Fishing Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2021 Catalog
2021 NEW PRODUCTS G-Power Flip and Punch Spin Bait Designed by Aaron Martens, Walleye anglers across the Midwest have become Gamakatsu has developed the dependent upon the spin style hooks for walleye rigs. new G-Power Heavy Cover Flip The Spin Bait hook can be rigged behind spinner & Punch Hook. A step up from blades, prop blades or used the G-Finesse Heavy Cover alone with just a simple Hook, for serious flipping and bead in front of them. It’s punching with heavy fluorocarbon and braid. The TGW (Tournament unique design incorporates Grade Wire) hook, paired with its welded eye, make this the strongest Gamakatsu swivels that is Heavy Cover hook in Gamakatsu’s G-Series lineup. Ideal for larger baits independent of the hook, giving the hook more freedom to spin while and weights, punching through grass mats and flipping into heavy reducing line twist. The Spin Bait hook features Nano Smooth Coat for timber. G-Power Flip and Punch ideally matches to all types of cover stealth presentations and unsurpassed hook penetration and the bait and able to withstand extreme conditions. Page 26 keeper barbs on the shank hold live and plastic baits on more securely. Page 48 G-Power Stinger Trailer Hook The new G-Power Stinger Trailer Hook Superline Offset Round Bend brilliance comes from Gamakatsu’s famous Gamakatsu’s Superline Offset Round B10S series of fly hooks and the expertise Bend is designed with a heavier of Professional Bass angler Aaron Martens. Superline wire best suited for heavy The Stinger Trailer has a strategically braided and fluorocarbon lines. -
Wilderness Visitors and Recreation Impacts: Baseline Data Available for Twentieth Century Conditions
United States Department of Agriculture Wilderness Visitors and Forest Service Recreation Impacts: Baseline Rocky Mountain Research Station Data Available for Twentieth General Technical Report RMRS-GTR-117 Century Conditions September 2003 David N. Cole Vita Wright Abstract __________________________________________ Cole, David N.; Wright, Vita. 2003. Wilderness visitors and recreation impacts: baseline data available for twentieth century conditions. Gen. Tech. Rep. RMRS-GTR-117. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 52 p. This report provides an assessment and compilation of recreation-related monitoring data sources across the National Wilderness Preservation System (NWPS). Telephone interviews with managers of all units of the NWPS and a literature search were conducted to locate studies that provide campsite impact data, trail impact data, and information about visitor characteristics. Of the 628 wildernesses that comprised the NWPS in January 2000, 51 percent had baseline campsite data, 9 percent had trail condition data and 24 percent had data on visitor characteristics. Wildernesses managed by the Forest Service and National Park Service were much more likely to have data than wildernesses managed by the Bureau of Land Management and Fish and Wildlife Service. Both unpublished data collected by the management agencies and data published in reports are included. Extensive appendices provide detailed information about available data for every study that we located. These have been organized by wilderness so that it is easy to locate all the information available for each wilderness in the NWPS. Keywords: campsite condition, monitoring, National Wilderness Preservation System, trail condition, visitor characteristics The Authors _______________________________________ David N. -
Crawford Reservoir
Crawford Reservoir FISH SURVEY AND MANAGEMENT INFORMATION Eric Gardunio, Fish Biologist Montrose Service Center General Information: Crawford Reservoir is a popular fishery that provides angling opportunity for yellow perch, channel catfish, northern pike, rainbow trout, black crappie, and largemouth bass. This reser- voir, located in Crawford State Park, covers 414 surface acres at full capacity and is open year round to an- gling. Visit the State Parks website for information on regulations, camping, and recreation: http://parks.state.co.us/Parks/Crawford Location: 2 miles south of the town of Crawford on Hwy 92. Primary Management: Warmwater Mixed Species Lake Category 602 Amenities Previous Stocking Sportfishing Notes 2019 Black Crappie Boat Ramps (2) Rainbow Trout (10”): 9,100 Good spots include the East Campgrounds (2) Largemouth Bass (2”): 30,088 shore primarily around the Showers Clear Fork boat ramp cove or Largemouth Bass (6”): 150 anywhere with brush Visitors Center Largemouth Bass (20”): 70 Good baits include small tube Restrooms Channel Catfish (7”): 1,500 jigs and worms Parking Areas 2018 Channel Catfish Picnic Shelters Rainbow Trout (10”): 12,184 Good spots include the north Largemouth Bass (2”): 30,000 side of peninsula cove and near the dam Channel Catfish (7”): 4,250 Good baits include night 2017 crawlers and cut-bait WARNING !!! Rainbow Trout (10”): 12,184 Largemouth Bass Prevent the Spread of Largemouth Bass (2”): 20,000 Good spots include the rocky Zebra Mussels and other Largemouth Bass (16”): 70 areas near the dam and flood- Aquatic Nuisance Species ed brush and vegetation in the Channel Catfish (9”): 2,000 spring and summer. -
Crappie and Crappie Fishing
Crappie & Crappie Fishing Crappie are among the most popular sport fishes in Texas. They are known by various names including white perch, sac-a-lait, calico bass, and paper-mouth. Two species are found in Texas, the white crappie (Pomoxis annularis) and black crappie (P. nigromaculatus). Black crap pie have irregular dark speck les and blotches on their sides. On white crappie, the dark markings consist of regularly arranged vertical bars. When in doubt, count the number of sharp dorsal spines at the front of a crappie’s dorsal fin. Black crappie have seven or eight spines while white crappie Young crappie feed on microscopic crustaceans called have five or six. During the spawning season, males of zooplankton. Juveniles and adults feed primarily on both species develop dark markings over most of the small threadfin and gizzard shad and insect larvae, es body, causing many anglers to misidentify male white pecially mayflies. Their diet also includes minnows, crappie as black crappie. silversides, other crappie and any other fish small enough to swallow. Black crappie are more numerous in the clear, acidic to slightly alkaline waters of East Texas. White crappie are found state In lakes with low bass populations, crappie often wide. Fish of both species may live up to eight years and overpopulate and become stunted. For crappie to reach become sexually mature at one to two years. Crappie belong larger sizes, populations must experience high total mor to the same family as the sunfishes and black basses; like tality to keep their numbers within the carrying capacity their cousins, crappie are nest builders. -
Moüjmtaiim Operations
L f\f¿ áfó b^i,. ‘<& t¿ ytn) ¿L0d àw 1 /1 ^ / / /This publication contains copyright material. *FM 90-6 FieW Manual HEADQUARTERS No We DEPARTMENT OF THE ARMY Washington, DC, 30 June 1980 MOÜJMTAIIM OPERATIONS PREFACE he purpose of this rUanual is to describe how US Army forces fight in mountain regions. Conditions will be encountered in mountains that have a significant effect on. military operations. Mountain operations require, among other things^ special equipment, special training and acclimatization, and a high decree of self-discipline if operations are to succeed. Mountains of military significance are generally characterized by rugged compartmented terrain witn\steep slopes and few natural or manmade lines of communication. Weather in these mountains is seasonal and reaches across the entireSspectrum from extreme cold, with ice and snow in most regions during me winter, to extreme heat in some regions during the summer. AlthoughNthese extremes of weather are important planning considerations, the variability of weather over a short period of time—and from locality to locahty within the confines of a small area—also significantly influences tactical operations. Historically, the focal point of mountain operations has been the battle to control the heights. Changes in weaponry and equipment have not altered this fact. In all but the most extreme conditions of terrain and weather, infantry, with its light equipment and mobility, remains the basic maneuver force in the mountains. With proper equipment and training, it is ideally suited for fighting the close-in battfe commonly associated with mountain warfare. Mechanized infantry can\also enter the mountain battle, but it must be prepared to dismount and conduct operations on foot. -
Bristlecone Great Basin National Park Summer, 1990 Information Activities
BRISTLECONE GREAT BASIN NATIONAL PARK SUMMER, 1990 INFORMATION ACTIVITIES Welcome to Great Basin National Park Welcome to Great Basin National Park; an area of surprising beauty and diver sity. As the nation's 49th national park, Great Basin enters a select corps of the finest and most valued portions of this nation's heritage which are protected as units of the National Park System. A concept which began with Yellowstone National Park in 1872 and has spread throughout the country and, indeed, around the globe, now has incorporated one of the most superlative examples of Great Basin geology, biologic diversity and scenic grandeur. As you visit Great Basin National Park this season, we hope that you take ad vantage of the naturalist programs and activities which will provide a greater understanding of this special place. Join a ranger on a walk to an ancient grove of bristlecone pines, or attend an evening campfire program to learn more of the history, geology or wildlife of the park. Schedules and program descriptions are to be found elsewhere in this newspaper. We sincerely believe that a more com plete understanding of what you see here, will help to enhance your appre Park Drafts Management Plan ciation of the park. While Great Basin National Park is A General Management Plan (GMP) is Local issues, such as grazing, mining, the mailing list, for their further review new, and changes in facilities and opera being developed at Great Basin Na interpretive services, fishing and wild and comment. Responses regarding the tions will continue for many years, there tional Park which will guide the man life management, cave management and recommended directions to be taken is one constant trait which is already agement direction of the park for the special uses (i.e. -
Fishery-Independent Sampling: Florida
Fishery-Independent Sampling: Florida SEDAR27-RD-03 Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Fisheries Independent Monitoring Program Procedures and Gear Description Background Two sampling designs (stratified-random and fixed-station) were initially employed by the FIM program to assess the status of fishery stocks in Florida estuaries. Both fixed-station and stratified-random sampling surveys provided information on length-frequency, age structure, reproductive condition, and relative abundance of fish populations. Fixed-station samples, however, cannot be statistically expanded to describe the fishery stocks beyond the actual sampling sites, while stratified-random samples can be extrapolated to describe an entire estuary. Monthly fixed-station sampling, therefore, was terminated in 1996. Monthly stratified-random sampling is currently conducted year-round using 21.3-m seines, 6.1-m otter trawls, and 183-m haul seines. A third sampling design (directed) was added to the program in 1993. The directed sampling surveys also provide information on relative abundance, length- frequency, age structure, and reproductive condition of fish populations; however, these surveys target commercially or recreationally important species (red drum, striped mullet, and spotted seatrout) that appeared to be undersampled by the gears used in the stratified-random sampling surveys. In directed sampling, nets are set upon visually detected schools of fish or in areas where high concentrations of the target species are expected to occur. While directed-sampling surveys for striped mullet continue, surveys for red drum and spotted seatrout were terminated in 1999, as the numbers and sizes of these species collected during stratified-random sampling proved to be adequate for stock assessment. -
Travel Summary
Travel Summary – All Trips and Day Trips Retirement 2016-2020 Trips (28) • Relatives 2016-A (R16A), September 30-October 20, 2016, 21 days, 441 photos • Anza-Borrego Desert 2016-A (A16A), November 13-18, 2016, 6 days, 711 photos • Arizona 2017-A (A17A), March 19-24, 2017, 6 days, 692 photos • Utah 2017-A (U17A), April 8-23, 2017, 16 days, 2214 photos • Tonopah 2017-A (T17A), May 14-19, 2017, 6 days, 820 photos • Nevada 2017-A (N17A), June 25-28, 2017, 4 days, 515 photos • New Mexico 2017-A (M17A), July 13-26, 2017, 14 days, 1834 photos • Great Basin 2017-A (B17A), August 13-21, 2017, 9 days, 974 photos • Kanab 2017-A (K17A), August 27-29, 2017, 3 days, 172 photos • Fort Worth 2017-A (F17A), September 16-29, 2017, 14 days, 977 photos • Relatives 2017-A (R17A), October 7-27, 2017, 21 days, 861 photos • Arizona 2018-A (A18A), February 12-17, 2018, 6 days, 403 photos • Mojave Desert 2018-A (M18A), March 14-19, 2018, 6 days, 682 photos • Utah 2018-A (U18A), April 11-27, 2018, 17 days, 1684 photos • Europe 2018-A (E18A), June 27-July 25, 2018, 29 days, 3800 photos • Kanab 2018-A (K18A), August 6-8, 2018, 3 days, 28 photos • California 2018-A (C18A), September 5-15, 2018, 11 days, 913 photos • Relatives 2018-A (R18A), October 1-19, 2018, 19 days, 698 photos • Arizona 2019-A (A19A), February 18-20, 2019, 3 days, 127 photos • Texas 2019-A (T19A), March 18-April 1, 2019, 15 days, 973 photos • Death Valley 2019-A (D19A), April 4-5, 2019, 2 days, 177 photos • Utah 2019-A (U19A), April 19-May 3, 2019, 15 days, 1482 photos • Europe 2019-A (E19A), July -
Mule Deer and Antelope Staff Specialist Peregrine Wolff, Wildlife Health Specialist
STATE OF NEVADA Steve Sisolak, Governor DEPARTMENT OF WILDLIFE Tony Wasley, Director GAME DIVISION Brian F. Wakeling, Chief Mike Cox, Bighorn Sheep and Mountain Goat Staff Specialist Pat Jackson, Predator Management Staff Specialist Cody McKee, Elk Staff Biologist Cody Schroeder, Mule Deer and Antelope Staff Specialist Peregrine Wolff, Wildlife Health Specialist Western Region Southern Region Eastern Region Regional Supervisors Mike Scott Steve Kimble Tom Donham Big Game Biologists Chris Hampson Joe Bennett Travis Allen Carl Lackey Pat Cummings Clint Garrett Kyle Neill Cooper Munson Sarah Hale Ed Partee Kari Huebner Jason Salisbury Matt Jeffress Kody Menghini Tyler Nall Scott Roberts This publication will be made available in an alternative format upon request. Nevada Department of Wildlife receives funding through the Federal Aid in Wildlife Restoration. Federal Laws prohibit discrimination on the basis of race, color, national origin, age, sex, or disability. If you believe you’ve been discriminated against in any NDOW program, activity, or facility, please write to the following: Diversity Program Manager or Director U.S. Fish and Wildlife Service Nevada Department of Wildlife 4401 North Fairfax Drive, Mailstop: 7072-43 6980 Sierra Center Parkway, Suite 120 Arlington, VA 22203 Reno, Nevada 8911-2237 Individuals with hearing impairments may contact the Department via telecommunications device at our Headquarters at 775-688-1500 via a text telephone (TTY) telecommunications device by first calling the State of Nevada Relay Operator at 1-800-326-6868. NEVADA DEPARTMENT OF WILDLIFE 2018-2019 BIG GAME STATUS This program is supported by Federal financial assistance titled “Statewide Game Management” submitted to the U.S. -
Which Sunfish Is It?
Which Sunfish is It? Grade Level: Upper Elementary Subject Areas: Life science Duration: 45 minutes Next Generation Science Standards: • 4-LS1-1 – Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction o Practices of science . Constructing explanations o Cross cutting concepts . Structure and function Common Core State Standards: • ELA/Lit o RI.4-5.4 – Determine the meaning of general or domain specific words or phrases in a text relevant to a grade 4 topic or subject area. • SL.4-5.1 - Engage effectively in a range of collaborative texts, discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade appropriate topics and building on others’ ideas and expressing their own clearly. Objectives: • Students will be able to use a dichotomous key to identify several species of sunfish found in Maryland. • Students will be able to use their knowledge of external fish anatomy to construct their own dichotomous key. Teacher Background: Bluegills are members of the family Centrarchidae or the sunfish family. When many people think of sunfish, they think of bluegills, pumpkinseeds or redbreast sunfish, but in Maryland, this family also includes several other fish that are popular with anglers - largemouth and smallmouth bass, and black and white crappies. This exercise will help students tell the difference between a bass and a bluegill. A dichotomous key is a tool that is usually used to identify living things. The key is called dichotomous (“divided into two parts”) because at each step the user must make a choice between two alternatives, based on some characteristic of the organism to be identified. -
Peoria Riverfront Development, Illinois (Ecosystem Restoration)
PEORIA RIVERFRONT DEVELOPMENT, ILLINOIS (ECOSYSTEM RESTORATION) FEASIBILITY STUDY WITH INTEGRATED ENVIRONMENTAL ASSESSMENT MAIN REPORT MARCH 2003 DEPARTMENT OF THE ARMY ROCK ISLAND DISTRICT, CORPS OF ENGINEERS CLOCK TOWER BUILDING - P.O. BOX 2004 ROCK ISLAND, ILLINOIS 61204-2004 REPLY TO ATTENTION OF http://www.mvr.usace.army.mil CEMVR-PM-M PEORIA RIVERFRONT DEVELOPMENT, ILLINOIS (ECOSYSTEM RESTORATION) FEASIBILITY STUDY WITH INTEGRATED ENVIRONMENTAL ASSESSMENT MAIN REPORT MARCH 2003 Executive Summary he Peoria Riverfront Development (Ecosystem Restoration) Project area includes Lower Peoria Lake. The area lies within Peoria and Tazewell Counties, Illinois, and includes TIllinois River Miles 162-167. The project is related to the Peoria Riverfront Development Project, a public and private cooperative effort that also includes revitalization of the City’s downtown area. Development includes a visitor’s center, city park, residential redevelopment, community center, riverboat landing, sports complex, entertainment centers, and retail development. The region has begun to reclaim its abandoned industrial riverfront, with the understanding that a healthy, attractive, and sustainable environment must be present. The Illinois River is a symbol of the region’s economic, social, and cultural history, as well as its future. Therefore, ecosystem restoration in Peoria Lake is a vital component to an overall effort and vision to develop the Peoria Riverfront in an ecologically, economically, and socially sustainable manner. This Ecosystem Restoration Feasibility Study was conducted by the U.S. Army Corps of Engineers and the Illinois Department of Natural Resources (Non-Federal Sponsor) to investigate the Federal and State interest in ecosystem restoration within Peoria Lake. In support of this resource vision, several regulatory efforts on the part of the cities and counties to address the sedimentation issue affecting the Illinois River have been adopted. -
EVALUATION of BOTANICAL PISCICIDES on NILE TILAPIA Oreochromis Niloticus L
EVALUATION OF BOTANICAL PISCICIDES ON NILE TILAPIA Oreochromis niloticus L. AND MOSQUITO FISH Gambusia affinis BAIRD AND GIRARD Arsenia G. Cagauan, Marjorie C. Galaites and Lorenz J. Fajardo College of Fisheries and Freshwater Aquaculture Center Central Luzon State University, Science City of Muñoz, Nueva Ecija 3120, Philippines Abstract The study assessed the piscicidal activity of ten locally available plants to two freshwater fishes; Nile tilapia (O. niloticus L.) and mosquito fish (G. affinis Baird and Girard). It focused on the laboratory determination of lethal concentrations (LC50 and LC100) through a static bioassay test. The ten plants tested were ampalaya Momordica charantia, adelfa Nerium indicum, agave Agave cantala, kalamansi Citrus mitis, lagundi Vitex negundo, madre de cacao Gliricidia sepium, makabuhai Tinosphora rhumpii, neem Azadirachta indica, physic nut Jatropa curcas and sambong Blumea balsamifera. Based on the 24-hour lethal concentration (LC100), the plants with the strongest piscicidal activity to Nile tilapia and mosquito fish were makabuhai and kalamansi, respectively. The toxicity to Nile tilapia of the ten plants arranged in the order of decreasing toxicity is as follows: makabuhai (0.82 ml l-1) > adelfa (1.06 ml l-1) > ampalaya (2.59 ml l-1) > kalamansi (5 ml l-1) > neem (12.4 ml l-1) > physic nut (26.67 ml l-1) > lagundi (31.5 ml l-1) > agave (74.29 ml l-1) > madre de cacao (90 ml l-1) > sambong (125.71 ml l-1). For mosquito fish, the toxicity of the ten plants arranged in the order of decreasing toxicity is as follows: kalamansi (3 ml l-1) > makabuhai (6 ml l-1) > adelfa (7.87 ml l-1) > neem (8.31 ml l-1) > ampalaya (13.5 ml l-1) > lagundi (50 ml l-1) > sambong (80 ml l-1) > physic nut (81.67 ml l-1) > agave (102.08 ml l-1) >madre de cacao (117.5 ml l-1).