Genetics: Early Online, published on April 4, 2019 as 10.1534/genetics.119.302165 The role of insulators in transgene transvection in Drosophila Pawel Piwko1,2, Ilektra Vitsaki1,2, Ioannis Livadaras1 and Christos Delidakis1,2 1: Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas. Heraklion, Crete, Greece 70013. 2: Department of Biology, University of Crete. Heraklion, Crete, Greece 70013. the corresponding author's name, office mailing address including street name and number, phone number, and email address: Christos Delidakis IMBB, FORTH 100 N. Plastira St Heraklion 70013 Crete, GREECE tel: +30-2810-391112 email:
[email protected] 1 Copyright 2019. Abstract Transvection is the phenomenon where a transcriptional enhancer activates a promoter located on the homologous chromosome. It has been amply documented in Drosophila where homologues are closely paired in most, if not all, somatic nuclei, but it has been known to rarely occur in mammals as well. We have taken advantage of site-directed transgenesis to insert reporter constructs into the same genetic locus in Drosophila and have evaluated their ability to engage in transvection by testing many heterozygous combinations. We find that transvection requires the presence of an insulator element on both homologues. Homotypic trans-interactions between four different insulators can support transvection: the gypsy insulator (GI), Wari, Fab-8 and 1A2; GI and Fab-8 are more effective than Wari or 1A2. We show that in the presence of insulators, transvection displays the characteristics that have been previously described: it requires homologue pairing, but can happen at any of several loci in the genome; a solitary enhancer confronted with an enhancerless reporter is sufficient to drive transcription; it is weaker than the action of the same enhancer-promoter pair in cis and it is further suppressed by cis-promoter competition.