Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films Ivan Kundrata*1,2,3, Karol Fröhlich1,3, Lubomír Vančo4, Matej Mičušík5 and Julien Bachmann2,6 Full Research Paper Open Access Address: Beilstein J. Nanotechnol. 2019, 10, 1443–1451. 1Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 841 04 doi:10.3762/bjnano.10.142 Bratislava, Slovakia, 2Friedrich-Alexander University of Erlangen-Nürnberg, Dept. Chemie and Pharmacy, Chair ”Chemistry of Received: 14 February 2019 Thin Film Materials”, Cauerstr. 3, 91058 Erlangen, Germany, 3Centre Accepted: 25 June 2019 of Excellence for Advanced Materials Application SAS, Dúbravská Published: 18 July 2019 cesta 5807/9, 841 04, Bratislava, Slovakia, 4STU Centre for Nanodiagnostics, Slovak University of Technology in Bratislava, This article is part of the thematic issue "Chemical thin coating methods Vazovova 5, 812 43 Bratislava, Slovakia, 5Polymer Institute, Slovak for functional nanomaterials". Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia and 6Saint Petersburg State University, Institute of Associate Editor: J. J. Schneider Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia © 2019 Kundrata et al.; licensee Beilstein-Institut. Email: License and terms: see end of document. Ivan Kundrata* -
[email protected] * Corresponding author Keywords: lithiated thin films; lithium hydride; solution atomic layer deposition (sALD) Abstract Lithiated thin films are necessary for the fabrication of novel solid-state batteries, including the electrodes and solid electrolytes. Physical vapour deposition and chemical vapour deposition can be used to deposit lithiated films. However, the issue of confor- mality on non-planar substrates with large surface area makes them impractical for nanobatteries the capacity of which scales with surface area.