Cerium(IV) Ammonium Nitratesa Versatile Single-Electron Oxidant

Total Page:16

File Type:pdf, Size:1020Kb

Cerium(IV) Ammonium Nitratesa Versatile Single-Electron Oxidant Cerium(IV) Ammonium NitratesA Versatile Single-Electron Oxidant Vijay Nair* and Ani Deepthi Organic Chemistry Section, Regional Research Laboratory (CSIR), Trivandrum, India Received July 12, 2006 Contents 6. Miscellaneous Transformations 24 6.1. Fragmentation Reactions 24 1. Introduction 1 6.2. Alkoxylation Reactions 25 2. Reactions Involving Carbon−Carbon Bond 3 Formation 6.3. Side-Chain Oxidations 25 2.1. Intermolecular Carbon−Carbon Bond-Forming 3 6.4. Esterification and Transesterification 26 Reactions 6.5. Dehydrogenation Reactions 26 2.1.1. Generation of Carbon-Centered Radicals 3 6.6. Other Synthetic Transformations 26 from Carbonyl and Dicarbonyl 6.7. Polymerization Reactions 27 Compounds and Related Chemistry 7. Conclusions 27 2.1.2. Generation of Carbon-Centered Radicals 6 8. Acknowledgments 27 from Silyl Enol Ethers and Related 9. References 27 Chemistry 2.1.3. Generation of Radical Cations from 7 Styrenes and Related Chemistry 2.1.4. Generation of Cation Radicals from 8 1. Introduction Electron-Rich Aromatic Systems and Carbon-carbon and carbon-heteroatom bond-forming Related Chemistry reactions constitute the central theme of organic synthesis, 2.2. Intramolecular Carbon−Carbon Bond-Forming 9 and progress in modern synthesis is dependent on develop- Reactions ment of novel methodologies for the same. Among the 3. Reactions Involving Carbon−Heteroatom Bond 13 various methods for bond formation, single-electron transfer Formation (SET) reactions undoubtedly occupy a prime position. Of 3.1. Carbon−Nitrogen Bond Formation 14 the different methods of SET, chemical methods for the 3.1.1. Introduction of Azide Functionality 14 generation of radicals have emerged to be very important in 3.1.2. Introduction of Nitro Functionality 14 recent years. Radicals have been known to the organic 3.1.3. Nitration of Aromatic Nucleus 15 chemists ever since the epoch-making discovery of the 3.2. Carbon−Sulfur Bond Formation 15 triphenylmethyl radical by Gomberg in the year 1900.1,2 3.2.1. Sulfonylation 15 Almost four decades later, significant contributions to the 3 3.2.2. Thiocyanation 16 development of this area were made by Hey and Waters 4 3.3. Carbon−Selenium Bond Formation 16 and Kharasch, who carried out elaborate studies on the mechanisms of radical reactions. In spite of a clear under- 3.4. Carbon−Halogen Bond Formation 16 standing of the mechanistic background, radical reactions 3.4.1. Iodination 16 found little application in synthesis, largely due to the 3.4.2. Bromination 17 erroneous notion that they are prone to give intractable 3.4.3. Azidoiodination and Iodothiocyanation 17 mixtures. A dramatic change in this outlook which triggered 4. Reactions Involving CAN as a Catalytic Oxidant 17 an upsurge of interest in this approach, particularly over the 4.1. Oxidative Transformations of Epoxides 17 last three decades, can be attributed to the conceptualization 4.2. CAN-Bromate Oxidations 18 and demonstration by Stork that the controlled generation 4.3. Electrophilic Substitution Reactions of Indoles 18 and addition of vinyl radicals to olefins constitutes a unique - 4.4. Imino-Diels−Alder Reactions 19 and powerful method for complex carbocyclic construction.5 7 8,9 10 5. Deprotection−Protection Sequences Mediated by 19 It is noteworthy that the investigations of Julia, Beckwith, CAN Ingold,11 and Giese12 have contributed to a deeper under- 5.1. Earlier Reports 19 standing of the structure and reactivity of radicals. A number 13,14 15 5.2. Deprotection of Acetals 20 of others, most notably, Curran, Pattenden, Fraser- Reid,16 and Hart,17 have made significant contributions to 5.3. Removal of TBDMS, THP, and t-BOC 21 Groups the application of radical methodology in organic synthesis. Today, radical methodology has evolved as a prominent tool 5.4. Removal of Trityl and Silyl Groups 22 in the arsenal of the synthetic organic chemist.18,21 5.5. Removal of Benzyl, PMB, and PMPE Groups 23 - Various procedures involving chemical,19 21 electrochemi- cal,22 and photochemical23 methods are known for generation * To whom correspondence should be addressed. Phone: 91-471-2490 406. of radicals. Of these, redox processes based on electron Fax: 91-471 2491712. E-mail: [email protected]. transfer deserve special mention.24 Chemical methods for 10.1021/cr068408n CCC: $65.00 © xxxx American Chemical Society Published on Web 04/14/2007 PAGE EST: 29.6 B Chemical Reviews Nair and Deepthi Vijay Nair was born in Konni, Kerala State, India. He has Ph.D. degrees Ani Deepthi was born in Kollam, Kerala State, India, in 1980. She obtained from Banaras Hindu University (1967, with Professor R. H. Sahasrabudhey) her B.Sc. degree from Kerala University (Fatima Mata National College, and the University of British Columbia (1969, with Professor James P. Kollam) in 2000 and her M.Sc. degree (First Rank) from the Cochin Kutney). Subsequently, he did postdoctoral work with Professor Josef University of Science and Technology in 2002. She did her doctoral Fried at the University of Chicago, Professor Peter Yates at the University research under the guidance of Dr. Vijay Nair in the Regional Research of Toronto, and Professor Gilbert Stork at Columbia University. He joined Laboratory (CSIR) Trivandrum, working in the area of multicomponent the Medical Research Division (Lederle Laboratories) of American reactions and has submitted her Ph.D. thesis to the Cochin University of Cyanamid Company as Senior Research Chemist in 1974 and became Science and Technology, Kochi. She is currently working as a postdoctoral Principal Research Chemist in 1987. In 1981 he received the Outstanding fellow in the group of Professor Suresh Valiyaveettil at the National Scientist Award of Cyanamid Company. In 1990, he returned to India to University of Singapore, Singapore. join the Regional Research Laboratory (CSIR) in Trivandrum. From 1997 to 2001 he was the director of the laboratory. He is now continuing in brief outlines of CAN-mediated reactions and highlighted RRL as a Senior Associate of the Jawaharlal Nehru Centre for Advanced 31,33,34 Scientific Research (JNCASR), Bangalore. He is also an Honorary the work done in our laboratory. The present review Professor in the Cochin University of Science and Technology. He has focuses on the most important synthetic transformations lectured in a number of universities in Germany in 1998 under the INSA- mediated by CAN, covering the literature from 1965 to 2006. DFG exchange fellowship. He has been an invited speaker at the 17th Although this review will not detail the material that has International Conference on Heterocyclic Chemistry in Vienna in 1999, already been described in our earlier reviews, some important MCR 2000, International Symposium in Munich, and IUPAC-International reactions will be discussed briefly for the sake of complete- conference on Organic Synthesis (ICOS-15), Nagoya, Japan, 2004. He ness. was a visiting scientist at Columbia University during 1979−82 and Visiting professor at the University of Pernambuco in Brazil in May 2001. He is What makes cerium so unique among the lanthanide a fellow of the Indian Academy of Sciences and a Silver Medalist of the elements? The answer lies in the ability of cerium to display Chemical Research Society of India. His research interests include stable adjacent oxidation states +3 and +4. The most cycloadditions, radical-mediated C−C and C−heteroatom bond-forming common oxidation state of the lanthanides is the +3 state. reactions, multicomponent reactions, and heterocyclic synthesis. Forty Cerium in its ground state has an electronic configuration students have completed Ph.D. degrees under his supervision, and he 2 2 has published nearly 200 papers in major international journals. of [Xe]4f 6s , where Xe represents the xenon configuration. The electronic configuration of the Ce+3 ion is [Xe]4f1, while + electron-transfer oxidation involve use of salts of high-valent that of Ce 4 ion is [Xe]4f 0. The enhanced stability of the + metals such as Mn(III), Ce(IV), Cu(II), Ag(I), Co(III), V(V), vacant f shell in Ce 4 accounts for the ability of cerium to Fe(III), etc. Among these Mn(III) has received considerable exist in the +4 oxidation state. The large reduction potential + attention. In spite of the well-established and frequent use value of 1.61 V (vs NHE) endowed in Ce 4 makes Ce(IV) of this reagent for generation of electrophilic carbon-centered reagents superior oxidizing agents compared to other metal radicals from enolic substrates, particularly in intramolecular ions. processes, procedural problems associated with it have The advent of Ce(IV) reagents in organic synthesis may prompted development of other oxidants of choice. The be attributed to the investigations of Trahanovsky. As early availability of Ce(IV) reagents as suitable one-electron as 1965 he showed that benzyl alcohols underwent oxidation oxidants assumes importance at this juncture. to benzaldehydes in excellent yields using CAN in 50% The most extensively used cerium(IV) reagent in organic aqueous acetic acid.35 The side-chain oxidation of toluene chemistry is cerium(IV) ammonium nitrate (CAN). The to benzaldehyde by CAN was also reported.36,37 Trahanovsky reasons for its general acceptance as a one-electron oxidant also found that oxidation of primary alkanols 1 which possess may be attributed to its large reduction potential value of a δ-H atom produces tetrahydrofuran derivatives 2 (Scheme +1.61 V vs NHE (normal hydrogen electrode), low toxicity, 1).38 The fragmentation of 1,2-diols by
Recommended publications
  • By Exemestane, a Novel Irreversible Aromatase Inhibitor, in Postmenopausal Breast Cancer Patients1
    Vol. 4, 2089-2093, September 1998 Clinical Cancer Research 2089 In Vivo Inhibition of Aromatization by Exemestane, a Novel Irreversible Aromatase Inhibitor, in Postmenopausal Breast Cancer Patients1 Jfirgen Geisler, Nick King, Gun Anker, ation aromatase inhibitor AG3 has been used for breast cancer Giorgio Ornati, Enrico Di Salle, treatment for more than two decades (1). Because of substantial side effects associated with AG treatment, several new aro- Per Eystein L#{248}nning,2 and Mitch Dowsett matase inhibitors have been introduced in clinical trials. Department of Oncology, Haukeland University Hospital, N-502l Aromatase inhibitors can be divided into two major classes Bergen, Norway [J. G., G. A., P. E. L.]; Academic Department of Biochemistry, Royal Marsden Hospital, London, SW3 6JJ, United of compounds, steroidal and nonsteroidal drugs. Nonsteroidal Kingdom [N. K., M. D.]; and Department of Experimental aromatase inhibitors include AG and the imidazole/triazole Endocrinology, Pharmacia and Upjohn, 20014 Nerviano, Italy [G. 0., compounds. With the exception of testololactone, a testosterone E. D. S.] derivative (2), steroidal aromatase inhibitors are all derivatives of A, the natural substrate for the aromatase enzyme (3). The second generation steroidal aromatase inhibitor, 4- ABSTRACT hydroxyandrostenedione (4-OHA, formestane), was found to The effect of exemestane (6-methylenandrosta-1,4- inhibit peripheral aromatization by -85% when administered diene-3,17-dione) 25 mg p.o. once daily on in vivo aromati- by the i.m. route at a dosage of 250 mg every 2 weeks as zation was studied in 10 postmenopausal women with ad- recommended (4) but only by 50-70% (5) when administered vanced breast cancer.
    [Show full text]
  • Aromasin (Exemestane)
    HIGHLIGHTS OF PRESCRIBING INFORMATION ------------------------------ADVERSE REACTIONS------------------------------­ These highlights do not include all the information needed to use • Early breast cancer: Adverse reactions occurring in ≥10% of patients in AROMASIN safely and effectively. See full prescribing information for any treatment group (AROMASIN vs. tamoxifen) were hot flushes AROMASIN. (21.2% vs. 19.9%), fatigue (16.1% vs. 14.7%), arthralgia (14.6% vs. 8.6%), headache (13.1% vs. 10.8%), insomnia (12.4% vs. 8.9%), and AROMASIN® (exemestane) tablets, for oral use increased sweating (11.8% vs. 10.4%). Discontinuation rates due to AEs Initial U.S. Approval: 1999 were similar between AROMASIN and tamoxifen (6.3% vs. 5.1%). Incidences of cardiac ischemic events (myocardial infarction, angina, ----------------------------INDICATIONS AND USAGE--------------------------- and myocardial ischemia) were AROMASIN 1.6%, tamoxifen 0.6%. AROMASIN is an aromatase inhibitor indicated for: Incidence of cardiac failure: AROMASIN 0.4%, tamoxifen 0.3% (6, • adjuvant treatment of postmenopausal women with estrogen-receptor 6.1). positive early breast cancer who have received two to three years of • Advanced breast cancer: Most common adverse reactions were mild to tamoxifen and are switched to AROMASIN for completion of a total of moderate and included hot flushes (13% vs. 5%), nausea (9% vs. 5%), five consecutive years of adjuvant hormonal therapy (14.1). fatigue (8% vs. 10%), increased sweating (4% vs. 8%), and increased • treatment of advanced breast cancer in postmenopausal women whose appetite (3% vs. 6%) for AROMASIN and megestrol acetate, disease has progressed following tamoxifen therapy (14.2). respectively (6, 6.1). ----------------------DOSAGE AND ADMINISTRATION----------------------- To report SUSPECTED ADVERSE REACTIONS, contact Pfizer Inc at Recommended Dose: One 25 mg tablet once daily after a meal (2.1).
    [Show full text]
  • Control of Catechol and Hydroquinone Electron-Transfer Kinetics on Native and Modified Glassy Carbon Electrodes
    Anal. Chem. 1999, 71, 4594-4602 Control of Catechol and Hydroquinone Electron-Transfer Kinetics on Native and Modified Glassy Carbon Electrodes Stacy Hunt DuVall and Richard L. McCreery* Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210 The electrochemical oxidation of dopamine, 4-methylcat- heterogeneous electron transfer between solid electrodes and echol, dihydroxyphenylacetic acid, dihydroxyphenyl eth- catechols or quinones. Such studies are of fundamental importance ylene glycol, and hydroquinone was examined on several to the electrochemical detection of catecholamines as well as to native and modified glassy carbon (GC) surfaces. Treat- the broader questions about quinone redox chemistry. Notable ment of polished GC with pyridine yielded small ∆Ep examples from the literature are the detailed examination of values for cyclic voltammetry of all systems studied, quinone reduction on platinum in aqueous buffers,7 the oxidation implying fast electron-transfer kinetics. Changes in surface of catechols on carbon paste,2,3 and the dramatic effects of oxide coverage had little effect on kinetics, nor did the adsorbates on quinone electrochemistry on platinum and iridium charge of the catechol species or the solution pH. Small electrodes.5,6,8 These experiments provide an excellent description + - ∆Ep values correlated with catechol adsorption, and of the elementary steps comprising the 2 H ,2e reduction of surface pretreatments that decreased adsorption also an o-orp-quinone to the corresponding hydroquinone and account increased ∆Ep. Electron transfer from catechols was for much of the pH dependence of the observed redox potential profoundly inhibited by a monolayer of nitrophenyl or and kinetics.
    [Show full text]
  • Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
    antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1].
    [Show full text]
  • Heterocycles 2 Daniel Palleros
    Heterocycles 2 Daniel Palleros Heterocycles 1. Structures 2. Aromaticity and Basicity 2.1 Pyrrole 2.2 Imidazole 2.3 Pyridine 2.4 Pyrimidine 2.5 Purine 3. Π-excessive and Π-deficient Heterocycles 4. Electrophilic Aromatic Substitution 5. Oxidation-Reduction 6. DNA and RNA Bases 7. Tautomers 8. H-bond Formation 9. Absorption of UV Radiation 10. Reactions and Mutations Heterocycles 3 Daniel Palleros Heterocycles Heterocycles are cyclic compounds in which one or more atoms of the ring are heteroatoms: O, N, S, P, etc. They are present in many biologically important molecules such as amino acids, nucleic acids and hormones. They are also indispensable components of pharmaceuticals and therapeutic drugs. Caffeine, sildenafil (the active ingredient in Viagra), acyclovir (an antiviral agent), clopidogrel (an antiplatelet agent) and nicotine, they all have heterocyclic systems. O CH3 N HN O O N O CH 3 N H3C N N HN N OH O S O H N N N 2 N O N N O CH3 N CH3 caffeine sildenafil acyclovir Cl S N CH3 N N H COOCH3 nicotine (S)-clopidogrel Here we will discuss the chemistry of this important group of compounds beginning with the simplest rings and continuing to more complex systems such as those present in nucleic acids. Heterocycles 4 Daniel Palleros 1. Structures Some of the most important heterocycles are shown below. Note that they have five or six-membered rings such as pyrrole and pyridine or polycyclic ring systems such as quinoline and purine. Imidazole, pyrimidine and purine play a very important role in the chemistry of nucleic acids and are highlighted.
    [Show full text]
  • Acute Stimulation of Aromatization in Leydig Cells by Human Chorionic Gonadotropin in Vitro
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 9, pp. 4460-4463, September 1979 Cell Biology Acute stimulation of aromatization in Leydig cells by human chorionic gonadotropin in vitro (estradiol synthesis/testes/aromatase/luteinizing hormone/testosterone metabolism) Luis E. VALLADARES AND ANITA H. PAYNE* Reproductive Endocrinology Program, Departments of Obstetrics and Gynecology and Biological Chemistry, The University of Michigan, Ann Arbor, Michigan 48109 Communicated by Seymour Lieberman, May 24, 1979 ABSTRACT Arbmatization of testosterone in Leydig cells according to a modification of the method described by Conn purified from mature rat testes was assessed. Leydig cells in- et al. (10). Cells from four testes were resuspended in 2.0 ml of cubated for 4 hr with increasing concentrations of 1 Hitestos- medium 199/0. 1% bovine serum albumin, applied to a 40-ml terone exhibited maximal aroiiiatfration at 0.6, M testosterone. At saturating concentrations of testosterone, human chorionic gradient of 0-40% metrizamide (Nyegard, Oslo, Sweden) dis- gonadotropin (hCG) acutely stimulatted aromatization. This solved in medium 199/0.1% albumin, and centrifuged at 3300 stimulation was first observed atMllr, an 8-fold increase being X g for 5 min. One-milliliter fractions were removed from the found during a 4-hr incubation. RTe maximal amount of estra- top of the tube and fractions 25-29 were combined and diluted diol produced at saturating conpentratidns of testosterone and with 35 ml of medium 199/0.1% albumin; cells were collected hCG was 1.8 ng per 106 cells. These results demonstrate that by centrifugation for 10 min at 220 X g.
    [Show full text]
  • Study of Ph and Temperature Effect on Lipophilicity of Catechol-Containing Antioxidants by Reversed Phase Liquid Chromatography
    Accepted Manuscript Study of pH and temperature effect on lipophilicity of catechol- containing antioxidants by reversed phase liquid chromatography Claver Numviyimana, Tomacz Chmiel, Agata Kot-Wasik, Jacek Namieśnik PII: S0026-265X(18)31156-1 DOI: doi:10.1016/j.microc.2018.10.048 Reference: MICROC 3431 To appear in: Microchemical Journal Received date: 17 September 2018 Revised date: 14 October 2018 Accepted date: 22 October 2018 Please cite this article as: Claver Numviyimana, Tomacz Chmiel, Agata Kot-Wasik, Jacek Namieśnik , Study of pH and temperature effect on lipophilicity of catechol-containing antioxidants by reversed phase liquid chromatography. Microc (2018), doi:10.1016/ j.microc.2018.10.048 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Study of pH and temperature effect on lipophilicity of catechol-containing antioxidants by reversed phase liquid chromatography Claver Numviyimana a,b, Tomacz Chmiel a,*, Agata Kot-Wasik a, Jacek Namieśnik a a Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology (GUT), 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland b College of Agriculture Animal Sciences and Veterinary Medicine, University of Rwanda (UR-CAVM), Busogo campus, 210 Musanze, Rwanda * Corresponding author: [email protected], Phone: +48-58-347-22-10, Fax: +48-58- 347-26-94.
    [Show full text]
  • Aromatase and Its Inhibitors: Significance for Breast Cancer Therapy † EVAN R
    Aromatase and Its Inhibitors: Significance for Breast Cancer Therapy † EVAN R. SIMPSON* AND MITCH DOWSETT *Prince Henry’s Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168, Australia; †Department of Biochemistry, Royal Marsden Hospital, London SW3 6JJ, United Kingdom ABSTRACT Endocrine adjuvant therapy for breast cancer in recent years has focussed primarily on the use of tamoxifen to inhibit the action of estrogen in the breast. The use of aromatase inhibitors has found much less favor due to poor efficacy and unsustainable side effects. Now, however, the situation is changing rapidly with the introduction of the so-called phase III inhibitors, which display high affinity and specificity towards aromatase. These compounds have been tested in a number of clinical settings and, almost without exception, are proving to be more effective than tamoxifen. They are being approved as first-line therapy for elderly women with advanced disease. In the future, they may well be used not only to treat young, postmenopausal women with early-onset disease but also in the chemoprevention setting. However, since these compounds inhibit the catalytic activity of aromatase, in principle, they will inhibit estrogen biosynthesis in every tissue location of aromatase, leading to fears of bone loss and possibly loss of cognitive function in these younger women. The concept of tissue-specific inhibition of aromatase expression is made possible by the fact that, in postmenopausal women when the ovaries cease to produce estrogen, estrogen functions primarily as a local paracrine and intracrine factor. Furthermore, due to the unique organization of tissue-specific promoters, regulation in each tissue site of expression is controlled by a unique set of regulatory factors.
    [Show full text]
  • Catechol Ortho-Quinones: the Electrophilic Compounds That Form Depurinating DNA Adducts and Could Initiate Cancer and Other Diseases
    Carcinogenesis vol.23 no.6 pp.1071–1077, 2002 Catechol ortho-quinones: the electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases Ercole L.Cavalieri1,3, Kai-Ming Li1, Narayanan Balu1, elevated level of reactive oxygen species, a condition known Muhammad Saeed1, Prabu Devanesan1, as oxidative stress (1,2). As electrophiles, catechol quinones Sheila Higginbotham1, John Zhao2, Michael L.Gross2 and can form covalent adducts with cellular macromolecules, Eleanor G.Rogan1 including DNA (4). These are stable adducts that remain in DNA unless removed by repair and depurinating ones that are 1Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, released from DNA by destabilization of the glycosyl bond. NE 68198-6805 and 2Department of Chemistry, Washington University, Thus, DNA can be damaged by the reactive quinones them- One Brookings Drive, St Louis, MO 63130, USA selves and by reactive oxygen species (hydroxyl radicals) 3To whom correspondence should be addressed (1,4,5). The formation of depurinating adducts by CE quinones Email: [email protected] reacting with DNA may be a major event in the initiation of Catechol estrogens and catecholamines are metabolized to breast and other human cancers (4,5). The depurinating adducts quinones, and the metabolite catechol (1,2-dihydroxyben- are released from DNA, leaving apurinic sites in the DNA zene) of the leukemogenic benzene can also be oxidized to that can generate
    [Show full text]
  • Aminoketone, Oxazole and Thiazole Synthesis. Part 15. 2
    Issue in Honor of Prof. C. D. Nenitzescu ARKIVOC 2002 (ii) 64-72 Aminoketone, oxazole and thiazole synthesis. Part 15.1 2-[4-(4-Halobenzenesulphonyl)-phenyl]-5-aryloxazoles Iosif Schiketanz,a Constantin Draghici,b Ioana Saramet,c and Alexandru T. Balaban a,d a Polytechnic University Bucharest, Organic Chemistry Department, Splaiul Independentei 313, Bucharest, Roumania b “C. D. Nenitzescu” Institute of Organic Chemistry, Roumanian Academy, Splaiul Independentei 202B, Bucharest, Roumania c Faculty of Pharmacy, Organic Chemistry Department, Traian Vuia Street 6, Bucharest, Roumania d Texas A&M University at Galveston, Department of Marine Sciences, 5007 Avenue U, Galveston, TX 77551, USA E-mail: [email protected] (received 14 Sep 2001; accepted 21 Mar 2002; published on the web 29 Mar 2002) Abstract Acylaminoacylation of aromatic hydrocarbons (benzene, toluene, meta-xylene, mesitylene) with 2-[4-benzenesulfonyl-(4-halophenyl)]-5-oxazolones in the presence of anhydrous aluminum chloride leads to 2-aza-1,4-diones 5 which cyclize under the action of phosphorus oxychloride yielding the corresponding 2-[4-(4-halobenzenesulphonyl)-phenyl]-5-aryloxazoles 6. The para- halogens are chloro or bromo atoms. Electronic absorption, vibrational, 1H-NMR and 13C-NMR spectral data are presented. The UV and NMR spectra provide evidence for the non-coplanarity of the oxazole and mesityl rings. Keywords: Amoinoketone, oxazole, thiazole, acylaminoacylation, synthesis Introduction In continuation of the previous part in this series,1 we now report the preparation
    [Show full text]
  • One Hundred Years of Benzotropone Chemistry
    One hundred years of benzotropone chemistry Arif Dastan*1, Haydar Kilic2,3 and Nurullah Saracoglu*1 Review Open Access Address: Beilstein J. Org. Chem. 2018, 14, 1120–1180. 1Department of Chemistry, Science Faculty, Atatürk University, doi:10.3762/bjoc.14.98 25240, Erzurum, Turkey, 2Oltu Vocational Training School, Atatürk University, 25400, Erzurum, Turkey and 3East Anotolia High Received: 27 December 2017 Technology Application and Research Center, Atatürk University, Accepted: 20 April 2018 25240, Erzurum, Turkey Published: 23 May 2018 Email: Associate Editor: B. Stoltz Arif Dastan* - [email protected]; Nurullah Saracoglu* - [email protected] © 2018 Dastan et al.; licensee Beilstein-Institut. License and terms: see end of document. * Corresponding author Keywords: benzotropolone; benzotropone; dibenzotropone; halobenzotropolone; halobenzotropone; tribenzotropone; tropone Abstract This review focuses on the chemistry of benzo-annulated tropones and tropolones reported since the beginning of the 20th century, which are currently used as tools by the synthetic and biological communities. Review 1. Introduction Tropone (1) and tropolone (2) have fascinated organic chemists have been reported in the literature in a number of natural forms for well over one hundred years. The carbocycles 1 and 2 are a (Figure 1) [1-8]. These compounds have a structural class special variety of organic compounds and represent a nonben- spacing from the simple monocyclic tropones, such as the po- zenoid type of aromatic system (Scheme 1). Their dipolar reso- tent antifungal and antibiotic monoterpene β-thujaplicin (4) nance structures such as tropylium oxide form 1B and 2B have [17-23] (isolated from the heartwood and essential oils of trees been reported to provide a Hückel sextet of electrons that is of the family Cupressaceae), to complex macrocyclic ana- necessary for aromaticity (Scheme 1) [1-9].
    [Show full text]
  • In Vitroo and in Vivo Pharmacology of 4-Substituted
    IN VITROO AND IN VIVO PHARMACOLOGY OF 4-SUBSTITUTED METHOXYBENZOYL-ARYL-THIAZOLES (SMART) AND 2- ARYLTHIAZOLIDINE-4-CARBOXYLIC ACID AMIDES (ATCAA) Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Chien-Ming Li, M.S. Graduate Program in Pharmacy The Ohio State University 2010 Dissertation Committee: Dr. James T. Dalton, Advisor Dr. Robert W. Brueggemeier Dr. Thomas D. Schmittgen Dr. Mitch A. Phelps Copyright by Chien-Ming Li 2010 ABSTRACT Formation of microtubules is a dynamic process that involves polymerization and depolymerization of the αβ-tubulin heterodimers. Drugs that enhance or inhibit tubulin polymerization can destroy this dynamic process, arresting cells in the G2/M phase of the cell cycle. Although drugs that target tubulin generally demonstrate cytotoxic potency in sub-nanomolar range, resistance due to drug efflux is a common phenomenon among the antitubulin agents. We recently reported a class of 4-Substituted Methoxybenzoyl-Aryl- Thiazoles (SMART), which exhibited great in vitro and in vivo potency. SMART compounds effectively inhibited tubulin polymerization in dose dependent manner, suggesting that SMART compounds may bind to tubulin and subsequently hamper the polymerization. To date the only method to determine the binding of inhibitor to tubulin has been competitive radioligand binding assays. We developed a novel non-radioactive mass spectrometry (MS) binding assay to study the tubulin binding of colchicine, vinblastine and paclitaxel. The method involves a very simple step of separating the unbound ligand from macromolecules using ultrafiltration. The unbound ligand in the filtrate can be accurately determined using a highly sensitive and specific LC-MS/MS method.
    [Show full text]