Comparative Ecology of Microorganisms and Macroorganisms Second Edition Comparative Ecology of Microorganisms and Macroorganisms John H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rhetoric and Plants Alana Hatley University of South Carolina
University of South Carolina Scholar Commons Theses and Dissertations 2018 Rhetoric and Plants Alana Hatley University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the English Language and Literature Commons Recommended Citation Hatley, A.(2018). Rhetoric and Plants. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/4858 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Rhetoric and Plants by Alana Hatley Bachelor of Arts Northeastern State University, 2006 Master of Arts Northeastern State University, 2010 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in English College of Arts and Sciences University of South Carolina 2018 Accepted by: John Muckelbauer, Major Professor Mindy Fenske, Committee Member Byron Hawk, Committee Member Jeffrey T. Nealon, Committee Member Cheryl L. Addy, Vice Provost and Dean of the Graduate School © Copyright by Alana Hatley, 2018 All Rights Reserved. ii Acknowledgements So many people. Thank you to the First-Year English department at the University of South Carolina for giving me the opportunity to support myself while doing work that I truly care about. Similar thanks are due to the faculty at Northeastern State University, without whom I would never have arrived at USC. I also want to thank not only my teachers but also my students; your thoughts and minds have influenced mine in ways I cannot articulate. Thank you to Lisa Bailey, Erica Fischer, Amber Lee, Trevor C. -
Bioenergetics of Mixotrophic Metabolisms: a Theoretical Analysis
Bioenergetics of mixotrophic metabolisms: A theoretical analysis by Stephanie Slowinski A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Earth Sciences (Water) Waterloo, Ontario, Canada, 2019 © Stephanie Slowinski 2019 Author’s Declaration This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Statement of Contributions This thesis consists of two co-authored chapters. I contributed to the study design and execution in chapters 2 and 3. Christina M. Smeaton (CMS) and Philippe Van Cappellen (PVC) provided guidance during the study design and analysis. I co-authored both of these chapters with CMS and PVC. iii Abstract Many biogeochemical reactions controlling surface water and groundwater quality, as well as greenhouse gas emissions and carbon turnover rates, are catalyzed by microorganisms. Representing the thermodynamic (or bioenergetic) constraints on the reduction-oxidation reactions carried out by microorganisms in the subsurface is essential to understand and predict how microbial activity affects the environmental fate and transport of chemicals. While organic compounds are often considered to be the primary electron donors (EDs) in the subsurface, many microorganisms use inorganic EDs and are capable of autotrophic carbon fixation. Furthermore, many microorganisms and communities are likely capable of mixotrophy, switching between heterotrophic and autotrophic metabolisms according to the environmental conditions and energetic substrates available to them. -
Energetics of Life on the Deep Seafloor
Energetics of life on the deep seafloor Craig R. McClaina,1, Andrew P. Allenb, Derek P. Tittensorc,d, and Michael A. Rexe aNational Evolutionary Synthesis Center, Durham, NC 27705-4667; bDepartment of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia; cUnited Nations Environment Programme World Conservation Monitoring Centre, Cambridge CB3 0DL, United Kingdom; dMicrosoft Research Computational Science Laboratory, Cambridge CB3 0FB, United Kingdom; and eDepartment of Biology, University of Massachusetts, Boston, MA 02125-3393 Edited* by James H. Brown, University of New Mexico, Albuquerque, NM, and approved August 3, 2012 (received for review May 26, 2012) With frigid temperatures and virtually no in situ productivity, the vary with depth (13, 14), which is inversely related to POC flux deep oceans, Earth’s largest ecosystem, are especially energy-de- (16, 17). The influence of energy availability on individual growth prived systems. Our knowledge of the effects of this energy lim- rates and lifespans is unknown. At the community level, biomass itation on all levels of biological organization is very incomplete. and abundance generally decline with depth. Direct tests for the fl Here, we use the Metabolic Theory of Ecology to examine the in uences of POC and temperature on these community attrib- relative roles of carbon flux and temperature in influencing met- utes are rare, but they suggest only weak effects for temperature (16, 18). Although broad-scale patterns of deep-sea biodiversity abolic rate, growth rate, lifespan, body size, abundance, biomass, fi and biodiversity for life on the deep seafloor. We show that the are well-established and presumably linked to POC, speci c tests of this relationship remain limited (reviewed in ref. -
Plants Are Producers! Draw the Different Producers Below
Name: ______________________________ The Unique Producer Every food chain begins with a producer. Plants are producers. They make their own food, which creates energy for them to grow, reproduce and survive. Being able to make their own food makes them unique; they are the only living things on Earth that can make their own source of food energy. Of course, they require sun, water and air to thrive. Given these three essential ingredients, you will have a healthy plant to begin the food chain. All plants are producers! Draw the different producers below. Apple Tree Rose Bushes Watermelon Grasses Plant Blueberry Flower Fern Daisy Bush List the three essential needs that every producer must have in order to live. © 2009 by Heather Motley Name: ______________________________ Producers can make their own food and energy, but consumers are different. Living things that have to hunt, gather and eat their food are called consumers. Consumers have to eat to gain energy or they will die. There are four types of consumers: omnivores, carnivores, herbivores and decomposers. Herbivores are living things that only eat plants to get the food and energy they need. Animals like whales, elephants, cows, pigs, rabbits, and horses are herbivores. Carnivores are living things that only eat meat. Animals like owls, tigers, sharks and cougars are carnivores. You would not catch a plant in these animals’ mouths. Then, we have the omnivores. Omnivores will eat both plants and animals to get energy. Whichever food source is abundant or available is what they will eat. Animals like the brown bear, dogs, turtles, raccoons and even some people are omnivores. -
Demographic History and the Low Genetic Diversity in Dipteryx Alata (Fabaceae) from Brazilian Neotropical Savannas
Heredity (2013) 111, 97–105 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy ORIGINAL ARTICLE Demographic history and the low genetic diversity in Dipteryx alata (Fabaceae) from Brazilian Neotropical savannas RG Collevatti1, MPC Telles1, JC Nabout2, LJ Chaves3 and TN Soares1 Genetic effects of habitat fragmentation may be undetectable because they are generally a recent event in evolutionary time or because of confounding effects such as historical bottlenecks and historical changes in species’ distribution. To assess the effects of demographic history on the genetic diversity and population structure in the Neotropical tree Dipteryx alata (Fabaceae), we used coalescence analyses coupled with ecological niche modeling to hindcast its distribution over the last 21 000 years. Twenty-five populations (644 individuals) were sampled and all individuals were genotyped using eight microsatellite loci. All populations presented low allelic richness and genetic diversity. The estimated effective population size was small in all populations and gene flow was negligible among most. We also found a significant signal of demographic reduction in most cases. Genetic differentiation among populations was significantly correlated with geographical distance. Allelic richness showed a spatial cline pattern in relation to the species’ paleodistribution 21 kyr BP (thousand years before present), as expected under a range expansion model. Our results show strong evidences that genetic diversity in D. alata is the outcome of the historical changes in species distribution during the late Pleistocene. Because of this historically low effective population size and the low genetic diversity, recent fragmentation of the Cerrado biome may increase population differentiation, causing population decline and compromising long-term persistence. -
Nile Tilapia and Milkfish in the Philippines
FAO ISSN 2070-7010 FISHERIES AND AQUACULTURE TECHNICAL PAPER 614 Better management practices for feed production and management of Nile tilapia and milkfish in the Philippines Cover photographs: Top left: Harvest of milkfish in Panabo Mariculture Park, Panabo City, Davao, Philippines (courtesy of FAO/Thomas A. Shipton). Top right: Harvest of Nile tilapia in Taal Lake in the province of Batangas, the Philippines (courtesy of FAO/Mohammad R. Hasan). Bottom: A view of cage and pen culture of milkfish in a large brackishwater pond, Dagupan, Philippines. (courtesy of FAO/Mohammad R. Hasan). Cover design: Mohammad R. Hasan and Koen Ivens. FAO FISHERIES AND Better management practices AQUACULTURE TECHNICAL for feed production and PAPER management of Nile tilapia 614 and milkfish in the Philippines by Patrick G. White FAO Consultant Crest, France Thomas A. Shipton FAO Consultant Grahamstown, South Africa Pedro B. Bueno FAO Consultant Bangkok, Thailand and Mohammad R. Hasan Aquaculture Officer Aquaculture Branch FAO Fisheries and Aquaculture Department Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2018 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. -
Lectures 2020
Dr. Warshi Dandeniya Environmental microbiology SS 5113 Dr. Warshi Dandeniya Bioenergetics of microorganisms 2 h WS Evolution of metabolic pathways 2 h Reading assignment Techniques in environmental 3 h microbiology Presentation Microbial communities 3 h Biogeocycling of nutrients 4 h Enzymes in the soil env. 4 h Midterm paper All assessments 60% Microorganisms as sinks and 7 h WB sources of pollutants Presentation (15%) Principles of biological treatments 3 h End term examination 2h 25% Dr. Warshi Dandeniya Environmental microbiology The study of microorganisms that inhabit the Earth and their roles in carrying out processes in both natural and human made systems Ecology Physiology Environmental Microbial Sciences Ecology Thermodynamics Habitat diversity Evolution Dr. Warshi Dandeniya Traits of Microorganisms • Small size • Wide distribution throughout Earth’s habitat • High specific surface area • High rate of metabolic activity • Physiological responsiveness • Genetic malleability • Potential rapid growth rate • Incomparable nutritional diversity • Unbeatable enzymatic diversity What are the ecological consequences of traits? Can you name major taxonomic groups? Dr. Warshi Dandeniya Ubiquitous in the environment Dr. Warshi Dandeniya So much to explore • Estimated global diversity of microorganisms ~5 million species • So far cultured and characterized ~6,500 species • Documented based on biomarkers ~100,000 species Dr. Warshi Dandeniya An example from polar environment A metagenomic study with sea water revealed: • Very high microbial diversity in polar ocean • OTUs – 16S RNA gene markers with 97% similarity Cao et al., 2020 https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-020-00826-9 Dr. Warshi Dandeniya Sri Lankan experience: Diversity of fungi in dry mixed evergreen forests (Dandeniya and Attanayake 2017) Maximum of 10 different CFU/plate 177 species Undisturbed forest Regenerating forest Chena 8 Culture based approach Metagenomic approach 8 Dr. -
Supplementary Material 16S Rrna Clone Library
Kip et al. Biogeosciences (bg-2011-334) Supplementary Material 16S rRNA clone library To investigate the total bacterial community a clone library based on the 16S rRNA gene was performed of the pool Sphagnum mosses from Andorra peat, next to S. magellanicum some S. falcatulum was present in this pool and both these species were analysed. Both 16S clone libraries showed the presence of Alphaproteobacteria (17%), Verrucomicrobia (13%) and Gammaproteobacteria (2%) and since the distribution of bacterial genera among the two species was comparable an average was made. In total a 180 clones were sequenced and analyzed for the phylogenetic trees see Fig. A1 and A2 The 16S clone libraries showed a very diverse set of bacteria to be present inside or on Sphagnum mosses. Compared to other studies the microbial community in Sphagnum peat soils (Dedysh et al., 2006; Kulichevskaya et al., 2007a; Opelt and Berg, 2004) is comparable to the microbial community found here, inside and attached on the Sphagnum mosses of the Patagonian peatlands. Most of the clones showed sequence similarity to isolates or environmental samples originating from peat ecosystems, of which most of them originate from Siberian acidic peat bogs. This indicated that similar bacterial communities can be found in peatlands in the Northern and Southern hemisphere implying there is no big geographical difference in microbial diversity in peat bogs. Four out of five classes of Proteobacteria were present in the 16S rRNA clone library; Alfa-, Beta-, Gamma and Deltaproteobacteria. 42 % of the clones belonging to the Alphaproteobacteria showed a 96-97% to Acidophaera rubrifaciens, a member of the Rhodospirullales an acidophilic bacteriochlorophyll-producing bacterium isolated from acidic hotsprings and mine drainage (Hiraishi et al., 2000). -
Padgettia, a New Ge~Us Based on Fertile Ieurop Teroid
PADGETTIA, A NEW GE~US BASED ON FERTILE IEUROP TEROID FOLIAGE FROM THE PEH.MIAN OF TEX \S* SERGIUS H. MAi:vIAY .S. Geological Survey, \>Vashington 25, D.C. s Permian floras become increasingly to several adnate, sef'd-like fructifications, well-known, it becomes more apparent probably imbedded in the lZLIllina, aligned A that the Permian period produced parallel to the venation on either side of the many peculiar plant forms that defy close midrib. comparison with plants of the present. Pad Fronds at kast once pinnat ; pinnules gettia, the new genus to be described here, is apparently isophyllous, long (12 em. or morC') represen ted by one of these morphologically and relatively narrow (to 3 cm. wide) with anomalous types of plants. entire margins and cordate bases, the bminae The material upon which this account is tapering gently to acut apices. Pinnule based was found in an assemblage of plant midribs to 3 mm. wide, finely --triated; lateral compressions collected in 1939 by Charles veins clo ely spac d, departing decurrently B. Read, U.S. Geological Survey, at a locality at an angle of approximately 30 degrees, " approximately 2 miles northwest of Pad arching to meet pinnule margins nearly gett ", in Young County, Texas, (U.s.G.S. perpendicularly, usually forking once within Palaeobotanical Locality Number 8967). a short distance of the midrib According to the geological map of Young Fructifications ovoid, elliptical or pyriform, County (Plummer and Fuqua, 1937), out from 2·5 to 9·0 mm. long and 2·0 to 5·0 mm. crops in that area lie within the Lower wide, usually borne one or two, occasionally Permian Moran formation of the Wichita several to a pinnule, being evel Iy . -
Macroecology in the Age of Big Data –
Received: 7 February 2019 | Revised: 8 May 2019 | Accepted: 9 May 2019 DOI: 10.1111/jbi.13633 PERSPECTIVE Macroecology in the age of Big Data – Where to go from here? Rafael O. Wüest1 | Niklaus E. Zimmermann1 | Damaris Zurell2 | Jake M. Alexander3 | Susanne A. Fritz4,5 | Christian Hof6 | Holger Kreft7 | Signe Normand8 | Juliano Sarmento Cabral9 | Eniko Szekely10 | Wilfried Thuiller11 | Martin Wikelski12,13 | Dirk Nikolaus Karger1 1Swiss Federal Research Institute WSL, Birmensdorf, Switzerland 2Department of Geography, Humboldt University Berlin, Berlin, Germany 3Institute of Integrative Biology, ETH Zurich, Zürich, Switzerland 4Senckenberg Biodiversity and Climate Research Centre, Frankfurt (Main), Germany 5Institute of Ecology, Evolution & Diversity, Goethe‐University, Frankfurt (Main), Germany 6Terrestrial Ecology Research Group, Technical University of Munich, Freising, Germany 7Biodiversity, Macroecology & Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany 8Ecoinformatics & Biodiversity & Center for Biodiversity on a Changing world, Aarhus, Denmark 9Ecosystem Modeling, CCTB University of Würzburg, Würzburg, Germany 10Swiss Data Science Center, ETH Zurich and EPFL, Lausanne, Switzerland 11Evolution, Modeling and Analysis of Biodiversity (EMABIO), Laboratoire d'Ecologie Alpine (LECA), Université Grenoble Alpes, Grenoble, France 12Max‐Planck‐Institut for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany 13Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany Correspondence Dirk Nikolaus Karger, Swiss Federal Abstract Research Institute WSL, Zürcherstrasse 111, Recent years have seen an exponential increase in the amount of data available in all 8903 Birmensdorf, Switzerland. Email: [email protected] sciences and application domains. Macroecology is part of this “Big Data” trend, with a strong rise in the volume of data that we are using for our research. -
AP Biology Flash Review Is Designed to Help Howyou Prepare to Use Forthis and Book Succeed on the AP Biology Exam
* . .AP . BIOLOGY. Flash review APBIOL_00_ffirs_i-iv.indd 1 12/20/12 9:54 AM OTHER TITLES OF INTEREST FROM LEARNINGEXPRESS AP* U.S. History Flash Review ACT * Flash Review APBIOL_00_ffirs_i-iv.indd 2 12/20/12 9:54 AM AP* BIOLOGY . Flash review ® N EW YORK APBIOL_00_ffirs_i-iv.indd 3 12/20/12 9:54 AM The content in this book has been reviewed and updated by the LearningExpress Team in 2016. Copyright © 2012 LearningExpress, LLC. All rights reserved under International and Pan American Copyright Conventions. Published in the United States by LearningExpress, LLC, New York. Printed in the United States of America 987654321 First Edition ISBN 978-1-57685-921-6 For more information or to place an order, contact LearningExpress at: 2 Rector Street 26th Floor New York, NY 10006 Or visit us at: www.learningexpressllc.com *AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product. APBIOL_00_ffirs_i-iv.indd 4 12/20/12 9:54 AM Contents 1 . .. 11 IntRoDUCtIon 57 . ... A. 73 . ... B. 131 . ... C. 151 . .... D. 175 . .... e. 183 . .... F. 205 . .... G. 225 . .... H. 245 . .... I. 251 . .... K. 267 . .... L. 305 . .... M. [ v ] . .... n. APBIOL_00_fcont_v-viii.indd 5 12/20/12 9:55 AM 329 343 . .... o. 411 . .... P. 413 . .... Q. 437 . .... R. 489 . .... s. 533 . .... t. 533 . .... U. 539 . .... V. 541 . .... X. .... Z. [ vi ] APBIOL_00_fcont_v-viii.indd 6 12/20/12 9:55 AM * . .AP . BIOLOGY. FLAsH.ReVIew APBIOL_00_fcont_v-viii.indd 7 12/20/12 9:55 AM Blank Page 8 APBIOL_00_fcont_v-viii.indd 8 12/20/12 9:55 AM IntroductIon The AP Biology exam tests students’ knowledge Aboutof core themes, the AP topics, Biology and concepts Exam covered in a typical high school AP Biology course, which offers students the opportunity to engage in college-level biology study. -
Formulation of Diet Using Conventional and Non
OPEN ACCESS Freely available online e Rese tur arc ul h c & a u D q e A v e f l o o Journal of l p a m n r e u n o t J ISSN: 2155-9546 Aquaculture Research & Development Research Article Formulation of Diet Using Conventional and Non-Conventional Protein Sources Maria Lizanne AC*, Jeana Ida Rodrigues, Miriam Triny Fernandes Carmel College of Arts, Science & Commerce for Women, Nuvem, Salcette Goa-403 713, India ABSTRACT A 60-day feeding experiment was conducted on Swordtail, Xiphophorus helleri to correlate the growth and the crude protein percentage of the feed. Nine experimental diets (Treatments) were formulated using different locally and cheaply available conventional and nonconventional protein sources keeping the basal ingredients same. These diets were tested on three replicate groups of 10 fishes (initial body weight: 0.7 ± 0.5 g) bred in circular fiber reinforced plastic tanks of 120 liter capacity with 100 liter of seasoned de-chlorinated tap water. Fishes were fed 3% of their body weight. The growth performance of Swordtail was studied in terms of Weight Gain, Feed Conversion Ratio (FCR), Specific Growth Rate (SGR%/day) and Protein Efficiency Ratio (PER). The results indicated that Weight Gain was more in the Treatment that contained Chicken Waste and least in the Treatment that contained Marine Fish Waste. Specific growth rate%/per day and Protein efficiency ratio showed similar results. The Feed conversion ratio was greater in Treatment that contained Marine Fish Waste and least in Treatment that contained Chicken Waste. The study suggests that Chicken Waste as a major source of Protein can be effectively considered in the formulation of practical diet for better growth of Swordtail, Xiphophorus helleri.