro-Moths of Otago A4
    Moonlight The effect of light Beginners' guide to the The phase of the moon affects the Moths are well known for their macro-moths of Otago number and type of moths that are attraction to light. Lights come in flying. Moths tend to be more different colours. The different colours abundant on the new moon (when are related to the wavelength of the there is no moon light) and less on the light. Longer wavelengths look Why are moths important? full moon. To fairly compare catches orange/red. Shorter wavelengths look We know relatively little about the we need to take into account the moon blue/violet. Moths can see further into distribution of moths across New phase. For a small experiment we can the short (Ultra-Violet) wavelengths Moths play an important role in the Zealand, moth ecology or the potential set the moth traps on the same night than we can. ecosystem, as food for native birds and impacts of artificial light on moth or in the same moon phase. For a wide- pollinators for plants. communities. ranging or long-term study we need to There are all sorts of artificial lights record the moon phase (or work it out around our houses, schools and streets. Some give off yellow/orange Lepidoptera (moths and butterflies) are What determines which later) to take it into account using light like classic street lights. Newer the third largest group of insects in New moths are where? statistics. Zealand with over 2000 known species. LED street lights come in a range of Most New Zealand moths are found We can test the effect of the moon colours including white-blue.
    [Show full text]
  • Plum Island Biodiversity Inventory
    Plum Island Biodiversity Inventory New York Natural Heritage Program Plum Island Biodiversity Inventory Established in 1985, the New York Natural Heritage NY Natural Heritage also houses iMapInvasives, an Program (NYNHP) is a program of the State University of online tool for invasive species reporting and data New York College of Environmental Science and Forestry management. (SUNY ESF). Our mission is to facilitate conservation of NY Natural Heritage has developed two notable rare animals, rare plants, and significant ecosystems. We online resources: Conservation Guides include the accomplish this mission by combining thorough field biology, identification, habitat, and management of many inventories, scientific analyses, expert interpretation, and the of New York’s rare species and natural community most comprehensive database on New York's distinctive types; and NY Nature Explorer lists species and biodiversity to deliver the highest quality information for communities in a specified area of interest. natural resource planning, protection, and management. The program is an active participant in the The Program is funded by grants and contracts from NatureServe Network – an international network of government agencies whose missions involve natural biodiversity data centers overseen by a Washington D.C. resource management, private organizations involved in based non-profit organization. There are currently land protection and stewardship, and both government and Natural Heritage Programs or Conservation Data private organizations interested in advancing the Centers in all 50 states and several interstate regions. conservation of biodiversity. There are also 10 programs in Canada, and many NY Natural Heritage is housed within NYS DEC’s participating organizations across 12 Latin and South Division of Fish, Wildlife & Marine Resources.
    [Show full text]