A Fish and Tetrapod Fauna from Romer'S

Total Page:16

File Type:pdf, Size:1020Kb

A Fish and Tetrapod Fauna from Romer'S [Palaeontology, 2018, pp. 1–29] A FISH AND TETRAPOD FAUNA FROM ROMER’S GAP PRESERVED IN SCOTTISH TOURNAISIAN FLOODPLAIN DEPOSITS by BENJAMIN K. A. OTOO1,5,* ,JENNIFERA.CLACK1,*, TIMOTHY R. SMITHSON1, CARYS E. BENNETT2, TIMOTHY I. KEARSEY3 and MICHAEL I. COATES4 1University Museum of Zoology Cambridge, Downing Street, Cambridge, CB2 3EJ, UK; [email protected], [email protected] 2Department of Geology, University of Leicester, Leicester, LE1 7RH, UK; [email protected] 3British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh, EH14 4AP, UK; [email protected] 4Committee on Evolutionary Biology, University of Chicago, Culver Hall, 1025 East 57th Street, Chicago, IL 60637, USA; [email protected] 5Current address: Committee on Evolutionary Biology, University of Chicago, Culver Hall, 1025 East 57th Street, Chicago, IL 60637, USA; [email protected] *Corresponding authors Typescript received 15 December 2017; accepted in revised form 20 July 2018 Abstract: The end-Devonian mass extinction has been of which are currently endemic to the Ballagan Formation. framed as a turning point in vertebrate evolution, enabling There are two named tetrapods, Aytonerpeton and Diplo- the radiation of tetrapods, chondrichthyans and radus, with at least two others also represented. Gyracanths, actinopterygians. Until very recently ‘Romer’s Gap’ ren- holocephalans, and actinopterygian fishes are represented by dered the Early Carboniferous a black box standing rarer fossils. This material compares well with vertebrate between the Devonian and the later Carboniferous, but fossils from other Ballagan deposits. Faunal similarity analy- now new Tournaisian localities are filling this interval. sis using an updated dataset of Devonian–Carboniferous Recent work has recovered unexpected tetrapod and lung- (Givetian–Serpukhovian) sites corroborates a persistent fish diversity. However, the composition of Tournaisian Devonian/Carboniferous split. Separation of the data into faunas remains poorly understood. Here we report on a marine and non-marine partitions indicates more Devo- Tournaisian vertebrate fauna from a well-characterized, nar- nian–Carboniferous faunal continuity in non-marine set- row stratigraphic interval from the Ballagan Formation tings compared to marine settings. These results agree with exposed at Burnmouth, Scotland. Microfossils suggest the latest fossil discoveries and suggest that the Devonian– brackish conditions and the sedimentology indicates a low- Carboniferous transition proceeded differently in different energy debris flow on a vegetated floodplain. A range of environments and among different taxonomic groups. vertebrate bone sizes are preserved. Rhizodonts are repre- sented by the most material, which can be assigned to two Key words: Romer’s Gap, Tournaisian, tetrapod, flood- taxa. Lungfish are represented by several species, almost all plain, Carboniferous, rhizodont. R OMER’s Gap (Romer 1956; Coates & Clack 1995) is a 2015), but with the notable exception of the unique, sub- hiatus in the non-marine fossil record that currently stantial and partly articulated skeleton of Pederpes from spans the Tournaisian stage of the Carboniferous (~359– Scotland (Clack & Finney 2005). However, the challenge 345 Ma). Named for the paucity of tetrapod fossils presented by Romer’s Gap extends beyond tetrapods. Few throughout this interval, the gap has long obscured clado- Tournaisian fish localities have been known until recently genic events and ecological transitions implied by differ- (Clarkson 1985; Long 1989; Sallan & Coates 2010; Man- ences between the few, mostly aquatic, limbed forms sky & Lucas 2013; Sallan & Galimberti 2015; Mickle 2017, present at the end of the Devonian and the diverse and Richards et al. 2018), and these, too, appear impoverished disparate tetrapods known from the Visean (Wellstead relative to subsequent Visean faunas. 1982; Clarkson et al. 1994; Pardo et al. 2017). What little It follows that all three major living vertebrate divi- we know of Tournaisian tetrapods is drawn from not sions, actinopterygians (Sallan 2014; Giles et al. 2017),- much more than isolated bones and fragments from chondrichthyans (Coates et al. 2017, 2018), and tetrapods localities such as Blue Beach in Canada (Anderson et al. (Clack et al. 2016; Pardo et al. 2017) underwent major © 2018 The Authors. doi: 10.1111/pala.12395 1 Palaeontology published by John Wiley & Sons Ltd on behalf of The Palaeontological Association. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 2 PALAEONTOLOGY radiations within this key interval. Moreover, it seems in Scotland (Greig 1988), and probably spans the whole likely that these radiations occurred opportunistically, to of the Tournaisian (Smithson et al. 2012). The Ballagan is refill ecological space in the aftermath of serial extinction characterized by alternating dolostones (‘cementstones’), events that occurred close to end of the Devonian (Sallan palaeosols, sandstones and siltstones. The last of these & Coates 2010; Sallan & Galimberti 2015). But the have been identified as an important facies for preserving absence of a substantial record of Tournaisian fossil verte- fossils both in the Ballagan and elsewhere in the Car- brates obscures the timing and true phylogenetic pattern boniferous (Bennett et al. 2016; Kearsey et al. 2016). The of the Devonian–Carboniferous transition. It remains Ballagan has produced isolated (macro)fossils in the past unclear whether these large-scale post-extinction diversifi- (Clack 2002) but its full fossiliferous potential has only cations arose from short (Tournaisian) or long (Devo- been realized recently via the TW:eed project (http://tetra nian) fuses. We have almost no perspective on the pods.org/), which has also increased our sedimentological multiple ecological transitions that took place at this time, and palaeoenvironmental knowledge of the formation especially the ongoing vertebrate invasions of non-marine (Smithson et al. 2012, 2015; Bennett et al. 2016, 2017; environments including the likely multiple episodes of Clack et al. 2016; Kearsey et al. 2016). terrestrialization within the Tetrapoda. Moreover, the The entire Ballagan Formation is exposed at Burn- hypothesized abruptness of the end-Devonian mass mouth, Scotland (Fig. 1), as just over 500 m of vertically extinction (Hangenberg event) (Sallan & Coates 2010) dipping beds. Most of the tetrapod fossils at Burnmouth and an inferred Lilliput effect (Sallan & Galimberti 2015) occur from 332–383 m, though there are isolated bones deserve to be tested. Already, Tournaisian tetrapod dis- known from lower horizons (see Clack et al. 2016, fig. coveries include a mix of morphologies (Anderson et al. 6a). The greatest concentration comes from a ~50 cm 2015) that are distributed across multiple nodes in recent span within a highly-sampled 1 m interval at 340.5 m phylogenetic analyses (Clack et al. 2016) and a recently- originally discovered by TRS. This 1 m interval contains recognized Tournaisian radiation in lungfish (Smithson the Ossirarus and Aytonerpeton beds (Clack et al. 2016) et al. 2015) contradicts a historical narrative of post- and is here designated the Tetrapod Interval Metre, or Devonian decline and stasis. TIM (Fig. 2). These various observations raise the possibility that the The Ballagan Formation comprises 10 facies and three Devonian–Carboniferous divide recovered by Sallan & facies associations, each of which occur throughout the Coates (2010) might not be expressed in the same way formation: (1) fluvial facies association; (2) overbank across all environments, particularly given the uneven dis- facies association; and (3) saline-hypersaline lake facies tribution of end-Devonian diversity loss among taxo- association (Bennett et al. 2016). The sandy siltstone nomic groups (Sallan & Coates 2010). Thus, there may be facies occurs within the overbank facies association, and discernable time/environment associations, with different is characterized as matrix-supported, ungraded siltstones, levels of taxonomic/ecological continuity across the Devo- with millimetre-sized siltstone and very fine sandstone nian–Carboniferous boundary. However, widespread lithic clasts. This facies is a key characteristic of the Balla- euryhalinity among Devonian–Carboniferous vertebrates gan Formation, with 71 beds reported from the Burn- (O Gogain et al. 2016; Goedert et al. 2018) may support mouth succession. Beds are randomly distributed through the hypothesis of a cosmopolitan post-extinction fauna in the succession, laterally variable, and range in thickness the Tournaisian (Friedman & Sallan 2012). from 0.2 to 140 cm (Bennett et al. 2016). 71% of beds Here we describe the vertebrate fossil fauna from the overlie palaeosols or desiccation cracks and often occur in Tournaisian-age Ballagan Formation exposed on the stacked sequences with palaeosols. The palaeosols are beach at Burnmouth, Scotland. The fossils come from a rooted red, green or grey siltstones and only rarely con- 1 m stratigraphic interval. These new data, along with tain small carbonate nodules (Kearsey et al. 2016). They those from the Blue Beach locality (Anderson et al. 2015), represent a range of floodplain environments including are added to the dataset of Sallan & Coates (2010) to test woodland (vertisols), scrubby vegetation (entisols, incepti- their conclusions of a Devonian/Carboniferous
Recommended publications
  • Extent and Duration of Marine Anoxia During the Frasnian– Famennian (Late Devonian) Mass Extinction in Poland, Germany, Austria and France
    This is a repository copy of Extent and duration of marine anoxia during the Frasnian– Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/297/ Article: Bond, D.P.G., Wignall, P.B. and Racki, G. (2004) Extent and duration of marine anoxia during the Frasnian– Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geological Magazine, 141 (2). pp. 173-193. ISSN 0016-7568 https://doi.org/10.1017/S0016756804008866 Reuse See Attached Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Geol. Mag. 141 (2), 2004, pp. 173–193. c 2004 Cambridge University Press 173 DOI: 10.1017/S0016756804008866 Printed in the United Kingdom Extent and duration of marine anoxia during the Frasnian– Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France DAVID BOND*, PAUL B. WIGNALL*† & GRZEGORZ RACKI‡ *School of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK ‡Department of Palaeontology and Stratigraphy, University of Silesia, ul. Bedzinska 60, PL-41-200 Sosnowiec, Poland (Received 25 March 2003; accepted 10 November 2003) Abstract – The intensity and extent of anoxia during the two Kellwasser anoxic events has been investigated in a range of European localities using a multidisciplinary approach (pyrite framboid assay, gamma-ray spectrometry and sediment fabric analysis).
    [Show full text]
  • Ostracoda of the Limestones of the Permian System
    OSTRACODA OF TEE / . SY, .D DAVIS . ., Aanaas State Colic of .~'C and Applied Science, 1950 A THESIS submitted in partial fulf illnent of tlie re, - I -ts for the decree [ Department of Geology and Geography K . : COLLEGE OP AGRICUL LIED SCIENCE • :' LO T4 i Pua i or t i Area Covered h .3 Irrv nation ••••••• 1 Stra ;!it ••••••••«•••••• 3 Pi. ads La • Methods* ••••• •• Identification of the - % *•#*«•*# ll|, . , 17 . Stra c DIstx- • . ..-oi'ossiln. « . s . 9k . .rposo o I Xxxvefl tion This investigation of the ostracode r.iicrofauna C . 10 line stones of the WoIfcamp seizes In Kansas v;as undertaken to obtain data on the abundance, and the strati/graphic and paloo- ccolocical distribution of the ostracodes. pus Studies of microfaunas have been devoted almost exclusively to bods of shale with only scattered sampling of the limestone..; of ore, it was felt that an investigation of this nature would add to our know- ledge of the micropaleontology of ostracodes. The spars ity of information on techniques of samolinr and prepax^ing limestones for mieropaleontological examination were other factors which posed a problem. It was fully realised that this problem would necessitate various trial and error methods both in the field and laboratory before a satisfactory technique could be developed. Although the main emphasis of the study was to be . ;n to the ostracodes of the limestones, other mierofossiis were not to be die . _'ded; on the contrary, they night yield valuable strat- -•aphic information, She forms, other than ostracodes, consid- ered to be most valuable stratigraphlcally were the foraminifers and the conodonts.
    [Show full text]
  • Chapter 2 Paleozoic Stratigraphy of the Grand Canyon
    CHAPTER 2 PALEOZOIC STRATIGRAPHY OF THE GRAND CANYON PAIGE KERCHER INTRODUCTION The Paleozoic Era of the Phanerozoic Eon is defined as the time between 542 and 251 million years before the present (ICS 2010). The Paleozoic Era began with the evolution of most major animal phyla present today, sparked by the novel adaptation of skeletal hard parts. Organisms continued to diversify throughout the Paleozoic into increasingly adaptive and complex life forms, including the first vertebrates, terrestrial plants and animals, forests and seed plants, reptiles, and flying insects. Vast coal swamps covered much of mid- to low-latitude continental environments in the late Paleozoic as the supercontinent Pangaea began to amalgamate. The hardiest taxa survived the multiple global glaciations and mass extinctions that have come to define major time boundaries of this era. Paleozoic North America existed primarily at mid to low latitudes and experienced multiple major orogenies and continental collisions. For much of the Paleozoic, North America’s southwestern margin ran through Nevada and Arizona – California did not yet exist (Appendix B). The flat-lying Paleozoic rocks of the Grand Canyon, though incomplete, form a record of a continental margin repeatedly inundated and vacated by shallow seas (Appendix A). IMPORTANT STRATIGRAPHIC PRINCIPLES AND CONCEPTS • Principle of Original Horizontality – In most cases, depositional processes produce flat-lying sedimentary layers. Notable exceptions include blanketing ash sheets, and cross-stratification developed on sloped surfaces. • Principle of Superposition – In an undisturbed sequence, older strata lie below younger strata; a package of sedimentary layers youngs upward. • Principle of Lateral Continuity – A layer of sediment extends laterally in all directions until it naturally pinches out or abuts the walls of its confining basin.
    [Show full text]
  • Palaeoecology of a Hypersaline Carboniferous Ostracod Fauna
    J.rnicropalueontol., 6(2): 29-33, November 1987 Palaeoecology of a hypersaline Carboniferous ostracod fauna Chris P. Dewey Department of Geology and Geography, Mississippi State University, Mississippi State, MS 39762, U.S.A. ABSTRACT- A high abundance, low diversity ostracod fauna has been collected from the Lower Carboniferous Dimock and Phillips limestones in Nova Scotia, Canada. The ostracod fauna consists of Paraparchites sp. aff. P. kellettae Sohn and Beyrichiopsis lophota Copeland, as well as rare specimens of Acratia acuta (Jones & Kirkby), Bythocypris aequalis (Jones & Kirkby), and Chamishaella sirborbiculata (Munster). Growth parameters for the dominant ostracod, Paraparchites sp. aff. P. kellettae, show that a multi-generation, progenetic, parthenogenetic population developed. This reproduc- tive strategy caused rapid population growth and thereby allowed the species to take advantage of the available environmental resources. When considered together, the ostracod fauna and the sedimentology indicate that physiologically stressful hypersaline conditions prevailed. The combined data therefore provide evidence for hypersalinity tolerance and heterochronous development amongst Carboniferous ostracods. INTRODUCTION (Dewey, 1983, 1985, in press). Most of the assemblages Lower Carboniferous deposits in the Maritime Basin are dominated by paraparchitacean ostracods, which of Nova Scotia, Canada, document a series of eustati- are often considered to be indicative of nearshore cally controlled, transgressive-regressive cycles (Giles, environments (van Ameron ef d..1Y70; Becker et af., 1981). Tectonic activity resulted in the development of 1974; Bless, 1983). several interconnected sub-basins (Howie & Barss, This paper exam i n e s t 11 e para parch i t a c ea n - 1975; Bradley, 1982). Consequently. the complex dominated ostracod fauna of a carbonate sabkha interaction of eustacy, tectonism and climate resulted environment from the Windsor Group of the Minas- in a range of palaeoenvironments that include alluvial Shubenacadie Sub-Basin in Nova Scotia (Fig.
    [Show full text]
  • Identifying Heterogeneity in Rates of Morphological Evolution: Discrete Character Change in the Evolution of Lungfish (Sarcopterygii; Dipnoi)
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2011.01460.x IDENTIFYING HETEROGENEITY IN RATES OF MORPHOLOGICAL EVOLUTION: DISCRETE CHARACTER CHANGE IN THE EVOLUTION OF LUNGFISH (SARCOPTERYGII; DIPNOI) Graeme T. Lloyd,1,2 Steve C. Wang,3 and Stephen L. Brusatte4,5 1Department of Palaeontology, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom 2E-mail: [email protected] 3Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081 4Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024 5Department of Earth and Environmental Sciences, Columbia University, New York, New York 10025 Received February 9, 2010 Accepted August 15, 2011 Data Archived: Dryad: doi:10.5061/dryad.pg46f Quantifying rates of morphological evolution is important in many macroevolutionary studies, and critical when assessing possible adaptive radiations and episodes of punctuated equilibrium in the fossil record. However, studies of morphological rates of change have lagged behind those on taxonomic diversification, and most authors have focused on continuous characters and quantifying patterns of morphological rates over time. Here, we provide a phylogenetic approach, using discrete characters and three statistical tests to determine points on a cladogram (branches or entire clades) that are characterized by significantly high or low rates of change. These methods include a randomization approach that identifies branches with significantly high rates and likelihood ratio tests that pinpoint either branches or clades that have significantly higher or lower rates than the pooled rate of the remainder of the tree. As a test case for these methods, we analyze a discrete character dataset of lungfish, which have long been regarded as “living fossils” due to an apparent slowdown in rates since the Devonian.
    [Show full text]
  • Two Stages of Late Carboniferous to Triassic Magmatism in the Strandja
    Geological Magazine Two stages of Late Carboniferous to Triassic www.cambridge.org/geo magmatism in the Strandja Zone of Bulgaria and Turkey ł ń 1,2 3 1 1 Original Article Anna Sa aci ska , Ianko Gerdjikov , Ashley Gumsley , Krzysztof Szopa , David Chew4, Aleksandra Gawęda1 and Izabela Kocjan2 Cite this article: Sałacińska A, Gerdjikov I, Gumsley A, Szopa K, Chew D, Gawęda A, and 1Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Kocjan I. Two stages of Late Carboniferous to 2 3 Triassic magmatism in the Strandja Zone of Sosnowiec, Poland; Institute of Geological Sciences, Polish Academy of Sciences, Warsaw, Poland; Faculty of ‘ ’ Bulgaria and Turkey. Geological Magazine Geology and Geography, Sofia University St. Kliment Ohridski , 15 Tzar Osvoboditel Blvd., 1504 Sofia, Bulgaria 4 https://doi.org/10.1017/S0016756821000650 and Department of Geology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland Received: 9 February 2021 Abstract Revised: 3 June 2021 Accepted: 8 June 2021 Although Variscan terranes have been documented from the Balkans to the Caucasus, the southeastern portion of the Variscan Belt is not well understood. The Strandja Zone along Keywords: the border between Bulgaria and Turkey encompasses one such terrane linking the Strandja Zone; Sakar unit; U–Pb zircon dating; Izvorovo Pluton Balkanides and the Pontides. However, the evolution of this terrane, and the Late Carboniferous to Triassic granitoids within it, is poorly resolved. Here we present laser ablation Author for correspondence: – inductively coupled plasma – mass spectrometry (LA-ICP-MS) U–Pb zircon ages, coupled ł ń Anna Sa aci ska, with petrography and geochemistry from the Izvorovo Pluton within the Sakar Unit Email: [email protected] (Strandja Zone).
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • Geological Survey of Ohio
    GEOLOGICAL SURVEY OF OHIO. VOL. I.—PART II. PALÆONTOLOGY. SECTION II. DESCRIPTIONS OF FOSSIL FISHES. BY J. S. NEWBERRY. Digital version copyrighted ©2012 by Don Chesnut. THE CLASSIFICATION AND GEOLOGICAL DISTRIBUTION OF OUR FOSSIL FISHES. So little is generally known in regard to American fossil fishes, that I have thought the notes which I now give upon some of them would be more interesting and intelligible if those into whose hands they will fall could have a more comprehensive view of this branch of palæontology than they afford. I shall therefore preface the descriptions which follow with a few words on the geological distribution of our Palæozoic fishes, and on the relations which they sustain to fossil forms found in other countries, and to living fishes. This seems the more necessary, as no summary of what is known of our fossil fishes has ever been given, and the literature of the subject is so scattered through scientific journals and the proceedings of learned societies, as to be practically inaccessible to most of those who will be readers of this report. I. THE ZOOLOGICAL RELATIONS OF OUR FOSSIL FISHES. To the common observer, the class of Fishes seems to be well defined and quite distin ct from all the other groups o f vertebrate animals; but the comparative anatomist finds in certain unusual and aberrant forms peculiarities of structure which link the Fishes to the Invertebrates below and Amphibians above, in such a way as to render it difficult, if not impossible, to draw the lines sharply between these great groups.
    [Show full text]
  • The Truong Son, Loei-Phetchabun, and Kontum Terranes in Indochina: Provenance, Rifting, and Collisions
    REVIEW published: 28 May 2021 doi: 10.3389/feart.2021.603565 The Truong Son, Loei-Phetchabun, and Kontum Terranes in Indochina: Provenance, Rifting, and Collisions Clive Burrett 1, Mongkol Udchachon 1,2* and Hathaithip Thassanapak 2 1 Palaeontological Research and Education Centre, Mahasarakham University, Mahasarakham, Thailand, 2 Applied Palaeontology and Biostratigraphy Research Unit, Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, Thailand The three main regions of Indochina are defined as the Truong Son, Loei-Phetchabun, and Kontum terranes. The aim of this review is to integrate numerous petrological studies with sedimentary, palaeontological, and provenance studies in order to construct a preliminary tectonic model which shows the terranes docked in the earliest Carboniferous (Truong Son with Loei-Phetchabun) and in the Permian (Kontum). The Kontum Terrane is characterized by Proterozoic magmatism, mid-Ordovician to Early Devonian granites, and Permian charnockites. Major carbonate platforms developed in the Givetian to earliest Tournaisian on Truong Son and from the Visean to mid-Permian across Truong Edited by: Son and Loei-Phetchabun terranes. The Truong Son has Silurian granites and a Basilios Tsikouras, Late Ordovician to Silurian magmatic arc along its southern and western borders Universiti Brunei Darussalam, Brunei caused by subduction of oceanic lithosphere, the remnants of which are now partially Reviewed by: Antonio Pedrera, preserved in the Loei and Tamky sutures. A region to the east of the Loei Suture in Instituto Geológico y Minero de the Loei Foldbelt has a similar-age volcanic arc extending northwards into Laos and España (IGME), Spain Sergio Llana-Fúnez, is included in Truong Son.
    [Show full text]
  • Devonian and Carboniferous Stratigraphical Correlation and Interpretation in the Central North Sea, Quadrants 25 – 44
    CR/16/032; Final Last modified: 2016/05/29 11:43 Devonian and Carboniferous stratigraphical correlation and interpretation in the Orcadian area, Central North Sea, Quadrants 7 - 22 Energy and Marine Geoscience Programme Commissioned Report CR/16/032 CR/16/032; Final Last modified: 2016/05/29 11:43 CR/16/032; Final Last modified: 2016/05/29 11:43 BRITISH GEOLOGICAL SURVEY ENERGY AND MARINE GEOSCIENCE PROGRAMME COMMERCIAL REPORT CR/16/032 Devonian and Carboniferous stratigraphical correlation and interpretation in the Orcadian area, Central North Sea, Quadrants 7 - 22 K. Whitbread and T. Kearsey The National Grid and other Ordnance Survey data © Crown Copyright and database rights Contributor 2016. Ordnance Survey Licence No. 100021290 EUL. N. Smith Keywords Report; Stratigraphy, Carboniferous, Devonian, Central North Sea. Bibliographical reference WHITBREAD, K AND KEARSEY, T 2016. Devonian and Carboniferous stratigraphical correlation and interpretation in the Orcadian area, Central North Sea, Quadrants 7 - 22. British Geological Survey Commissioned Report, CR/16/032. 74pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement
    [Show full text]
  • Evaluating the Frasnian-Famennian Mass Extinction: Comparing Brachiopod Faunas
    Evaluating the Frasnian-Famennian mass extinction: Comparing brachiopod faunas PAUL COPPER Copper, P. 1998. Evaluating the Frasnian-Famennian mass extinction: Comparing bra- chiopod faunas.- Acta Palaeontologica Polonica 43,2,137-154. The Frasnian-Famennian (F-F) mass extinctions saw the global loss of all genera belonging to the tropically confined order Atrypida (and Pentamerida): though Famen- nian forms have been reported in the literafure, none can be confirmed. Losses were more severe during the Givetian (including the extinction of the suborder Davidsoniidina, and the reduction of the suborder Lissatrypidina to a single genus),but ońgination rates in the remaining suborder surviving into the Frasnian kept the group alive, though much reduced in biodiversity from the late Earb and Middle Devonian. In the terminal phases of the late Palmatolepis rhenana and P linguifurmis zones at the end of the Frasnian, during which the last few Atrypidae dechned, no new genera originated, and thus the Atrypida were extĘated. There is no evidence for an abrupt termination of all lineages at the F-F boundary, nor that the Atrypida were abundant at this time, since all groups were in decline and impoverished. Atypida were well established in dysaerobic, muddy substrate, reef lagoonal and off-reef deeper water settings in the late Givetian and Frasnian, alongside a range of brachiopod orders which sailed through the F-F boundary: tropical shelf anoxia or hypońa seems implausible as a cause for aĘpid extinction. Glacial-interglacial climate cycles recorded in South Ameńca for the Late Devonian, and their synchronous global cooling effect in low latitudes, as well as loss of the reef habitat and shelf area reduction, remain as the most likely combined scenarios for the mass extinction events.
    [Show full text]
  • Girl Alice (LH523)
    Report on an investigation of the loss of the skipper from Girl Alice (LH523) 1.5 miles south-east of Burnmouth 19 November 2000 Marine Accident Investigation Branch First Floor, Carlton House Carlton Place Southampton SO15 2DZ Report No 17/2001 Extract from The Merchant Shipping (Accident Reporting and Investigation) Regulations 1999 The fundamental purpose of investigating an accident under these Regulations is to determine its circumstances and the causes with the aim of improving the safety of life at sea and the avoidance of accidents in the future. It is not the purpose to apportion liability, nor, except so far as is necessary to achieve the fundamental purpose, to apportion blame. CONTENTS Page GLOSSARY OF ABBREVIATIONS SYNOPSIS 1 DETAILS OF VESSEL AND ACCIDENT 2 SECTION 1 - FACTUAL ACCOUNT 4 1.1 Description of vessel 4 1.2 Background to the voyage and type of fishing 5 1.3 The crew 6 1.4 Environmental conditions 6 1.5 Events surrounding the voyage 6 1.6 Search 6 1.7 Single-handed operation (fishing vessels) 8 1.8 Lifesaving appliances 8 SECTION 2 - ANALYSIS 9 2.1 General 9 2.2 Available evidence 9 2.3 Accident hypothesis 9 2.4 Single-handed operation 9 2.5 Lifejacket 10 SECTION 3 - CONCLUSIONS 11 3.1 Cause 11 3.2 Other findings 11 SECTION 4 - RECOMMENDATION 12 GLOSSARY OF ABBREVIATIONS C Celsius CWBE Constant Wear Buoyancy Equipment GRP Glass Reinforced Plastic knot nautical mile per hour kW Kilowatt m metre MAIB Marine Accident Investigation Branch MCA Maritime and Coastguard Agency MGN Marine Guidance Note mm millimetre MRSC Maritime Rescue Sub-Centre UTC Universal Co-ordinated Time VHF Very High Frequency SYNOPSIS On Sunday 19 November 2000, the skipper/owner of the 6.24m fishing vessel, Girl Alice, was lost overboard while operating the vessel alone, in good visibility, off the south-east coast of Scotland.
    [Show full text]