CNS)- the Brain and Spinal Cord

Total Page:16

File Type:pdf, Size:1020Kb

CNS)- the Brain and Spinal Cord Introduction Remember studying Nervous Tissue as a Basic Tissue? 1. Epithelial tissue 2. Connective tissues 3. Muscle tissue 4. Nervous tissue Well, during this lab you will review these tissues as observed in both the: i. Central Nervous System (CNS)- the brain and spinal cord. ii. Peripheral Nervous System (PNS) - peripheral nerves/ganglia outside the CNS. Learning objectives and activities Using the Virtual Slidebox: A Recognize nervous tissue in histological sections and discuss the organization/function of the cells present. B Examine the features of peripheral nerves in both longitudinal and cross section that allow you to identify them in tissue sections. C Differentiate between sensory and autonomic (sympathetic/parasympathetic) ganglia. D Identify the different functional regions and cells of the spinal cord. E Identify the major layers and cells of the cerebellum ad the cerebral cortex. F Complete the self-quiz to test your understanding and master your learning. Despite its complexities, the nervous system is composed entirely of two cell types: a network of nerve cells (neurons) that transmit signals throughout the nervous system and the glial cells that support them. Neurons Examine Slide 1 (16) to investigate the basic structure of a neuron ii i. Cell body (perikaryon). Most cell bodies are located in the central nervous system (brain and spinal cord) or in ganglia of the peripheral nervous i system. They contain darkly stained granules called Nissl bodies which are the ribosomes used to manufacture iii neurotransmitter in the cell. iv ii. Dendrites Dendrites extend from the cell body. These are short, highly branched structures that receive nerve impulses from other neurons. Nissl bodies can be seen extending into the dendrites. iii. Nucleus and nucleolus. Neurons have a large nucleus with prominent nucleolus. The ribosomes seen in the cell body are assembled in the nucleolus. iv. Axon hillock and axon The axon hillock is where the axon branches from the cell body. It contains the Golgi apparatus and is therefore devoid of Nissl bodies. The axon is a single 'fiber' that transmits impulses. Most neurons have an axon surrounded by fat – the myelin sheath – which assists propagation of electrical impulses along the axon. There are three basic classes of neuron i. Multipolar neurons Located in CNS Located in PNS Have multiple dendrites and a long axonal process. They convey either somatic motor or visceral/autonomic Skeletal muscle motor information from the CNS. Somatic motor Examine the following slides to see examples of multipolar neurons: Pre-ganglionic Slide 1 (16) : somatic motor Autonomic ganglion Slide 2a (19) : somatic motor Smooth muscle (e.g. vessels or Slide 3a (21) : visceral motor digestive tract) Post-ganglionic Visceral motor ii. Pseudounipolar neurons Have one axon that divides close to the cell body to form two long axonal branches. Dorsal root ganglion They convey sensory information to the CNS and their cell bodies are located within the dorsal root ganglion (or cranial nerve ganglia). Examine Slide 4a (20) to see pseudounipolar (sensory) neurons in a dorsal root ganglion. iii. Bipolar neurons Have one axon and one dendrite. They convey special sensation to the CNS. Examine Slide 5 (82) to see bipolar neurons in the retina. Glial cells Glial cells support and protect the neurons. i. In the CNS There are many different types of glial cell: - oligodendrocytes - the equivalent of Schwann cells in the CNS - microglia - specialized macrophages that protect CNS neurons - astrocytes - regulate chemical environment in CNS (blood-brain barrier) - ependymal cells - line ventricles of brain and central canal of spinal cord Together they form the ‘connective tissue’ of the CNS known as ‘neuropil’. With the exception of ependymal cells it is very difficult to specifically identify the different types of glial cell within the central nervous system without specific stains. Therefore you will not be asked to do this. Explore Slide 2b (19) to see glial cells, neuropil and ependymal cells in the CNS. ii. In the PNS, There are two types of glial cell: - Schwann cells - form the myelin sheath surrounding the axon of the neuron - satellite cells - surround and support neuron cell bodies located in the PNS. Explore Slide 3b (21) and Slide 4b (20) to see Schwaan cells and satellite cells in the PNS (ganglia). In a typical peripheral nerve individual nerve axons are bundled together to form a series of layers v. surrounded by connective tissue. These are best seen vi. in cross sections through nerves. iv. Identify the features of a peripheral nerve in both the iii. longitudinal and cross section shown in Slide 6 (17) i. Epineurium External coat of dense irregular connective tissue. ii. Perineurium ii. Connective tissue surrounding individual axon bundles that are called fascicles. iii. Endoneurium Thin connective tissue layer surrounding each individual axon and its myelin sheath. iv. Myelin sheath The fatty sheath formed by the Schwann cell surrounding the axon. v. Axon i. The long process of an individual neuron that extends from the cell body. vi. Node of Ranvier A Na+ channel rich ‘gap’ between adjacent Schwann cells that allows rapid propagation of impulses along an axon. These are only visible in longitudinal sections of nerves. Ganglia are nodular masses of connective tissue and neuron cell bodies surrounded by supporting glial cells (satellite cells). There are two types of ganglia in the PNS: i. Sensory ganglia Located in CNS Located in PNS Collections of pseudounipolar neuron cell Dorsal root ganglion bodies that: Satellite cells - convey afferent impulses towards the CNS - are associated with cranial nerves (cranial ganglia) and the spinal cord (dorsal root ganglia) - are tightly clustered and bounded by a CT capsule Examine Slide 4a (20) again to identify the key features - have large nuclei with a central of a sensory ganglion and ensure you can differentiate located nucleolus. this from an autonomic ganglion. - surrounded by supportive satellite cells (glial cells). - may contain lipofuscin (brown granules containing residuals of oxidation and lysosomal digestion) Located in CNS Located in PNS ii. Autonomic ganglia Sympathetic ganglion Collections of multipolar, post ganglionic (in sympathetic chain) neuron cell bodies that: - control activity of smooth muscle, glands and cardiac rhythm Satellite cells - can be located close to the spinal cord = sympathetic (see Slide 3a) Parasympathetic - can be located close to/within an ganglion organ = parasympathetic (see (in wall of organ) Slide 7). - are scattered and bounded by a CT capsule - have small nuclei with an Satellite cells eccentric nucleolus. - are each surrounded by Examine Slide 3a (21) of the sympathetic chain and supportive satellite cells (glial Slide 7 (54) which contains a parasympathetic ganglion cells) to identify the key features of autonomic ganglia. Ensure - may contain lipofuscin granules you can differentiate these from sensory ganglia. Different sections through the spinal cord exhibit different functional zones (tracts and ganglia) that have been linked to specific functions around the body. All spinal cord sections have an outer region of white matter composed mainly of neuron axons and an inner area of grey matter where neuron cell bodies can be found. In all areas you can recognize a variety of glial cells. Review the organization and cells of the sacral spinal cord segment shown in Slide 8 Connective tissue - the spinal cord is surrounded by three layers of connective tissue: dura, arachnoid and pia mater. - the dura is often removed during histological preparation a. Pia mater - a thin visceral layer of connective tissue that adheres to the spinal cord Identify the pia mater - its inner surface is a simple squamous epithelium in - it forms a double fold as it reflects in and out of the ventral median Slide 8a fissure - in some areas it may become artificially separated from the spinal cord during preparation b. Arachnoid mater Identify arachnoid - abuts the inner surface of the dura (not seen histologically) mater and arachnoid - has delicate projection called arachnoid trabeculae that extend trabeculae in through the subarachnoid space to the surface of the pia Slide 8b c. Subarachnoid space - the space between the arachnoid and pia that is bridged by the arachnoid trabeculae Identify subarachnoid - it contains CSF and blood vessels space in - the arachnoid trabeculae collapse during preparation due to loss of Slide 8c CSF making the space look like a layer of loose irregular connective tissue White matter - in the spinal cord this is the outer layer of nervous tissue surrounding the grey matter - contains axons of neurons running from one part of the nervous system to another. - contains glial cells and blood vessels accompanying theses axons. - axons that are going to/coming from specific locations are grouped into functionally related bundles called tracts (although these tracts are indistinguishable from surrounding white matter that is not a component of the tract) d. Corticospinal tract Identify the - aggregations of the axons of upper motor neurons that are corticospinal tract of traveling from the cerebral cortex within the spinal cord they are white matter in involved in control of motor functions of the body. Slide 8d e Spinothalamic tract - contains axons of sensory neurons traveling from skin to thalamus. Identify the - it has two components: anterior and lateral. spinothalamic tract of - the anterior spinothalamic tract carries info about crude touch. white matter in - the lateral spinothalamic tract carries info about pain/temperature Slide 8e f. Gracile fasciculus Identify the gracile - it contains the axons of sensory neurons that convey information fasciculus of white regarding proprioception from the lower limbs and trunk to the matter in Slide 8f brainstem. Grey matter - in the spinal cord this is the inner layer of nervous tissue deep to the white matter - it is organized into dorsal and ventral horns - it contains the cell bodies of neurons, their dendritic processes and axons and supportive glial cells and blood vessels.
Recommended publications
  • METHODICAL GUIDANCE for the Lecture Academic Subject Human
    Ministry of Public Health of Ukraine Ukrainian Medical Stomatological Academy "Approved" at the meeting of the Department of Human Anatomy «29» 08 2020 Minutes № Head of the Department Professor O.O. Sherstjuk ________________________ METHODICAL GUIDANCE for the lecture Academic subject Human Anatomy Module No 3 "The heart. Vessels and nerves of the head, the neck, the trunk, extremities" Lecture No 15 Review of the autonomic nervous system, its central departments. The principles of the autonomic innervation of the organs Year of study ІI Faculty Foreign students' training faculty, specialty «Medicine» Number of 2 academic hours Poltava – 2020 1. Educational basis of the topic The autonomic division of peripheral nervous system regulates physiological processes of the human organism like blood circulation, respiration, digestion, excretion and general metabolism; also, it regulates tissue trophic processes. The autonomic division acts relatively independently from the cerebral cortex and the organs supplied act involuntarily as well. It is quite clear that that distinguishing of the somatic and the autonomic compartments is conditional and exact delimitation is not possible. Such impossibility appears due to common regulatory centers for both divisions and tight morphological and functional associations featured by them. The somatic neurons and the interneurons of PNS like those of CNS feature topographical and synaptic associations so a reflex arc may comprise both somatic (e.g. afferent) and autonomic neurons. Summarizing the aforesaid, the term ’autonomic nervous system’ will be applied to a specific compartment of PNS but not for a separate nervous system. 2. Learning objectives of the lecture: . to familiarize students with the autonomic division of CNS; .
    [Show full text]
  • Autonomic Nervous System
    AUTONOMIC NERVOUS SYSTEM PAGE 1 AUTONOMIC NERVOUS SYSTEM PAGE 2 AUTONOMIC NERVOUS SYSTEM PAGE 3 AUTONOMIC NERVOUS SYSTEM PAGE 4 AUTONOMIC NERVOUS SYSTEM PAGE 5 AUTONOMIC NERVOUS SYSTEM PAGE 6 AUTONOMIC NERVOUS SYSTEM PAGE 7 AUTONOMIC NERVOUS SYSTEM PAGE 8 AUTONOMIC NERVOUS SYSTEM PAGE 9 REVIEW QUESTIONS 1. The autonomic nervous system controls the activity of _?_. (a) smooth muscle (b) cardiac muscle (c) glands (d) all of these (e) none of these 2. All preganglionic and postganglionic autonomic neurons are _?_ neurons. (a) somatic efferent (b) visceral efferent (c) somatic afferent (d) visceral afferent (e) association neurons 3. Which neurotransmitter is released at the synapses between preganglionic and postganglionic autonomic neurons ? (a) epinephrine (b) norepinephrine (c) acetylcholine (d) serotonin (e) oxytocin 4. All preganglionic sympathetic neurons are located in: (a) the lateral horn of the spinal cord of spinal cord segments T1-L2 (b) brainstem nuclei (c) intramural (terminal) ganglia (d) paravertebral ganglia of the sympathetic chains (e) prevertebral ganglia 5. All preganglionic parasympathetic neurons are located in _?_. (a) prevertebral ganglia (b) the lateral horn of spinal cord segments T1-L2 (c) sympathetic chain ganglia (d) intramural ganglia (e) brainstem nuclei and spinal cord segments S2-S4 6. Prevertebral and paravertebral ganglia contain _?_. (a) preganglionic sympathetic neurons (b) preganglionic parasympathetic neurons (c) postganglionic sympathetic neurons (d) postganglionic parasympathetic neurons (e) all of these 7. The otic, ciliary, submandibular and pterygopalatine ganglia are located in the head region and contain _?_. (a) preganglionic sympathetic neurons (b) preganglionic parasympathetic neurons (c) postganglionic sympathetic neurons (d) postganglionic parasympathetic neurons (e) none of these 8.
    [Show full text]
  • Nervous Tissue
    Department of Histology and Embryology Medical faculty KU Bratislava NERVOUS TISSUE RNDr. Mária Csobonyeiová, PhD ([email protected]) Nerve tissue neurons /main cells/ (perikaryon = cell body=soma,dendrites,axon), 4 -150 µm glial cells /supporting cells/ - 10 times more abudant CNS- oligodendrocytes, astrocytes, ependymal cells,microglia PNS - Schwann cells, satelite cells Neuron independentNeuron anatomical and functional unit responsible for: receiving of different types of stimuli transducing them into the nerve impulses conducting them to the nerve centers development – embryonal neuroectoderm Morphology of the neurons Pseudounipolar neuron! (spinal ganglion) Methods used in neurohistology Staining methods: Luxol blue and cresyl violet (nucleus+nucleolus+Nissl body) Luxol blue (myelin sheath) and nuclear red (nucleus + nucleolus+Nissl body) Impregnations according - Holmes – neurons, axon, dendrites - neurofibrils (brown-violet) Golgi – neurons + astrocytes (black) with golden background Cajal – astrocytes (black) with red background Rio del Hortega – microglia (black) with gray-violet background OsO4 - myelin sheath (black), staining for lipids and lipoproteins (myelin) Microglia (phagocytosis) Astrocytes (supporting role, Oligodendrocytes nutrition, healing (formation of myelin of defects - glial sheath) scars, formation of BBB) Ependymal cells (regulation of stable chemical constitution of CSF) CSN Gray matter: White matter: - bodies of neurons, dendrites - myelinated and unmyelinated axons - initial portion
    [Show full text]
  • L03 Neurons to Post.Key
    Vert Phys PCB3743 Neurons Fox Chapter 7 pt 1 © T. Houpt, Ph.D. Structure of Vertebrates Two major compartments of the body Peripheral Compartment Everything outside of the brain and spinal cord (heart, lungs, gastrointestinal tract, liver, kidneys, skeletal muscle, skin etc.) Central Nervous System (CNS) • Brain at front of body • Spinal cord running down the back • Protected by skull and vertebra • Sensory receptors clustered in head (vision, hearing, taste, smell) T http://bookdome.com/health/anatomy/Human-Body/Man-Is-A-Vertebrate-Animal.html Vertebrate Central Nervous System: brain & spinal cord cerebellum cerebrum back brainstem Vertebra Skull spinal cord head tail GI tract stomach Vertebrate Central Nervous System: brain & spinal cord cerebellum cerebrum back brainstem spinal cord head tail GI tract stomach Peripheral Nervous System: Neurons and nerve fibers outside the brain and spinal cord back motor neurons sensory ganglion autonomic ganglion head autonomic motor sensory tail nerve nerve nerve GI tract enteric NS stomach Functions of the Nervous System Sensory Motor Integration Detect changes in the environment or in the body via sensory receptors; coordinate responses across the body. Initiate responses via skeletal muscle (somatic nerves for voluntary movement) or via smooth muscle and glands (autonomic nervous system). Neurons (nerve cells) Point to point communication across the body to coordinate responses Integrate electrical and chemical signals at dendrites & cell body; depending on inputs, neuron sends electrical and chemical signal down axon to synapse on target cell. Sensory neurons (afferents) carry sensory information into the CNS Motor neurons (efferents) carry impulses out of CNS to make muscles move or effect target organs (e.g.
    [Show full text]
  • Medical Study Center
    https://www.facebook.com/Medicalstudycenter2012 https://www.facebook.com/Medicalstudycenter2012 Notes On CNS Physiology Gray Matter of Spinal Cord: in the spinal cord gray matter is in the form of H shaped pillars which can be divided into three types of columns i.e. anterior horn or ventral horn, posterior horn or dorsal horn and in segments from T1 to L2 there is lateral horn. Neurons in these horns are Ventral Horn: Two groups of neurons Alpha motor neurons which are large multi polar neurons and their nerve fibers are alpha efferents which innervate skeletal muscle. Gamma neurons present in ventral horn are small and multi polar neurons and there nerve fibers are gamma efferents which innervate the intrafusal fibers of the muscle spindles. Both these alpha and gamma efferents come out of the spinal cord through ventral root of spinal nerves. Dorsal Horn: there are 4 groups of neurons 1. Substantia gelatinosa: this group of neurons is present at the apex of the posterior gray column. These neurons receive afferent nerve fibers carrying impulses of pain, temperature and crude touch. 2. Nucleus Proprius: this group is located anterior to the first group. These neurons receive afferent nerve fibers carrying impulses of proprioception and two point tactile discrimination. 3. Clarke’s column or nucleus dorsalis: this group is present at the base of the posterior gray column. These neurons are present in segments from T1 to L3, 4. These neurons are part of spinocerebellar tract and these receive afferent nerve fibers from spinocerebellar tract. 4. Visceral Afferent Nucleus: Present at the base of the posterior horn lateral to the clarke’s column.
    [Show full text]
  • Normal Cells of Cns
    NORMAL CELLS OF CNS OBJECTIVES: At the end of this lecture, you should describe the microscopic structure and the function of: 1- Neurons: - Cell body (perikaryon). - Processes: An axon and dendrites. 2- Neuroglia: - Astrocytes. - Oligodendrocytes. - Microglia. - Ependymal cells. Neuron Components: 1. Cell body (Perikaryon) 2. Processes : a. An axon: only one b. Dendrites: one or more TYPES OF NEURONS Based on number of processes 1. Pseudounipolar neurons. 2. Bipolar neurons. 3. Multipolar neurons. TYPES OF NEURONS Based on number of processes 1. Unipolar (Pseudounipolar) neuron (rounded neuron): Has one process only, that divides into two branches; one Dendrite acts as a dendrite and the other as an axon. e.g. Mesencephalic nucleus of Axon trigeminal nerve and dorsal root (spinal) ganglion. TYPES OF NEURONS Based on number of processes 2. Bipolar Neuron (spindle-shaped neuron): Has two processes (one arising from each pole of the cell body). One of them is the dendrite and the other is the axon, e.g. retina & Dendrite olfactory epithelium. TYPES OF NEURONS Based on number of processes 3. Multipolar neuron: Has one axon and multiple dendrites. Types of multipolar neurons: A. Stellate neuron: • The commonest type. • Distributed in most areas of CNS, e.g. anterior horn cells of the spinal cord TYPES OF NEURONS Based on number of processes B. Pyramidal neurons: • Distributed in motor area 4 of the cerebral cortex. C. Pyriform neurons: • Pear-shaped, e.g. Purkinje cells of cerebellar cortex CELL BODY (Perikaryon) Structure of cell body: 1. Nucleus: • Single, usually central, rounded and vesicular with prominent nucleolus. 2. Cytoplasm. CELL BODY (Perikaryon) Cytoplasm: Its main components include: 1.
    [Show full text]
  • Acupuncture and Pain Management
    IN-DEPTH: INTEGRATIVE MEDICINE (COMPLEMENTARY & ALTERNATIVE MEDICINE) Acupuncture and Pain Management James D. Kenney, DVM There is a large and expanding body of scientific evidence supporting the use of acupuncture in pain management. In the last decade, our understanding of how the brain processes acupuncture anal- gesia has undergone considerable development. Profound studies on neural mechanisms underlying acupuncture analgesia have evolved rapidly and predominately focus on cellular and molecular substrate and functional brain imaging. The currently understood mechanisms of acupuncture analgesia are complex and involve direct and indirect neurohumoral effects that block pain percep- tion, reduce the pain response, relieve muscle spasms, and reduce inflammation. The analgesic mechanisms of acupuncture involve the spinal cord grey matter, hypothalamic-pituitary axis, mid- brain periaqueductal grey matter, medulla oblongata, limbic system, cerebral cortex, and autonomic nervous system. Electroacupuncture (EA) stimulation of these sites results in activation of descend- ing pathways that inhibit pain through endogenous opioid, noradrenergic, and serotonergic sys- tems. There are growing numbers of human trials supporting the use of acupuncture as an evidence- based practice for pain management in human medicine. There are many studies that support the efficacy of acupuncture for low back pain, neck pain, chronic idiopathic and migraine headaches, knee pain, shoulder pain, fibromyalgia, temporomandibular joint pain, and postoperative pain. Although the number of well-designed, controlled clinical research studies in veterinary medicine is lagging behind the number of studies in human medicine, much of the basic science research has been done in animals with neurophysiology that is more similar to veterinary patients than humans. Although there is research to support EA as an evidence-based practice for the control of back pain in horses, additional studies are needed in other clinical situations in veterinary medicine where pain manage- ment is required.
    [Show full text]
  • Thesis Comprises Only My Original Work Towards the Doctor of Philosophy Except Where Indicated in the Preface;
    Development, prevalence and treatment of blood pressure abnormalities in spinal cord injury Min Yin Goh ORCID: 0000-0003-2517-7745 Doctor of Philosophy August 2019 Department of Medicine, Austin Health Faculty of Medicine, Dentistry and Health Sciences The University of Melbourne Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy Abstract Disorders of blood pressure control arise from disruption of the autonomic nervous system and result in symptomatic orthostatic hypotension and large fluctuations in blood pressure. Ambulatory blood pressure monitoring is used in the general population for assessment of blood pressure control and to detect episodes of hypotension. In spinal cord injury (SCI), impaired control of the sympathetic nervous system leads to orthostatic intolerance and autonomic dysreflexia. Smaller studies in restricted populations have examined ambulatory pressures in SCI and observed abnormalities in diurnal blood pressure variation in complete cervical SCI. Altered diurnal blood pressure is associated with abnormalities in diurnal urine production and orthostatic intolerance in autonomic failure. This triad may also occur in SCI to explain the orthostatic intolerance. A retrospective examination of ambulatory pressures of patients with SCI referred for clinically significant blood pressure disorders revealed a high prevalence of abnormalities in diurnal blood pressure and urine production in acute and chronic tetraplegia and in acute paraplegia. To characterise the course of diurnal blood pressure, urine production and orthostatic symptoms in SCI, two prospective studies were performed. First, consecutive patients admitted with acute SCI were screened for recruitment, and consenting volunteers were compared with immobilised and mobilising controls. In the second study, people with chronic SCI (>1 year) living in the community were compared with mobilising controls.
    [Show full text]
  • Neuronal Types and Their Specification Dynamics in the Autonomic Nervous System
    From the Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden NEURONAL TYPES AND THEIR SPECIFICATION DYNAMICS IN THE AUTONOMIC NERVOUS SYSTEM Alessandro Furlan Stockholm 2016 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by E-Print AB © Alessandro Furlan, 2016 ISBN 978-91-7676-419-0 On the cover: abstract illustration of sympathetic neurons extending their axons Credits: Gioele La Manno NEURONAL TYPES AND THEIR SPECIFICATION DYNAMICS IN THE AUTONOMIC NERVOUS SYSTEM THESIS FOR DOCTORAL DEGREE (Ph.D.) By Alessandro Furlan Principal Supervisor: Opponent: Prof. Patrik Ernfors Prof. Hermann Rohrer Karolinska Institutet Max Planck Institute for Brain Research Department of Medical Biochemistry and Research Group Developmental Neurobiology Biophysics Division of Molecular Neurobiology Examination Board: Prof. Jonas Muhr Co-supervisor(s): Karolinska Institutet Prof. Ola Hermansson Department of Cell and Molecular Biology Karolinska Institutet Department of Neuroscience Prof. Tomas Hökfelt Karolinska Institutet Assistant Prof. Francois Lallemend Department of Neuroscience Karolinska Institutet Division of Chemical Neurotransmission Department of Neuroscience Prof. Ted Ebedal Uppsala University Department of Neuroscience Division of Developmental Neuroscience To my parents ABSTRACT The autonomic nervous system is formed by a sympathetic and a parasympathetic division that have complementary roles in the maintenance of body homeostasis. Autonomic neurons, also known as visceral motor neurons, are tonically active and innervate virtually every organ in our body. For instance, cardiac outflow, thermoregulation and even the focusing of our eyes are just some of the plethora of physiological functions under the control of this system. Consequently, perturbation of autonomic nervous system activity can lead to a broad spectrum of disorders collectively known as dysautonomia and other diseases such as hypertension.
    [Show full text]
  • Facsimile Del Frontespizio Della Tesi Di Dottorato
    Allma Mater Studiiorum – Uniiversiità dii Bollogna DOTTORATO DI RICERCA IN SCIENZE MEDICHE VETERINARIE Ciclo XXIX° Settore Concorsuale di afferenza: 07/H1 Settore Scientifico disciplinare: VET 01 The nervous system of Delphinidae: neurochemical studies on different central and peripheral regions Presentata da: Anna Maria Rambaldi Coordinatore Dottorato Relatore Chiar.mo Prof. Arcangelo Gentile Chiar.mo Prof. Cristiano Bombardi Esame finale anno 2017 The nervous system of Delphinidae: neurochemical studies on different central and peripheral regions INDEX ABSTRACT 1 INTRODUCTION 7 1 Cetaceans and general adaptations to aquatic environment 8 2 The nervous system of cetaceans 11 2.1 Evolution 11 2.2 The central nervous system 14 2.3 The peripheral nervous system 23 EXPERIMENTAL STUDIES 25 3 Distribution of calretinin immunoreactivity in the lateral nucleus of the 26 bottlenose dolphin (Tursiops truncatus) amygdala 4 Calcitonin gene-related peptide (CGRP) expression in the spinal cord and 41 spinal ganglia of the bottlenose dolphin (Tursiops truncatus) 5 Nitrergic and substance P immunoreactive neurons in the enteric nervous 58 system of the bottlenose dolphin (Tursiops truncatus) intestine 6 Preliminary study on the expression of calcium binding proteins and 72 neuronal nitric oxide synthase (nNOS) in different brain regions of striped dolphins (Stenella Coeruleoalba) affected by morbillivirus CONCLUSIONS 91 REFERENCES 94 ABSTRACT During the evolutionary path, Cetaceans experienced a return to waters and hence had to adapt many of their anatomical and physiological features to this new life. Many organs and systems present several modifications and specialisations, which make these mammals different from their mainland ancestors. The nervous system either displays peculiar features like an extremely large brain, in terms of both absolute and relative mass, a very high level of gyrification, a minimization, or in some cases a complete lack, of olfactory structures, and a poorly developed corpus callosum.
    [Show full text]
  • Autonomic Nervous System
    Editing file Lecture 4: AUTONOMIC NERVOUS SYSTEM • Red : important • Pink : in girls slides only • Blue : in male slides only • Green : notes, Extra Objectives At the end of the lecture, students should be able to: ❖ Define the autonomic nervous system. ❖ Describe the structure of autonomic nervous system ❖ Trace the preganglionic & postganglionic neurons in both sympathetic & parasympathetic nervous system. ❖ Enumerate in brief the main effects of sympathetic & parasympathetic system Autonomic Nervous System The autonomic nervous system is concerned with the Autonomic nervous system: Nerve cells innervation and control of Involuntary structures such as located in both central & visceral organs, smooth muscles, cardiac muscles and glands. peripheral nervous system Skeletal muscles are controlled by somatic motor Difference between somatic and visceral motor: ● Somatic motor ● Function: Maintaining the homeostasis Fibers from Anterior horn cell —-> to target of the internal environment along with ● Visceral motor Regulation: (Controlled) the endocrine system. 1-Brain: from nuclei by the Hypothalamus 2- spinal cord: lateral horn cell Note: Hypothalamus controls ﺗﻌدي ﻋﻠﻰ . Ganglion ﻗﺑل ﺗوﺻل ﻟﻠـ Location: Central nervous system and Target ● both of Autonomic system + peripheral nervous system Endocrine system. Autonomic Nervous System Unlike the somatic nervous system, the Efferent pathway of the autonomic nervous system is made up of Preganglionic Neuron two neurons called as: Preganglionic Postganglionic The cell bodies are The cell bodies are Postganglionic Neuron located in the brain located in the and spinal cord autonomic ganglia (inside CNS ). (outside CNS). Preganglionic axons synapse with the postganglionic neurons Note: before the fibers reach the target, it should first pass by the autonomic ganglion and synapse ( interconnection).
    [Show full text]
  • Laboratory 10 - Neural Tissue
    LABORATORY 10 - NEURAL TISSUE In this course, the study of nervous tissue will be limited primarily to features of the peripheral nervous system (PNS). In virtually every slide there will be some portion of this system that should be recognized. The central nervous system (CNS) as such will be studied in the neuroscience course. OBJECTIVES: LIGHT MICROSCOPY: Recognize neuron and its characteristics including axon, dendrites and cell body. In any section, identify large and small bundles of peripheral nerves, their composition, and their connective tissue coverings. Recognize arrangement of neuron cell bodies into various types of ganglia. ELECTRON MICROSCOPY: Recognize neuron cell body and its characteristics. Recognize peripheral nerve bundles and the details of the association of axons and Schwann cells and the connective tissues that are associated with nerve bundles. ASSIGNMENT FOR TODAY'S LABORATORY GLASS SLIDES: SL181 (Spinal cord) Multipolar neurons SL 44 (Unsectioned nerve fibers) Peripheral nerve fibers SL 45A (Spinal cord) Neuron cell bodies and fibers (and SL 45B) SL168 (Spinal cord) Myelin stained SL 12 (Brachial plexus) Cross section of large nerve trunk SL 46 (Sciatic nerve) Longitudinal section of large nerve SL 16, 23, 24, 47 Peripheral nerves in various organs SL 49 Cranial nerve ganglion SL 50 Spinal ganglion (dorsal root ganglion) SL 51 Autonomic ganglion from sympathetic chain SL 53 (Colon) Parasympathetic ganglion SL 14 (Jejunum) Parasympathetic ganglion SL 60 (Muscle) Neuromuscular spindle ELECTRON MICROGRAPHS - See text and atlas Neurons J. 9-23 to 9-30, W. 7.3 Neurons and nerve fibers J. 9-5; W. 7.5 to 7.7, 7.18 POSTED ELECTRON MICROGRAPHS #16 Peripheral Nerve Lab 10 Posted EMs HISTOLOGY IMAGE REVIEW - available on computers in HSL Chapter 2.
    [Show full text]