Study of Ph and Temperature Effect on Lipophilicity of Catechol-Containing Antioxidants by Reversed Phase Liquid Chromatography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nutraceuticals and Fundamental Foods
NUTRACEUTICALS AND FUNCTIONAL FOODS - Nutritional Value, Functional Properties And Industrial Applications Of Fruit Juice - R L Bardwaj and Urvashi Nandal NUTRITIONAL VALUE, FUNCTIONAL PROPERTIES AND INDUSTRIAL APPLICATIONS OF FRUIT JUICE R L Bardwaj and Urvashi Nandal Krishi Vigyan Kendra, Sirohi, Maharana Pratap University of Agriculture & Technology, Udaipur, Rajasthan, India Keywords: Fruit juice, therapeutic value, health security, nutrition security, antioxidant, vitamin C, vitamin A, folate, obesity, diabetes, macro and micro-nutrients, bioactive components, phytochemicals, functional food, neutraceutical, future trends, industrial applications, storage, dietary recommendations, juice blend, organic acids, resveratrol, pharmacokinetics. Contents 1. Introduction 2. Role of Fruit Juices in Therapeutic Nutritional Security: A Concept 3. Categories and Products of Fruit Juices 4. Bioactive Compounds in Fruit Juices 5. Proximate Composition and Nutritional Properties of Fruit Juices 6. Interaction Mechanism of Fruit Juice Components in Human Body 7. Industrial Applications of Fruit Juices and Future Prospects of Fruit Juice Industry 8. General Dietary Recommendations of Fruit Juice 9. Therapeutic Role of Fruit Juices 10. Negative Elements and Counter Argumentation 11. Concluding Remarks Glossary Bibliography Biographical Sketches Summary Considerable interest in fruit juices has been developed over the years due to their potential biological and health promoting effects. Consumption of fresh fruit is often replaced by the intake of fruit juices, due to their easily, conveniently and readily consumable nature which is the need of today’s fast and busy life. It is the unfermented but fermentable liquid obtained from the edible part of sound, appropriately mature and fresh fruit. Fruit juices contain nutrients like vitamins, minerals, trace elements, energy and phytochemicals including flavonoids, polyphenols and antioxidants that have been shown to have varied health benefits. -
Mangifera Indica) Cultivars from the Colombian Caribbean
Vol. 11(7), pp. 144-152, 17 February, 2017 DOI: 10.5897/JMPR2017.6335 Article Number: 94A673D62820 ISSN 1996-0875 Journal of Medicinal Plants Research Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/JMPR Full Length Research Paper Mangiferin content, carotenoids, tannins and oxygen radical absorbance capacity (ORAC) values of six mango (Mangifera indica) cultivars from the Colombian Caribbean Marcela Morales1, Santiago Zapata1, Tania R. Jaimes1, Stephania Rosales1, Andrés F. Alzate1, Maria Elena Maldonado2, Pedro Zamorano3 and Benjamín A. Rojano1* 1Laboratorio Ciencia de los Alimentos, Universidad Nacional de Colombia, Medellín, Colombia. 2Escuela de nutrición, Universidad de Antioquia, Medellín, Colombia. 3Graduate School, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Chile. Received 18 January, 2017; Accepted 13 February, 2017 Mango is one of the tropical fruits of greater production and consumption in the world, and a rich source of bioactive compounds, with various functional properties such as antioxidant activity. In Colombia, mango’s market is very broad and diverse. However, there are very few studies that determined the content of bioactive secondary metabolites. The objective of this study was to evaluated the content of different metabolites like Mangiferin, carotenoids, tannins, and the antioxidant capacity by oxygen radical absorbance capacity (ORAC) methodology of six cultivars from the Colombian Caribbean region, with total carotenoid values ranging from 24.67 to 196.15 mg of β-carotene/100 g dry pulp; 84.30 to 161.49 mg Catequine eq./100 g dry pulp for the content of condensed tannins, and 91.80 to 259.23 mg/100 g dry pulp for mangiferin content. -
Health-Promoting Effects of Traditional Foods
Health-PromotingFoodsTraditional Effects of • Marcello Iriti Health-Promoting Effects of Traditional Foods Edited by Marcello Iriti Printed Edition of the Special Issue Published in Foods Health-Promoting Effects of Traditional Foods Health-Promoting Effects of Traditional Foods Editor Marcello Iriti MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Marcello Iriti Department of Agricultural and Environmental Sciences, Milan State University Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Foods (ISSN 2304-8158) (available at: https://www.mdpi.com/journal/foods/special issues/health effects traditional foods). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03943-312-4 (Hbk) ISBN 978-3-03943-313-1 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Marcello Iriti, Elena Maria Varoni and Sara Vitalini Healthy Diets and Modifiable Risk Factors for Non- Communicable Diseases—The European Perspective Reprinted from: Foods 2020, 9, 940, doi:10.3390/foods9070940 .................... -
Control of Catechol and Hydroquinone Electron-Transfer Kinetics on Native and Modified Glassy Carbon Electrodes
Anal. Chem. 1999, 71, 4594-4602 Control of Catechol and Hydroquinone Electron-Transfer Kinetics on Native and Modified Glassy Carbon Electrodes Stacy Hunt DuVall and Richard L. McCreery* Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210 The electrochemical oxidation of dopamine, 4-methylcat- heterogeneous electron transfer between solid electrodes and echol, dihydroxyphenylacetic acid, dihydroxyphenyl eth- catechols or quinones. Such studies are of fundamental importance ylene glycol, and hydroquinone was examined on several to the electrochemical detection of catecholamines as well as to native and modified glassy carbon (GC) surfaces. Treat- the broader questions about quinone redox chemistry. Notable ment of polished GC with pyridine yielded small ∆Ep examples from the literature are the detailed examination of values for cyclic voltammetry of all systems studied, quinone reduction on platinum in aqueous buffers,7 the oxidation implying fast electron-transfer kinetics. Changes in surface of catechols on carbon paste,2,3 and the dramatic effects of oxide coverage had little effect on kinetics, nor did the adsorbates on quinone electrochemistry on platinum and iridium charge of the catechol species or the solution pH. Small electrodes.5,6,8 These experiments provide an excellent description + - ∆Ep values correlated with catechol adsorption, and of the elementary steps comprising the 2 H ,2e reduction of surface pretreatments that decreased adsorption also an o-orp-quinone to the corresponding hydroquinone and account increased ∆Ep. Electron transfer from catechols was for much of the pH dependence of the observed redox potential profoundly inhibited by a monolayer of nitrophenyl or and kinetics. -
The Screening of Phytochemical and Antioxidant Activity of Agarwood Leaves (Aquilaria Malaccensis) from Two Sites in North Sumatra, Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 4, April 2020 E-ISSN: 2085-4722 Pages: 1588-1596 DOI: 10.13057/biodiv/d210440 The screening of phytochemical and antioxidant activity of agarwood leaves (Aquilaria malaccensis) from two sites in North Sumatra, Indonesia RIDWANTI BATUBARA1,, SURJANTO2, T. ISMANELLY HANUM2, ARBI HANDIKA1, ODING AFFANDI1 1Faculty of Forestry, Universitas Sumatera Utara. Jl. Tridharma Ujung No. 1, Kampus USU Padang Bulan, Medan 20155, North Sumatra, Indonesia. Tel.: +62-61-8220605, Fax.: +62-61-8201920, email: [email protected] 2Faculty of Pharmacy, Universitas Sumatera Utara. Jl. Tridharma Ujung No. 4, Kampus USU Padang Bulan, Medan 20155, North Sumatra, Indonesia. Manuscript received: 7 August 2019. Revision accepted: 23 March 2020. Abstract. Batubara R, Surjanto, Hanum TI, Handika A, Afandi O. 2020. Phytochemical screening and antioxidant activity of agarwood leaves (Aquilaria malaccensis) from two sites in North Sumatra, Indonesia. Biodiversitas 21: 1588-1596. Agarwood of gaharu (Aquilaria malaccensis Lamk) has an antioxidant activity which can reduce free radicals. This research was conducted to analyze the chemical compounds of agarwood, and the antioxidant activities from two different grown sites, Laru, and Hutanabolon Village. Ethanol extracts of the agarwood leaves (EEAL) were obtained through maceration method. The phytochemical screening included the examination of secondary plant metabolites, while antioxidant activity was determined by free radicals scavenging activity against 1,1- diphenyl-2-picrylhydrazyl -
Mango (Mangifera Indica L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities
antioxidants Review Mango (Mangifera indica L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities Manoj Kumar 1,* , Vivek Saurabh 2 , Maharishi Tomar 3, Muzaffar Hasan 4, Sushil Changan 5 , Minnu Sasi 6, Chirag Maheshwari 7, Uma Prajapati 2, Surinder Singh 8 , Rakesh Kumar Prajapat 9, Sangram Dhumal 10, Sneh Punia 11, Ryszard Amarowicz 12 and Mohamed Mekhemar 13,* 1 Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India 2 Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; [email protected] (V.S.); [email protected] (U.P.) 3 ICAR—Indian Grassland and Fodder Research Institute, Jhansi 284003, India; [email protected] 4 Agro Produce Processing Division, ICAR—Central Institute of Agricultural Engineering, Bhopal 462038, India; [email protected] 5 Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla 171001, India; [email protected] 6 Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; [email protected] 7 Department of Agriculture Energy and Power, ICAR—Central Institute of Agricultural Engineering, Bhopal 462038, India; [email protected] 8 Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India; [email protected] 9 Citation: Kumar, M.; Saurabh, V.; School of Agriculture, Suresh Gyan Vihar University, Jaipur 302017, Rajasthan, India; Tomar, M.; Hasan, M.; Changan, S.; [email protected] 10 Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, Maharashtra, India; Sasi, M.; Maheshwari, C.; Prajapati, [email protected] U.; Singh, S.; Prajapat, R.K.; et al. -
Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1]. -
Mangiferin Alleviates Arsenic Induced Oxidative Lung Injury Via Upregulation of the Nrf2-HO1 Axis
Food and Chemical Toxicology 126 (2019) 41–55 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Mangiferin alleviates arsenic induced oxidative lung injury via upregulation T of the Nrf2-HO1 axis ∗ Sushweta Mahalanobish1, Sukanya Saha1, Sayanta Dutta, Parames C. Sil Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India ARTICLE INFO ABSTRACT Keywords: Arsenic contaminated drinking water consumption is a serious health issue around the world. Chronic inorganic Arsenic arsenic exposure has been associated with respiratory dysfunctions. It exerts various detrimental effects, dis- Oxidative stress rupting normal cellular homeostasis and turning on severe pulmonary complications. This study elucidated the Lung role of mangiferin, a natural xanthone, against arsenic induced lung toxicity. Chronic exposure of sodium ar- Apoptosis senite (NaAsO2) at 10 mg/kg bw for 3 months abruptly increased the LDH release in broncho-alveolar lavage Inflammation fluid, generated reactive oxygen species (ROS), impaired the antioxidant defense and distorted the alveoliar- Mangiferin chitecture. It caused significant inflammatory outburst and promoted the apoptotic mode of cell deathviaup- regulating the expressions of various proapoptotic molecules related to mitochondrial, extra-mitochondrial and ER stress mediated apoptotic pathway. Activation of inflammatory cascade led to disruption of alveolar capillary barrier and impaired Na+/K+-ATPase function -
Catechol Ortho-Quinones: the Electrophilic Compounds That Form Depurinating DNA Adducts and Could Initiate Cancer and Other Diseases
Carcinogenesis vol.23 no.6 pp.1071–1077, 2002 Catechol ortho-quinones: the electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases Ercole L.Cavalieri1,3, Kai-Ming Li1, Narayanan Balu1, elevated level of reactive oxygen species, a condition known Muhammad Saeed1, Prabu Devanesan1, as oxidative stress (1,2). As electrophiles, catechol quinones Sheila Higginbotham1, John Zhao2, Michael L.Gross2 and can form covalent adducts with cellular macromolecules, Eleanor G.Rogan1 including DNA (4). These are stable adducts that remain in DNA unless removed by repair and depurinating ones that are 1Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, released from DNA by destabilization of the glycosyl bond. NE 68198-6805 and 2Department of Chemistry, Washington University, Thus, DNA can be damaged by the reactive quinones them- One Brookings Drive, St Louis, MO 63130, USA selves and by reactive oxygen species (hydroxyl radicals) 3To whom correspondence should be addressed (1,4,5). The formation of depurinating adducts by CE quinones Email: [email protected] reacting with DNA may be a major event in the initiation of Catechol estrogens and catecholamines are metabolized to breast and other human cancers (4,5). The depurinating adducts quinones, and the metabolite catechol (1,2-dihydroxyben- are released from DNA, leaving apurinic sites in the DNA zene) of the leukemogenic benzene can also be oxidized to that can generate -
Supporting Information Host-Guest Interactions of Catechol and 4
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019 Supporting Information Host-Guest Interactions of Catechol and 4-Ethylcatechol with Surface- Immobilized Blue-Box Molecules Ahmed Owais,a,b Alex M. Djerdjev,a James M. Hook,c Alex Yuen,a William Rowlands,d Nicholas G. White,e Chiara Netoa* a School of Chemistry and The University of Sydney Nano Institute, The University of Sydney, NSW 2006 Australia b Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt c Mark Wainwright Analytical Centre and School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia d Licella Pty Ltd, 140 Arthur Street, North Sydney NSW 2060 Australia e Research School of Chemistry, The Australian National University, Canberra, ACT, Australia 1 X-ray crystallography General remarks We grew crystals of 1:1 complexes of BB4+ and catechol from a range of solvents: BB·4Cl·catechol by vapour diffusion of diethyl ether into a methanol solution of the components, BB·4Cl·catechol by vapour diffusion of acetone into a methanol solution of the components and BB·4PF6·catechol by vapour diffusion of diethyl ether into an acetonitrile solution of the components. In some cases, more than one dataset was collected including using synchrotron radiation. Typically, crystals diffracted well, and high-quality diffraction data could be obtained. In all cases, the structure of the macrocycle is clear and typically the anions are also well-defined. In each case, there is an area of electron density within the macrocycle that appears to correspond to a highly disordered catechol molecule (often across a symmetry operation), an example of this is shown in Fig. -
Molecular Speciation Effect on Docking and Drug Design. a Computational Study for Mangiferin, a Carbohydrate-Polyphenol Bioconjugate As a Test Case
J. Mex. Chem. Soc. 2008, 52(1), 78-87 Article © 2008, Sociedad Química de México ISSN 1870-249X Molecular Speciation Effect on Docking and Drug Design. A Computational Study for Mangiferin, a Carbohydrate-Polyphenol Bioconjugate as a Test Case Berenice Gómez-Zaleta,1,2 * Claudia Haydée González-De la Rosa,1 Gerardo Pérez-Hernández,1,2 Hiram I. Beltrán,1 Felipe Aparicio,1,2 Alberto Rojas-Hernández,2 and Arturo Rojo-Domínguez1,2 * 1 Departamento de Ciencias Naturales. Universidad Autónoma Metropolitana. Unidad Cuajimalpa. Pedro Antonio de los Santos 84. Col. San Miguel Chapultepec. 11850 México, D.F. E-mail: [email protected]. 2 Departamento de Química. Universidad Autónoma Metropolitana. Unidad Iztapalapa. San Rafael Atlixco 186. Col. Vicentina, 09340 México, D.F. Recibido el 3 de octubre del 2007; aceptado el 21 de febrero del 2008 Abstract. A study to evaluate the effect of molecular speciation con- Resumen. Se realizó un estudio para evaluar la importancia de la sidering methodologies to assign partial charges and conformational especiación química para asignar cargas parciales a moléculas median- search processes for a docking test was made with mangiferin (MGF). te diversas metodologías y su aplicación en procesos de búsqueda This compound was selected as a model to explore speciation effects conformacional para pruebas de acoplamiento molecular proteína- on drug design due to the speciation studies previously performed, ligando. Estos efectos impactan en el diseño de fármacos y como caso and because it is a bioconjugate containing carbohydrate and polyphe- particular se ha tomado a la mangiferina (MGF) como molécula mode- nolic xanthonoid groups, both moieties important as potential-drug lo del tipo bioconjugado, tanto de glicósidos como de xantonoides, candidates. -
Table II. EPCRA Section 313 Chemical List for Reporting Year 2007 (Including Toxic Chemical Categories)
Table II. EPCRA Section 313 Chemical List For Reporting Year 2007 (including Toxic Chemical Categories) Individually listed EPCRA Section 313 chemicals with CAS numbers are arranged alphabetically starting on page II-3. Following the alphabetical list, the EPCRA Section 313 chemicals are arranged in CAS number order. Covered chemical categories follow. Certain EPCRA Section 313 chemicals listed in Table II have parenthetic “qualifiers.” These qualifiers indicate that these EPCRA Section 313 chemicals are subject to the section 313 reporting requirements if manufactured, processed, or otherwise used in a specific form or when a certain activity is performed. The following chemicals are reportable only if they are manufactured, processed, or otherwise used in the specific form(s) listed below: Chemical CAS Number Qualifier Aluminum (fume or dust) 7429-90-5 Only if it is a fume or dust form. Aluminum oxide (fibrous forms) 1344-28-1 Only if it is a fibrous form. Ammonia (includes anhydrous ammonia and aqueous ammonia 7664-41-7 Only 10% of aqueous forms. 100% of from water dissociable ammonium salts and other sources; 10 anhydrous forms. percent of total aqueous ammonia is reportable under this listing) Asbestos (friable) 1332-21-4 Only if it is a friable form. Hydrochloric acid (acid aerosols including mists, vapors, gas, 7647-01-0 Only if it is an aerosol form as fog, and other airborne forms of any particle size) defined. Phosphorus (yellow or white) 7723-14-0 Only if it is a yellow or white form. Sulfuric acid (acid aerosols including mists, vapors, gas, fog, and 7664-93-9 Only if it is an aerosol form as other airborne forms of any particle size) defined.