Enter Document Title

Total Page:16

File Type:pdf, Size:1020Kb

Enter Document Title Highways Crewe Green Link Road (South) Reptile Survey Report September 2012 B1772401/OD/037 Originated by Checked by Reviewed by Approved by ORIGINAL NAME NAME NAME NAME Nathan Wood Saffra Wright Saffra Wright Rosie Simon DATE INITIALS NW INITIALS SW INITIALS SW INITIALS RS September Document Status Draft 2012 REVISION NAME NAME NAME NAME DATE INITIALS INITIALS INITIALS INITIALS Document Status REVISION NAME NAME NAME NAME DATE INITIALS INITIALS INITIALS INITIALS Document Status REVISION NAME NAME NAME NAME DATE INITIALS INITIALS INITIALS INITIALS Document Status Highways Contents Executive Summary 1 1 Introduction 3 1.1 Background 3 1.2 Limitations 4 2 Methodology 5 2.1 Desk Study 5 2.2 Field Survey 5 2.2.1 Presence/Absence Survey 5 2.2.2 Population Size Class Estimate 6 3 Results 7 3.1 Desk Study 7 3.2 Field Survey 7 3.2.1 Presence/Absence Surveys 7 3.2.2 Population Size Class Estimate 8 3.3 Evaluation 8 4 Conclusion 9 5 References 11 Appendix A Reptile Information 13 Summary of Biology and Habitat Requirements 13 Nature Conservation Status 14 Legislation and Policy Framework 14 Appendix B Reptile Survey Results 17 Appendix C Photographs 21 Figure 23 OD/037 Reptile Survey Report Figs1.doc Highways Page Not Used OD/037 Reptile Survey Report Figs1.doc Highways Executive Summary This report presents the findings of a reptile survey undertaken by Jacobs UK Ltd. (Jacobs) on behalf of Cheshire East Council (CEC) as part of the Crewe Green Link Road (South) Environmental Impact Assessment (EIA) which will be reported in the Environmental Statement for the scheme. Areas of suitable reptile habitat were identified and subject to presence/absence surveys and visual encounter surveys along transects and three groups of artificial refuges. Slow worm was recorded on site utilising the edge of the woodland habitat along the railway line and Gresty Brook to the north. Slow worm was assessed as having a good population on site. No other reptiles were recorded in the survey area. 1 OD/037 Reptile Survey Report Figs1.doc Highways Page Not Used 2 OD/037 Reptile Survey Report Figs1.doc Highways 1 Introduction 1.1 Background Jacobs UK Ltd. (Jacobs) has been appointed to undertake an environmental impact assessment (EIA) on behalf of Cheshire East Council (CEC) for the development of a new link road between the A5020 Western Gate roundabout (Grid Reference SJ72295369) and the A500 (Grid Reference SJ72645279), located to the south east of Crewe. This link road is known as ‘Crewe Green Link Road South’, which will be referred to as ‘the Scheme’ throughout the report. The EIA is reported in the Environmental Statement for the scheme. CEC previously undertook an environmental assessment of this link road, which was reported in the Planning and Environmental Statement that supported the planning application submitted in June 2011. Planning permission was granted in October 2011. This planning application did not include the areas required for the borrow pit, flood compensation area, soil storage area and temporary site compounds. CEC is now undertaking an environmental assessment of the whole road scheme including these additional areas, which will support a new planning application. This report has been prepared to present the results of a reptile survey conducted by Jacobs’ ecologists to inform the EIA for the planning application of the Scheme. The site was previously surveyed in 2001 and 2008 (7 visits in August) by TEP. No reptiles were found during this survey. Ten tiles used in the previous TEP survey were located along Gresty Brook, three slow worm (Anguis fragilis) were found under these tins on 3rd May 2012 during a Jacobs’ water vole survey for the development. The objectives of this survey were to determine the presence or absence of reptiles (slow worm) in the survey area and to estimate a population size for species that were recorded. The survey area is defined as all areas of semi-natural habitat within a minimum of 500m of the proposed link road. The location of the site and the survey area is shown on Figure 1. All native reptile species have some degree of protection in the UK, through section 9(1) and (5) (specified in Schedule 5) of the Wildlife and Countryside Act 1981 (as amended). There are two different levels of protection afforded to reptiles through this legislation according to species: • Full protection: Sand lizard (Lacerta agilis) and smooth snake (Coronella austriaca) are afforded protection under The Conservation of Habitats and Species Regulations 2010 (are species of European importance) and are fully protected under the Wildlife and Countryside Act 1981 (as amended) and the CRoW Act (2000). • Protection against killing, injury or trade: This level of protection under section 9 (parts 1 and 5) applies to the four widespread species of reptile, namely the common lizard (Zootoca vivipara), slow-worm, grass snake (Natrix natrix) and adder (Viper berus). Further details regarding the biology and habitat requirements, nature conservation status, legislation and policy framework for reptiles is summarised in Appendix A. 3 OD/037 Reptile Survey Report Figs1.doc Highways 1.2 Limitations Two tiles in Group 1 (on the east bank of Basford Brook) were removed by an unknown party between visit 2 and 3. These were not replaced as it was considered likely that they would be subject to further disturbance. Before visit 6, the set of tiles along the railway embankment (Group 2) were disturbed by cattle. Tiles that were moved from their original position into unsuitable locations were placed over the fence along the railway line and were not subject to further survey. Due to the late discovery of reptiles on site some surveys were conducted during June and July which are not considered optimal for reptile surveys. However, reptiles will still use tiles in these months and surveys were carried out within suitable climatic conditions up to and including September. The findings of this report represent the professional opinion of qualified ecologists and do not constitute professional legal advice. The client may wish to seek professional legal interpretation of the relevant wildlife legislation cited in this document. The survey constraints described above are not considered to be significant limitations to the survey findings. 4 OD/037 Reptile Survey Report Figs1.doc Highways 2 Methodology 2.1 Desk Study The desk study involved reviewing existing reptile data and results from previous surveys by TEP who undertook seven visits across the site in August 2008 (reported in the Environmental Statement, TEP 2011). A search of National Biodiversity Network website (www.data.nbn.org.uk) was undertaken during the scoping stage of the project to gather information on the protected species that may be present in the survey area. Information was sought from the local biological recording centre for Cheshire: rECOrd. The centre was contacted and asked to provide records of species within 2km of the survey area. 2.2 Field Survey 2.2.1 Presence/Absence Survey Suitable habitat for reptiles was identified in the survey area. Suitable habitat included south facing embankments, sites near existing potential refuges such as log-piles and areas with a heterogeneous habitat structure comprising areas of dense vegetation giving cover and open basking sites. Thirty five artificial refuges (corrugated iron tiles and carpet tiles) were placed in three main areas that would be affected by the proposed scheme (Figure 1): • Group 1: eight tiles along Basford Brook where the western arm of the proposed single carriageway crosses the brook; • Group 2: seventeen tiles along the Crewe to Derby railway line embankment with some tiles in the marsh area nearer the brook; and • Group 3: a set of ten tiles along the stretch of Gresty Brook to the north of the survey area that were used to survey the area previously by TEP. The tiles were laid out on the 2nd and 3rd May 2012 and allowed two weeks to ‘bed- in’. Seven survey visits were undertaken during suitable conditions for reptile survey between May 2012 and September 2012 inclusive. The survey was undertaken in accordance with best practice (Froglife 1999; Foster and Gent, 1996; Gent and Gibson, 2003). The following guidelines were observed: • multiple visits over non-consecutive days within the active reptile season (March to October with peak survey months being April, May and September) were made; • two survey methods were used - Visual encounter surveys (VES) using direct observation along transects in suitable habitats - woodland edge, swamp habitat - and artificial refugia surveys (ARS); • refuges were removed at the end of the survey; • any reptiles found on or under the surface of any survey tiles or surrounding basking areas were identified, counted and aged where possible, and • surveys were undertaken during appropriate weather conditions (temperatures between 9°C and 18°C, low wind and no precipitation) and 5 OD/037 Reptile Survey Report Figs1.doc Highways peak times during the day for reptile activity (between 08:30 to 11:00 and 16:00 to 18:30). 2.2.2 Population Size Class Estimate Table 1 shows an evaluation of common reptile population size and importance of reptile sites (Froglife, 1999). It allows a site to be classified by its relative size of reptile populations on the basis of survey counts and gives an objective evaluation of the importance of the reptiles recorded. Table 1 Population and site assessment (Figures in table refer to the maximum number of adults seen by direct observation or by ARS by one person in one day) (Froglife 1999). Common Species Low population Good Population Exceptional population Adder <5 5 – 10 >10 Grass snake <5 5 – 10 >10 Common lizard <5 5 – 20 >20 Slow-worm <5 5 – 20 >20 6 OD/037 Reptile Survey Report Figs1.doc Highways 3 Results 3.1 Desk Study According to the corresponding Local Biodiversity Action Plans, there have only been four records of slow-worm and five records of adders (Vipera berus) in Cheshire since 1995 (Cheshire Region Biodiversity Partnership 2008).
Recommended publications
  • Morphological and Molecular Taxonomy of Helminths of the Slow Worm, Anguis Fragilis (Linnaeus) (Squamata: Anguidae) from Turkey
    BIHAREAN BIOLOGIST 13 (1): 36-38 ©Biharean Biologist, Oradea, Romania, 2019 Article No.: e181308 http://biozoojournals.ro/bihbiol/index.html Morphological and molecular taxonomy of helminths of the slow worm, Anguis fragilis (Linnaeus) (Squamata: Anguidae) from Turkey Nurhan SÜMER*, Sezen BİRLİK and Hikmet Sami YILDIRIMHAN Uludag University, Science and Literature Faculty, Department of Biology, 16059 Bursa, Turkey. E-mail's: [email protected], [email protected], [email protected] * Corresponding author, N. Sümer , E-mail: [email protected] Received: 21. May 2018 / Accepted: 07. November 2018 / Available online: 12. November 2018 / Printed: June 2019 Abstract. Fifteen specimens of the slow worm, Anguis fragilis (two juvenile, five males and eight females), collected in Trabzon and Bursa Provinces, Turkey, were examined for helminths. Anguis fragilis was found to harbour four species of helminths: one species of Digenea, Brachylaemus sp. and three species of Nematoda, Entomelas entomelas, Oxysomatium brevicaudatum and Oswaldocruzia filiformis. In addition, DNA isolated from the Nematodes was analysed with clustal w and blast computer programs for nucleotide sequences. Anguis fragilis from Turkey represents a new host record for Brachylaemus sp. Also, 28s rDNA sequencing of Oxysomatium brevicaudatum and Oswaldocruzia filiformis produced new nucleotide sequences submitted to Genebank (NCBI: National Center for Biotechnology Information). To the knowledge, this is the first DNA analysis of the helminth fauna of Anguis fragilis. Key words: Anguis fragilis, Digenea, Nematoda, DNA sequence, taxonomy. Introduction Çaykara (40°45’N, 40°15’E, 400 m elevation, n=3) and Bursa (40°10’N, 29° 05’E, 500 m elevation, n=12) and transported to the The slow worm, Anguis fragilis Linnaeus, 1758, inhabits parasitology laboratory for necropsy.
    [Show full text]
  • The Herpetofauna of Wiltshire
    The Herpetofauna of Wiltshire Gareth Harris, Gemma Harding, Michael Hordley & Sue Sawyer March 2018 Wiltshire & Swindon Biological Records Centre and Wiltshire Amphibian & Reptile Group Acknowledgments All maps were produced by WSBRC and contain Ordnance Survey data © Crown Copyright and database right 2018. Wiltshire & Swindon Biological Records Centre staff and volunteers are thanked for all their support throughout this project, as well as the recorders of Wiltshire Amphibian & Reptile Group and the numerous recorders and professional ecologists who contributed their data. Purgle Linham, previously WSBRC centre manager, in particular, is thanked for her help in producing the maps in this publication, even after commencing a new job with Natural England! Adrian Bicker, of Living Record (livingrecord.net) is thanked for supporting wider recording efforts in Wiltshire. The Wiltshire Archaeological & Natural History Publications Society are thanked for financially supporting this project. About us Wiltshire & Swindon Biological Records Centre Wiltshire & Swindon Biological Records Centre (WSBRC), based at Wiltshire Wildlife Trust, is the county’s local environmental records centre and has been operating since 1975. WSBRC gathers, manages and interprets detailed information on wildlife, sites, habitats and geology and makes this available to a wide range of users. This information comes from a considerable variety of sources including published reports, commissioned surveys and data provided by voluntary and other organisations. Much of the species data are collected by volunteer recorders, often through our network of County Recorders and key local and national recording groups. Wiltshire Amphibian & Reptile Group (WARG) Wiltshire Amphibian and Reptile Group (WARG) was established in 2008. It consists of a small group of volunteers who are interested in the conservation of British reptiles and amphibians.
    [Show full text]
  • A303 Stonehenge Preliminary Environmental Information Report
    A303 Stonehenge Amesbury to Berwick Down Preliminary Environmental Information Report February 2018 A303 Stonehenge – Amesbury to Berwick Down Preliminary Environmental Information Report Table of Contents Chapter Pages 1 Introduction 7 1.1 Overview and need for the proposed scheme 7 1.2 The purpose of the report 7 1.3 Legislative and policy framework 8 1.4 The Applicant 10 1.5 Stakeholder engagement 10 1.6 Structure of this PEI Report 11 1.7 The EIA team 13 1.8 Next steps 13 2 The Proposed Scheme 15 2.1 Project location 15 2.2 Description of the proposed scheme 15 2.3 Construction 25 3 Assessment of Alternatives 31 3.1 Scheme history 31 3.2 Selection of the proposed scheme 31 3.3 Development of the proposed scheme 34 3.4 Appraisal of options presented for consultation 35 4 Environmental Assessment Methodology 40 4.1 General approach 40 4.2 Study area and site boundary 41 4.3 Existing baseline and future conditions 42 4.4 Potential significant effects and mitigation 42 4.5 Major events 46 4.6 Human health 47 5 Air Quality 49 5.1 Introduction 49 5.2 Stakeholder engagement 49 5.3 Assessment assumptions and limitations 50 5.4 Study area 51 5.5 Baseline conditions 52 5.6 Potential impacts 55 5.7 Design, mitigation and enhancement measures 56 5.8 Assessment of effects 57 3 A303 Stonehenge – Amesbury to Berwick Down Preliminary Environmental Information Report 5.9 Corridors for utility connections 61 6 Cultural Heritage 62 6.1 Introduction 62 6.2 Stakeholder engagement 62 6.3 Assessment assumptions and limitations 63 6.4 Study area 63 6.5 Baseline
    [Show full text]
  • The New Mode of Thought of Vertebrates' Evolution
    etics & E en vo g lu t lo i y o h n a P r f y Journal of Phylogenetics & Kupriyanova and Ryskov, J Phylogen Evolution Biol 2014, 2:2 o B l i a o n l r o DOI: 10.4172/2329-9002.1000129 u g o y J Evolutionary Biology ISSN: 2329-9002 Short Communication Open Access The New Mode of Thought of Vertebrates’ Evolution Kupriyanova NS* and Ryskov AP The Institute of Gene Biology RAS, 34/5, Vavilov Str. Moscow, Russia Abstract Molecular phylogeny of the reptiles does not accept the basal split of squamates into Iguania and Scleroglossa that is in conflict with morphological evidence. The classical phylogeny of living reptiles places turtles at the base of the tree. Analyses of mitochondrial DNA and nuclear genes join crocodilians with turtles and places squamates at the base of the tree. Alignment of the reptiles’ ITS2s with the ITS2 of chordates has shown a high extent of their similarity in ancient conservative regions with Cephalochordate Branchiostoma floridae, and a less extent of similarity with two Tunicata, Saussurea tunicate, and Rinodina tunicate. We have performed also an alignment of ITS2 segments between the two break points coming into play in 5.8S rRNA maturation of Branchiostoma floridaein pairs with orthologs from different vertebrates where it was possible. A similarity for most taxons fluctuates between about 50 and 70%. This molecular analysis coupled with analysis of phylogenetic trees constructed on a basis of manual alignment, allows us to hypothesize that primitive chordates being the nearest relatives of simplest vertebrates represent the real base of the vertebrate phylogenetic tree.
    [Show full text]
  • Download Full Article in PDF Format
    geodiversitas 2020 42 28 e of lif pal A eo – - e h g e r a p R e t e o d l o u g a l i s C - t – n a M e J e l m a i r o e of lif pal A eo – - e h g e r a p R e t e o d l o u g a l i s C - t – n a M e J e l m a i r o DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Didier Merle ASSISTANT DE RÉDACTION / ASSISTANT EDITOR : Emmanuel Côtez ([email protected]) MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : Christine Argot (Muséum national d’Histoire naturelle, Paris) Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid) Raymond L. Bernor (Howard University, Washington DC) Alain Blieck (chercheur CNRS retraité, Haubourdin) Henning Blom (Uppsala University) Jean Broutin (Sorbonne Université, Paris, retraité) Gaël Clément (Muséum national d’Histoire naturelle, Paris) Ted Daeschler (Academy of Natural Sciences, Philadelphie) Bruno David (Muséum national d’Histoire naturelle, Paris) Gregory D. Edgecombe (The Natural History Museum, Londres) Ursula Göhlich (Natural History Museum Vienna) Jin Meng (American Museum of Natural History, New York) Brigitte Meyer-Berthaud (CIRAD, Montpellier) Zhu Min (Chinese Academy of Sciences, Pékin) Isabelle Rouget (Muséum national d’Histoire naturelle, Paris) Sevket Sen (Muséum national d’Histoire naturelle, Paris, retraité) Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové) Paul Taylor (The Natural History Museum, Londres, retraité) COUVERTURE / COVER : Réalisée à partir des Figures de l’article/Made from the Figures of the article.
    [Show full text]
  • PAMBER PARISH – BIODIVERSITY and ENVIRONMENTAL AUDIT OVERVIEW by Paul Sterry
    PAMBER PARISH – BIODIVERSITY AND ENVIRONMENTAL AUDIT OVERVIEW By Paul Sterry Contents: 1. Summary 2. Notable habitats in Pamber Parish 3. Sites of Special Scientific Interest (SSSI), Sites of Importance for Nature Conservation (SINC) and UK Biodiversity Action Plan (BAP) Priority Habitat Inventory sites 4. Existing knowledge relating to notable and protected species in the Parish 5. Supplementary information relating to biodiversity in Pamber 6. Aims of the year-long Biodiversity Audit 7. Green Infrastructure and other recommendations that provide environmental and biodiversity enhancement and strengthen environment-related objectives in the Neighbourhood Plan 8. Recommendations for people wishing to engage in biodiversity-enhancement projects and wanting to benefit notable and protected species 9. References Appendix 1 - Historical land use in the Parish and its influence on biodiversity (supplementary document). Appendix 2 - Additional notable and protected species cited in the draft (subsequently adopted) Pamber Forest SSSI management plan (supplementary document). Appendix 3 - Lepidoptera records from New Road, Little London 2004-2019 (supplementary document). Appendix 4 - Ageing Hedgerows (supplementary document). Appendix 5 - HBIC records for notable and protected species in the Parishes of Pamber and Silchester (supplementary document). Acknowledgements I would like to thank the following people without whom the preparation of this document would not have been possible: Graham Vick for his encyclopaedic knowledge of local insect life; Graham Dennis, warden of Pamber Forest nature reserve; Paul and Sue James for their knowledge of local birdlife; and David Glover, Pamber’s amphibian and reptile expert. Additional reference sources include: National Biodiversity Network; Hampshire Biodiversity Information Centre; and the DEFRA Magicmap application. All photography ©Nature Photographers Ltd 1.
    [Show full text]
  • Redevelopment of the Former St Leonards Hospital Development Brief
    Redevelopment of the former St Leonards Hospital Development Brief by Kendall Kingscott with White Design June 2014 Contents 5. Indicative Site Layout Contents 1. Introduction 6. Implementation 2. Planning Overview - Phasing - The Development Plan 7. Contact Details - Material Considerations - Planning History and Analysis of Previous Consents - Consultant Team - Alternatives - Legal Framework 3. Site Characteristics & constraints - Locational details & surrounding land uses - Access - Green Belt - Ecology on-site & adjacent European sites - Topography & Ground Conditions - Flood Risk & Drainage - Noise and Acoustic Assessment - Air Quality Assessment - Retained hospital uses 4. Development Principals - Overarching Objectives - Green Belt - Ecology - Developable Area - Access & Movement - Landscape & Open space - Built Form - Uses - Sustainable Design - Construction Environmental Management Plan (CEMP) - Developer Contributions the site and the adjacent internationally 1. Introduction protected heathland will derive from the Introduction development. The Applicant will need to show 1.1. This Development Brief has been prepared by that they have avoided harm to priority habitats Kendall Kingscott Ltd in conjunction with White and species. The layout of the site is likely to Design. require compensatory measures which may include SANG provision where recreational 1.2. Contributions from Johns Associates, WYG, Wilmott pressure is generated. Particular regard to the Dixon and Tetlow King Planning are also included. water environment will be needed and in this respect the use of Sustainable Drainage 1.3. The subject of this development brief relates to the Systems to mitigate any potential impacts will future of the former Military Hospital site at St be expected to form part of this strategy. Leonards, Ringwood. • Agreement of a comprehensive travel plan” 1.4.
    [Show full text]
  • Molecular Analysis of the Trophic Interactions of British Reptiles
    Molecular analysis of the trophic interactions of British reptiles David Steven Brown September 2010 Thesis submitted for the degree of Doctor of Philosophy, Cardiff School of Biosciences, Cardiff University UMI Number: U517025 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U517025 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Declarations & Statements DECLARATION This work has not previously been accepted in substance for any degree and is not concurrently sjj&mitted in candidature for any degree. Signed ... .................................(candidate) Date: 30/09/2010 STATEMENT 1 This thesis is being submitted in partial fulfillment of the requirements for the degree of ....fW ^ ....... (insert MCh, MD, MPhil, PhD etc, as appropriate) Signed .... (candidate) Date: 30/09/2010 STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources apaacknowledged by explicit references. Signed C4r\.r..*r..\r................................. (candidate) Date: 30/09/2010 STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.
    [Show full text]
  • Squamata: Anguimorpha)
    Embryonic development and perinatal skeleton in a limbless, viviparous lizard, Anguis fragilis (Squamata: Anguimorpha) Tomasz Skawiński1, Grzegorz Skórzewski2 and Bartosz Borczyk1 1 Department of Evolutionary Biology and Conservation of Vertebrates, University of Wroclaw, Wrocław, Poland 2 Museum of Natural History, University of Wroclaw, Wrocław, Poland ABSTRACT Despite the long history of embryological studies of squamates, many groups of this huge clade have received only limited attention. One such understudied group is the anguimorphs, a clade comprising morphologically and ecologically very diverse lizards. We describe several stages of embryonic development of Anguis fragilis, a limbless, viviparous anguimorph. Interestingly, in several clutches we observe high morphological variation in characters traditionally important in classifying embryos into developmental stages. The causes of this variation remain unknown but envi- ronmental factors do not seem to be very important. Additionally, we describe the state of ossification in several perinatal specimens of A. fragilis. The cranial skeleton is relatively poorly ossified around the time of birth, with all of the bones constituting the braincase unfused. On the other hand, the vertebral column is well ossified, with the neurocentral sutures closed and the neural arches fused in all postatlantal vertebrae. Such an advanced state of ossification may be related to the greater importance of the vertebral column in locomotion in limbless species than in ones with fully-developed limbs. Numerous factors seem to affect the state of ossification at the time of hatching or birth in squamates, including phylogenetic position, mode of reproduction and, potentially, limblessness. However, data from a greater number of species are needed Submitted 29 March 2021 to reach firmer conclusions about the relative importance of these variables in certain Accepted 25 May 2021 clades.
    [Show full text]
  • Slow Worm Anguis Fragilis
    JARG (Jersey Amphibian & Reptile Group) www.groups.arguk.org/jarg Slow Worm Anguis fragilis The slow worm is found throughout Jersey, with the majority of records being received from the South West of the Island; possibly due to under recording elsewhere. Slow worms look snake like, but are in fact a legless lizard; they can shed their tails and can also blink like other lizards do. Size – Much smaller than grass snakes, adults can reach up to 30-45cm, with newly born slow worms measuring just 7- 10cm. Features – Slow worms have a polished appearance. Adult females are often light or dark brown and have dark brown sides. They usually also have a thin dark line running along the centre of their backs. Males have a much larger head than females, with no obvious neck. They are also more uniformly coloured than females, and can be found in different shades of brown, bronze or silver. Mature males sometimes have blue spots along their sides. Juveniles in both sexes are golden in colour, with black sides, a black underside and a single black line running the length of the back from the top of the head. Habitat – Slow worms often live in gardens and allotments, where they make use of compost heaps, feeding on small slugs and slow moving invertebrates. In wilder areas of Jersey they can be found in heathland, dunes, wet and dry meadows and occasionally woodland. It is rare to see them basking out in the open as they are well camouflaged, and spend much of their time concealed within burrows, compost heaps or underneath logs, vegetation and loose soil.
    [Show full text]
  • (Squamata: Anguidae) by Lacerta Trilineata Bedriaga, 1886 (Squamata: Lacertidae) from Central Greece
    Herpetology Notes, volume 13: 105-107 (2020) (published online on 05 February 2020) A predation case of Anguis graeca Bedriaga, 1881 (Squamata: Anguidae) by Lacerta trilineata Bedriaga, 1886 (Squamata: Lacertidae) from Central Greece Apostolos Christopoulos1,*, Dimitris Zogaris2, Ioannis Karaouzas3, and Stamatis Zogaris3 Lizards constitute the most numerous reptile group Aegean Seas) in a wide variety of habitats (Valakos in Greece containing 41 species of which 21 belong et al., 2008). Outside of Greece, Lacerta trilineata in lacertid family (Lymberakis et al., 2008; Valakos is distributed from the NE Adriatic coast to Albania, et al., 2008; Gvoždík et al., 2010; Psonis et al., 2017; Republic of North Macedonia, Bulgaria, SE Romania Kalaentzis et al., 2018; Kornilios et al., 2018; Kotsakiozi and western Anatolia (Speybroeck et al., 2016). et al., 2018; Strachinis et al., 2019). Mediterranean The Greek slow worm Anguis graeca Bedriaga, 1881 is lacertid lizards consume almost all orders of Arthropoda a long bodied, legless lizard (TL: 50 cm; SVL: 22 cm) that and some Gastropoda, very small vertebrates and even occurs in mainland Greece (western Macedonia; western some plant elements (Carretero, 2004), fruits (Brock and central Greece; northern Peloponnese; Kerkyra and et al., 2014; Mačát et al., 2015) or eggs (Brock et al., Euboea Islands), Albania, southern Montenegro and NE 2014; Žagar et al., 2016). However, some cases of Republic of North Macedonia (Jablonski et al., 2016). saurophagy (Capula and Aloise, 2011; Dias et al., 2016; Anguis graeca mainly occurs in vegetated and humid Andriopoulos and Pafilis, 2019) and cannibalism (Grano localities and usually it is found hidden in vegetation et al., 2011; Žagar and Carretero, 2012; Madden and and under woodland debris (Valakos et al., 2008).
    [Show full text]
  • (ANGUIS FRAGILIS) • Heathland Appearance the Slow-Worms Body
    SLOW-WORM (ANGUIS FRAGILIS) Heathland Appearance The slow-worms body is cylindrical, very small scales on its body give the lizard a shiny appearance. Adult females are approximately 400mm in length, males are slightly smaller. The female is brown with longitudinal dark stripes running down both side of her body. Some females have a lighter, central stripe along the back. Dark spotting can occur along the body. The male tends to be more variable in colour from grey to dark brown. Males can have dark spotting along the length of their bodies too, which can lead to confusion between the sexes. Skin is sloughed throughout the year to allow the lizards to grow. This behaviour also helps to get rid of parasites and dirt, helping to keep the skin clean and healthy. Food Not much is known about the slow-worms diet, though they seem to prefer soft bodied invertebrates, which include slugs, snails and earthworms. Habitat Slow-worms can occur across a wide variety of habitats, which include; Rough grassland, heathland, moorland, hedgerows, woodland edges, railway/motorway embankments, gardens, churchyards and allotments. Slow-worms like to burrow, as such they are often found in compost and rubble heaps. Lifestyle Spring: Slow-worms emerge from hibernation during April. Mating occurs mid-May-June. Gravid (pregnant) females spend more time basking. Summer: Birth of the young (born live in egg case) occurs throughout the summer. Autumn: The last of the young are born. This can be as late as early November in some years. Winter: Hibernating animals. Slow-worms hibernate throughout the winter months in subterranean hibernacula.
    [Show full text]