Structural Disorder in Plant Proteins : Where Plasticity Meets Sessility

Total Page:16

File Type:pdf, Size:1020Kb

Structural Disorder in Plant Proteins : Where Plasticity Meets Sessility This is a repository copy of Structural disorder in plant proteins : where plasticity meets sessility. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/152165/ Version: Accepted Version Article: Covarrubias, A.A., Cuevas-Velazquez, C.L., Romero-Pérez, P.S. et al. (2 more authors) (2017) Structural disorder in plant proteins : where plasticity meets sessility. Cellular and Molecular Life Sciences, 74 (17). pp. 3119-3147. ISSN 1420-682X https://doi.org/10.1007/s00018-017-2557-2 This is a post-peer-review, pre-copyedit version of an article published in Cellular and Molecular Life Sciences. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00018-017-2557-2 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 2 3 4 5 STRUCTURAL DISORDER IN PLANT PROTEINS: 6 WHERE PLASTICITY MEETS SESSILITY 7 8 Alejandra A. Covarrubias*, Cesar L. Cuevas-Velazquez, Paulette S. Romero-Pérez 9 David F. Rendón-Luna and Caspar C. Chater 10 11 Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad 12 Nacional Autónoma de México, 62250 Cuernavaca, México 13 14 15 16 Running title: Protein structural disorder in plants 17 18 19 Key words: intrinsically disordered proteins, plant development, plant metabolism, plant 20 stress responses, plant signalling, LEA proteins, transcription factors. 21 22 23 24 * Corresponding author: E-mail: [email protected]; Tel.: 52-777-329-1643; Fax: 52- 25 777-313-9988; 26 1 1 ABSTRACT 2 Plants are sessile organisms. This intriguing nature provokes the question of how they 3 survive despite the continual perturbations caused by their constantly changing 4 environment. The large amount of knowledge accumulated to date demonstrates the 5 fascinating dynamic and plastic mechanisms, which underpin the diverse strategies 6 selected in plants in response to the fluctuating environment. This phenotypic plasticity 7 requires an efficient integration of external cues to their growth and developmental 8 programs that can only be achieved through the dynamic and interactive coordination of 9 various signalling networks. Given the versatility of intrinsic structural disorder within 10 proteins, this feature appears as one of the leading characters of such complex 11 functional circuits, critical for plant adaptation and survival in their wild habitats. In this 12 review, we present information of those intrinsically disordered proteins (IDPs) from 13 plants for which their high level of predicted structural disorder has been correlated with 14 a particular function, or where there is experimental evidence linking this structural 15 feature with its protein function. Using examples of plant IDPs involved in the control of 16 cell cycle, metabolism, hormonal signalling and regulation of gene expression, 17 development and responses to stress, we demonstrate the critical importance of IDPs 18 throughout the life of the plant. 19 2 1 2 INTRODUCTION 3 Throughout evolution plants have developed an extraordinary ability to overcome 4 fluctuating and drastic environmental changes. Their sessile nature has imposed the 5 selection of particular defense strategies allowing them efficient and effective adjustment 6 or acclimation responses to these conditions, as well as skilled mechanisms to tolerate 7 and survive them. The different endurance strategies selected in these organisms are 8 the result of complex structural and interconnected regulatory networks, which have 9 evolved in an intimate relationship with developmental programs. For instance, in many 10 plant species, the reproductive stage waits for favorable climatic conditions to instrument 11 a crucial set of processes for their perpetuation; root architecture modifies according to 12 the availability of water, phosphorus and other nutrients; and orthodox seeds once 13 desiccated can remain dormant for many years without significant loss in viability until 14 they find sufficient water to germinate [1, 2]. This outstanding resourcefulness suggests 15 mechanisms that make them capable of detecting diverse changes in the plant cell 16 milieu, imposed by the external environment or by developmental programs. 17 Many molecular response mechanisms are efficiently adapted for rapid detection of 18 subtle environmental fluctuations, as can be observed in mechano-sensitivity, ion 19 channels, proton pumps and post-translational protein modifications. The modification of 20 protein structure also seems to be an efficient and effective transducer of a great 21 diversity of signals. This phenomenon is commonly associated with changes in protein 22 conformation produced by phosphorylation or acetylation, or by interactions between 23 proteins or other partners such as nucleic acids or other small molecules acting as 24 substrates, cofactors, allosteric regulators, etc. [3, 4]. However, an adaptation that has 25 received less attention is that related to the intrinsic plasticity found in those proteins that 26 have the ability to present different transient structures depending on the nature of their 27 surroundings. 28 During the last decade we have witnessed significant advances in the identification and 29 characterization of many proteins showing intrinsic structural disorder. This has 30 increased our knowledge of their functional relevance, structural properties and 31 dynamics, as well as mechanisms of action (For review see [5-7]). Intrinsically 3 1 disordered proteins (IDPs) are widely distributed in all domains of life. Although only a 2 few complete proteomes from the different domains are currently available, various 3 bioinformatic studies agree that Eukaryota proteomes show a higher average of 4 disorder, compared to those of Bacteria, which in turn present higher disorder than 5 those of Archea. Interestingly, the predicted disorder in eukaryote proteomes spans a 6 broad range of score values, with both very low and very high disorder [8, 9]. Overall, 7 current information indicates that the level of disorder is higher in eukaryotic organisms 8 than in prokaryotes. Even more important is the observation that protein superfamilies, 9 which have undergone massive diversification during evolution, present more structural 10 disorder than other families. These data also correlate with the expansion of the number 11 of cell types in an organism, revealing a positive relationship between proteome disorder 12 and organism complexity [10, 11]. 13 The accumulated knowledge on IDPs has revealed their functional versatility resulting 14 from their peculiar properties. For example, IDPs can form ensembles with different 15 structural conformations, allowing variability in the exposed surfaces [7, 12-14]. This 16 structural plasticity confers to IDPs the ability to differentially exhibit different post- 17 translational modification sites and/or recognition motifs, depending on specific 18 conditions, to interact transiently, but specifically, with proteins or nucleic acids. With this 19 in mind, it is not surprising the central roles that IDPs play in cellular functions, achieving 20 regulatory and signalling roles as well as acting as scaffold or assembly proteins. 21 In this review, we present a general panorama of the available knowledge on protein 22 disorder in plants. We have put together this information in the context of fundamental 23 biological processes such as development, metabolism and stress responses, which in 24 spite of the limited number of studies unveil the functional relevance of these proteins in 25 the life of plants. The different IDPs referred to in this work are compiled in Tables 1 and 26 2. 27 28 IDPs DISTRIBUTION IN PLANTS 29 In recent years the discovery and characterization of proteins with different amounts of 30 structural disorder has revealed their high representation in plants [15-18]. Large-scale 31 analysis of IDPs and intrinsically disordered regions (IDRs) in Arabidopsis thaliana, a 4 1 widely used experimental model in plant biology, has shown that approximately 30% of 2 its proteome is mostly disordered [10, 16] whereas Zea mays and Glycine max 3 proteomes contain an even higher proportion of disorder (50%) [19]. Interestingly, the 4 chloroplast and mitochondrial proteomes show a significantly lower occurrence of 5 disorder (between 2–19%) when compared to nuclear proteomes of different plant 6 species. The abundance of disorder in these organellar proteomes is comparable to that 7 of Archaea and bacteria, in accordance with the bacterial origin of the genes encoding 8 their proteins [20]. The IDPs encoded in these organellar genomes are mostly involved 9 in translation, transcription or RNA biosynthesis, and some are structural constituents of 10 ribosomes, having in common the ability to form large complexes or to interact with 11 numerous partners, as expected from their intrinsic structural
Recommended publications
  • P110α and P110β Isoforms of PI3K Are Involved in Protection Against H­ 2O2 Induced Oxidative Stress in Cancer Cells
    Breast Cancer (2019) 26:378–385 https://doi.org/10.1007/s12282-018-0933-x ORIGINAL ARTICLE p110α and p110β isoforms of PI3K are involved in protection against H2O2 induced oxidative stress in cancer cells Paramjeet Singh1,2 · Nasima Bano1,2 · Md Mehedi Hossain1,2 · Rafia Basit1,2 · Mohd Jamal Dar1,2 Received: 17 July 2018 / Accepted: 15 November 2018 / Published online: 29 November 2018 © The Japanese Breast Cancer Society 2018 Abstract Purpose Phosphatidylinositol-3 kinases (PI3Ks) are involved in regulating cell growth, proliferation, differentiation, apop- tosis and survival. p110α and p110β, two ubiquitously expressed isoforms of PI3K signalling, are involved in growth factor mediated signaling and survival by generating second messengers. Earlier, we have generated GFP-fusion proteins of p110α and p110β and expressed them in normal and cancer cell-lines to investigate their subcellular localization and their role in various activities. Here, we sought to examine the role of p110α and p110β isoforms in protecting MCF-7 breast cancer cells against oxidative stress. Material methods We performed cytotoxicity assays, DNA transfection, Plasmid DNA preparation, western blotting, flour- scence microscopy and statistical analysis. Results To know whether p110α and p110β are involved in protecting MCF-7 breast cancer cells against oxidative stress, we subjected MCF-7 cells to H2O2 treatment and observed a dose dependent decrease in cell viability and a marked increase in the levels of pro-apoptotic markers which include PARP, Bcl-2, Bax and procaspase-9. We then over-expressed recombinant GFP-fusion p110α and p110β proteins in MCF-7 cells and observed a significant decrease in apoptosis and a concomitant increase in pAkt levels.
    [Show full text]
  • Rhetoric and Plants Alana Hatley University of South Carolina
    University of South Carolina Scholar Commons Theses and Dissertations 2018 Rhetoric and Plants Alana Hatley University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the English Language and Literature Commons Recommended Citation Hatley, A.(2018). Rhetoric and Plants. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/4858 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Rhetoric and Plants by Alana Hatley Bachelor of Arts Northeastern State University, 2006 Master of Arts Northeastern State University, 2010 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in English College of Arts and Sciences University of South Carolina 2018 Accepted by: John Muckelbauer, Major Professor Mindy Fenske, Committee Member Byron Hawk, Committee Member Jeffrey T. Nealon, Committee Member Cheryl L. Addy, Vice Provost and Dean of the Graduate School © Copyright by Alana Hatley, 2018 All Rights Reserved. ii Acknowledgements So many people. Thank you to the First-Year English department at the University of South Carolina for giving me the opportunity to support myself while doing work that I truly care about. Similar thanks are due to the faculty at Northeastern State University, without whom I would never have arrived at USC. I also want to thank not only my teachers but also my students; your thoughts and minds have influenced mine in ways I cannot articulate. Thank you to Lisa Bailey, Erica Fischer, Amber Lee, Trevor C.
    [Show full text]
  • Nuclear PI3K Signaling in Cell Growth and Tumorigenesis
    REVIEW published: 13 April 2015 doi: 10.3389/fcell.2015.00024 Nuclear PI3K signaling in cell growth and tumorigenesis William J. Davis, Peter Z. Lehmann and Weimin Li * College of Medical Sciences, Washington State University, Spokane, WA, USA The PI3K/Akt signaling pathway is a major driving force in a variety of cellular functions. Dysregulation of this pathway has been implicated in many human diseases including cancer. While the activity of the cytoplasmic PI3K/Akt pathway has been extensively studied, the functions of these molecules and their effector proteins within the nucleus are poorly understood. Harboring key cellular processes such as DNA replication and repair as well as nascent messenger RNA transcription, the nucleus provides a unique compartmental environment for protein–protein and protein–DNA/RNA interactions required for cell survival, growth, and proliferation. Here we summarize recent advances made toward elucidating the nuclear PI3K/Akt signaling cascade and its key components within the nucleus as they pertain to cell growth and tumorigenesis. This review covers Edited by: the spatial and temporal localization of the major nuclear kinases having PI3K activities Massimo Mattia Santoro, and the counteracting phosphatases as well as the role of nuclear PI3K/Akt signaling in University of Leuven, Belgium mRNA processing and exportation, DNA replication and repair, ribosome biogenesis, cell Reviewed by: Emilio Hirsch, survival, and tumorigenesis. University of Torino, Italy Keywords: nuclear signaling, PI3K/Akt/mTOR, cell growth, tumorigenesis, ribosome biogenesis, cell survival, DNA Andrea Graziani, damage, mRNA processing and export Università VIta-Salute San Raffaele, Italy *Correspondence: Introduction Weimin Li, College of Medical Sciences, Washington State University, 412 E In the late 1970s and early 1980s, the existence of a nuclear phosphatidylinositol (PtdIns) cycle Spokane Falls Blvd., Spokane 99202 was proposed (Manzoli et al., 1978, 1982).
    [Show full text]
  • Evidence for a Unique DNA-Dependent RNA Polymerase in Cereal Crops
    bioRxiv preprint doi: https://doi.org/10.1101/272708; this version posted February 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Evidence for a unique DNA-dependent RNA polymerase in cereal crops 2 Joshua T. Trujillo1, Arun S. Seetharam2, Matthew B. Hufford3, Mark A. Beilstein1,4, and 3 Rebecca A. Mosher1,4,* 4 5 1 Department of Molecular & Cellular Biology, The University of Arizona, Tucson, AZ 6 85721, USA 7 2 Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA 8 3 Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 9 Ames, IA 50011, USA 10 4 The School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA 11 12 * Corresponding author: Dr. Rebecca Mosher, 520-626-4185, 13 [email protected] 14 15 ORCiDs: 0000-0001-9817-4161 (JTT), 0000-0002-6789-9298 (ASS), 0000-0001-6379- 16 1899 (MBH), 0000-0002-3392-1389 (MAB), 0000-0003-2195-0825 (RAM) 17 18 Keywords: DNA-dependent RNA polymerase V, RNA-directed DNA methylation, gene 19 duplication, Poaceae 1 bioRxiv preprint doi: https://doi.org/10.1101/272708; this version posted February 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Non-Coding Rnas As Regulators of Transcription and Genome Organization Katalin Fejes Toth and Greg Hannon
    | 311 13 Non-Coding RNAs as Regulators of Transcription and Genome Organization Katalin Fejes Toth and Greg Hannon 13.1 Introduction “Junk DNA” was used as the provisional label for the portions of a genome for which no discernible function had been identified [1]. In a 1980 review in Nature Leslie Orgel and Francis Crick described junk DNA as having “little specificity and conveying little or no selective advantage to the organism” [2]. For decades, sci- entist considered the non-protein-coding portions of the genome as dispensable. Protein-coding genes comprise an astonishingly small part of eukaryotic genomes (less than 2% in humans, corresponding to roughly 20 000 genes; Chapter 1). However, as less complex eukaryotes, such as Caenorhabditis elegans, have a very similar number of protein-coding genes, it is clear that the developmental and physiological complexity of humans cannot be explained solely by the number of protein-coding genes. Alternative splicing and post-translational modification of proteins increase the diversity and functionality of the proteome likely explaining at least part of its increased complexity. However, it seems evident that much of the regulatory complexity that may contribute to the development of more complex organisms can be established by non-coding RNAs (ncRNAs), as discussed in further detail in Chapter 14. In accord with the notion that much of the genome represents an evolutionary junk heap, many non-coding transcripts have been proposed to result from leaky or pervasive non-specific transcription. Recent high throughput studies indicate that the transcription of our genomes extends far beyond the limited sequences comprising protein-coding genes, with almost the every base in the genome appearing in non-coding RNAs or ncRNAs.
    [Show full text]
  • Padgettia, a New Ge~Us Based on Fertile Ieurop Teroid
    PADGETTIA, A NEW GE~US BASED ON FERTILE IEUROP­ TEROID FOLIAGE FROM THE PEH.MIAN OF TEX \S* SERGIUS H. MAi:vIAY .S. Geological Survey, \>Vashington 25, D.C. s Permian floras become increasingly to several adnate, sef'd-like fructifications, well-known, it becomes more apparent probably imbedded in the lZLIllina, aligned A that the Permian period produced parallel to the venation on either side of the many peculiar plant forms that defy close midrib. comparison with plants of the present. Pad­ Fronds at kast once pinnat ; pinnules gettia, the new genus to be described here, is apparently isophyllous, long (12 em. or morC') represen ted by one of these morphologically and relatively narrow (to 3 cm. wide) with anomalous types of plants. entire margins and cordate bases, the bminae The material upon which this account is tapering gently to acut apices. Pinnule based was found in an assemblage of plant midribs to 3 mm. wide, finely --triated; lateral compressions collected in 1939 by Charles veins clo ely spac d, departing decurrently B. Read, U.S. Geological Survey, at a locality at an angle of approximately 30 degrees, " approximately 2 miles northwest of Pad­ arching to meet pinnule margins nearly gett ", in Young County, Texas, (U.s.G.S. perpendicularly, usually forking once within Palaeobotanical Locality Number 8967). a short distance of the midrib According to the geological map of Young Fructifications ovoid, elliptical or pyriform, County (Plummer and Fuqua, 1937), out­ from 2·5 to 9·0 mm. long and 2·0 to 5·0 mm. crops in that area lie within the Lower wide, usually borne one or two, occasionally Permian Moran formation of the Wichita several to a pinnule, being evel Iy .
    [Show full text]
  • Sensing the Epigenome
    Review Special Issue: Noncoding and small RNAs Sensing the epigenome Jay B. Hollick Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA Recent studies of plant development and environmental DRD1 : Arabidopsis gene DEFECTIVE IN RNA-DIRECTED DNA METHYLATION1, stress responses have converged on the roles of RNA encoding a Rad54-type ATPase necessary for RNA-directed DNA methylation. and its metabolism as primary regulators of gene action. En/Spm : a well-characterized autonomous TIR CACTA-type DNA transposon, Enhancer/Suppressor-mutator, described in maize. This RNA-based system appears to represent a versatile FCA : Arabidopsis gene FLOWERING TIME CONTROL PROTEIN, encoding a platform both for maintaining epigenetic memory and RNA-binding protein regulating flower development. FLC : Arabidopsis gene FLOWERING LOCUS C, encoding a MADS-type protein for reprogramming gene control in response to external that acts as a repressor of flowering. signals. The fast-paced research reviewed here high- FLD : Arabidopsis gene FLOWERING LOCUS D, encoding a histone deacetylase lights exciting new trends in plant research relating to that acts to promote flower development. FPA : Arabidopsis gene (At2g43410), encoding a RNA-binding protein regulat- mechanisms and roles of the RNA-dependent epigen- ing flower development. ome in both development and evolution. Imprinted module : a set of neighboring genes showing differential action depending on parent-of-origin transmission. Emerging regulatory roles of RNA lbl1 : maize locus leafbladeless1, expressing a SGS3-type protein required for tasiRNA production. Barbara McClintock was the first to surmise that the LINE : eukaryotic retrotransposon of the long-interspersed nuclear element activation of previously silenced transposons was related class.
    [Show full text]
  • Implicit Scaling in Ecological Research on When to Make Studies of Mice and Men
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Implicit Scaling in Ecological Research On when to make studies of mice and men Thomas W. Hoekstra, Timothy F. H. Allen, and Curtis H. Flather cology focuses on tangible or­ awareness of scale-dependent rela­ E ganisms; ecological complexity tionships among organisms and eco­ results from the myriad of pat­ Various concepts logical concepts and the implications terns with which the many different associate with of these relationships. The tangibility types of organisms interact in their and familiarity of the organisms the environments. Yet ecology is by no particular. types. of ecologist counts or manipulates can means devoid of abstraction. To pro­ organisms tn lead to a false sense of objectivity. duce general principles out of the Considering scale in an explicit man­ mass of complicated natural histories, ecological research ner should result in measured judge­ ecology is replete with concepts, such ment instead of the happenstance of as competition, evolution, and succes­ unwitting choice. sion, and abstruse structures, such as communities and ecosystems. al. 1989, Golley 1989, Meentemeyer Identifying the human scale in The diversity of organisms and eco­ and Box 1987, Milne in press). the ecological literature logical concepts has always threat­ In this article scale is defined by the ened to bury ecologists in a profusion temporal and spatial characteristics We conducted a computer-assisted of special cases. However, the notion of energy and matter within and literature search on words found ei­ of scale offers a framework for order­ among ecological systems.
    [Show full text]
  • Polivb Influences RNA-Directed DNA Methylation Independently of Its Role in Sirna Biogenesis
    PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis Rebecca A. Mosher*, Frank Schwach†, David Studholme, and David C. Baulcombe*‡ Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom Edited by James C. Carrington, Center for Genome Research and Biocomputing, Corvallis, OR, and accepted by the Editorial Board December 31, 2007 (received for review October 10, 2007) DNA-dependent RNA polymerase (Pol)IV in Arabidopsis exists in There are two genes in Arabidopsis encoding the putative two isoforms (PolIVa and PolIVb), with NRPD1a and NRPD1b as largest subunit of PolIV (NRPD1A and NRPD1B), and it is likely their respective largest subunits. Both isoforms are implicated in that they share the second largest subunit (NRPD2A) to gen- production and activity of siRNAs and in RNA-directed DNA meth- erate two PolIV isoforms. Mutations in either of the two NRPD1 ylation (RdDM). Deep sequence analysis of siRNAs in WT Arabi- subunits affect siRNA accumulation, although nrpd1b affects dopsis flowers and in nrpd1a and nrpd1b mutants identified siRNA accumulation at only a subset of the loci affected by >4,200 loci producing siRNAs in a PolIV-dependent manner, with nrpd1a (3, 5, 20, 21). This differential effect prompted the PolIVb reinforcing siRNA production by PolIVa. Transposable ele- proposal that PolIVb acts downstream of PolIVa at repeated ment identity and pericentromeric localization are both features sequence loci to amplify siRNA production and methylate DNA, that predispose a locus for siRNA production via PolIV proteins and whereas, at less repetitive loci, PolIVa functions without PolIVb determine the extent to which siRNA production relies on PolIVb.
    [Show full text]
  • Vegetal Entanglements Editor in Chief
    antennae THE JOURNAL OF NATURE IN VISUAL CULTURE SPRING 2021 vegetal entanglements Editor in Chief Giovanni Aloi – School of the Art Institute of Chicago and Sotheby’s Institute of Art Academic Board Steve Baker – University of Central Lancashire Melissa Boyde – University of Wollongong Ron Broglio – Arizona State University Matthew Brower – University of Toronto Eric Brown – University of Maine at Farmington Carol Gigliotti – Emily Carr University of Art and Design in Vancouver antennae Donna Haraway – University of California, Santa Cruz THE JOURNAL OF NATURE IN VISUAL CULTURE Susan McHugh – University of New England edited by Giovanni Aloi Brett Mizelle – California State University Claire Parkinson – Edge Hill University Cecilia Novero – University of Otago Jennifer Parker–Starbuck – Royal Holloway Annie Potts – University of Canterbury Antennae (founded in 2006) is the international, peer reviewed, academic Ken Rinaldo – Ohio State University journal on the subject of nature in contemporary art. Its format and Nigel Rothfels – University of Wisconsin contents are inspired by the concepts of ‘knowledge transfer’ and ‘widening Jessica Ullrich – University of Art Münster participation’. Three times a year, the Journal brings academic knowledge Andrew Yang – School of the Art Institute of Chicago within a broader arena, one including practitioners and a readership that Global Contributors may not regularly engage in academic discussion. Ultimately, Antennae Sonja Britz / Tim Chamberlain / Conception Cortes / Lucy Davis / Amy Fletcher / Katja Kynast / Christine Marran / Carolina encourages communication and crossovers of knowledge amongst Parra / Zoe Peled / Julien Salaud / Paul Thomas / Sabrina Tonutti / Joanna Willenfelt artists, scientists, scholars, activists, curators, and students. In January 2009, the establishment of Antennae’s Senior Academic Board, Advisory Advisory Board Board, and Network of Global Contributors has affirmed the journal as an Rod Bennison / Helen J.
    [Show full text]
  • Maize RNA Polymerase IV Complexes and Their Control of Gene Function
    Maize RNA polymerase IV complexes and their control of gene function by Joy-El Renee Barbour Talbot A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jay B. Hollick, Co-chair Professor Jasper D. Rine, Co-chair Professor Michael B. Eisen Professor Michael R. Freeling Summer 2015 Maize RNA polymerase IV complexes and their control of gene function Copyright 2015 by Joy-El Renee Barbour Talbot 1 Abstract Maize RNA polymerase IV complexes and their control of gene function by Joy-El Renee Barbour Talbot Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Jay B. Hollick, Co-chair Professor Jasper D. Rine, Co-chair Plants have acquired and maintained an expanded suite of DNA-dependent RNA poly- merases (RNAPs) compared to other eukaryotes. Although their exact roles remain unclear, plant-specific RNAPs (Pol IV and Pol V) are involved in epigenetic silencing of transposable elements (TEs). Zea mays (maize) Pol IV is required for proper plant development as well as the establishment and maintenance of paramutations, which are trans-homolog interactions that facilitate heritable gene silencing. Maize has duplications of Pol IV catalytic subunits, which define multiple Pol IV subtypes, and accessory proteins associated with these subtypes define distinct Pol IV complexes. Understanding the roles of Pol IV will require identify- ing the composition and function of these Pol IV subtypes and complexes. In exploring interactions between the genes encoding a Pol IV catalytic subunit and a putative accessory protein, I identified two new alleles of the Pol IV subunit and a family of potential Pol IV accessory proteins conserved in multicellular plants.
    [Show full text]
  • Sbta1301 – Molecular Biology and Genetics
    SCHOOL OF BIO AND CHEMICAL ENGINEERING DEPARTMENT OF BIOTECHNOLOGY SBTA1301 – MOLECULAR BIOLOGY AND GENETICS UNIT – I – CLASSICAL GENETICS Mendelian Inheritance Mendelian inheritance is inheritance of biological features that follows the laws proposed by Gregor Johann Mendel in 1865 and 1866 and re-discovered in 1900. It was initially very controversial. When Mendel's theories were integrated with the Boveri–Sutton chromosome theory of inheritance by Thomas Hunt Morgan in 1915, they became the core of classical genetics while Ronald Fishercombined them with the theory of natural selection in his 1930 book The Genetical Theory of Natural Selection, putting evolutiononto a mathematical footing and forming the basis for Population genetics and the modern evolutionary synthesis. History The laws of inheritance were derived by Gregor Mendel, a nineteenth- century Austrian monk conducting hybridization experiments in garden peas (Pisum sativum) he planted in the backyard of the church. Between 1856 and 1863, he cultivated and tested some 5,000 pea plants. From these experiments, he induced two generalizations which later became known as Mendel's Principles of Heredity or Mendelian inheritance. He described these principles in a two-part paper, Versuche über Pflanzen-Hybriden(Experiments on Plant Hybridization), that he read to the Natural History Society of Brno on February 8 and March 8, 1865, and which was published in 1866. Mendel's conclusions were largely ignored. Although they were not completely unknown to biologists of the time, they were not seen as generally applicable, even by Mendel himself, who thought they only applied to certain categories of species or traits. A major block to understanding their significance was the importance attached by 19th-century biologists to the apparent blending of inherited traits in the overall appearance of the progeny, now known to be due to multigene interactions, in contrast to the organ-specific binary characters studied by Mendel.
    [Show full text]