Orpower 4 Inc Environmental Impact Assessment Olkaria Iii Geothermal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tectonic and Climatic Control on Evolution of Rift Lakes in the Central Kenya Rift, East Africa
Quaternary Science Reviews 28 (2009) 2804–2816 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa A.G.N. Bergner a,*, M.R. Strecker a, M.H. Trauth a, A. Deino b, F. Gasse c, P. Blisniuk d,M.Du¨ hnforth e a Institut fu¨r Geowissenschaften, Universita¨t Potsdam, K.-Liebknecht-Sr. 24-25, 14476 Potsdam, Germany b Berkeley Geochronology Center, Berkeley, USA c Centre Europe´en de Recherche et d’Enseignement de Ge´osciences de l’Environement (CEREGE), Aix en Provence, France d School of Earth Sciences, Stanford University, Stanford, USA e Institute of Arctic and Alpine Research, University of Colorado, Boulder, USA article info abstract Article history: The long-term histories of the neighboring Nakuru–Elmenteita and Naivasha lake basins in the Central Received 29 June 2007 Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and Received in revised form the formation of disparate sedimentary environments. Although modern climate conditions in the 26 June 2009 Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Accepted 9 July 2009 Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen 14Cand40Ar/39Ar dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recor- ded in these basins based on fossil diatom assemblages and geologic field mapping. -
Notes on the Ground and Polished Stone Axes of East Africa
NOTES ON THE GROUND AND POLISHED STONE AXES OF EAST AFRICA. By MARY D. LEAKEY. During the last thirty years, a number of polished stone. axes have been discovered in East Africa. The majority of these have been chance finds made by farmers in the course of plough• ing or other agricultural activities, with the result that little reliable evidence has been recorded concerning associated mate• rial or stratigraphy. In spite of this regrettable lack of data, the five types of axe represented among the 22 complete specimens known to exist appear to be sufficiently interesting and their occurrence in Kenya and Tanganyika, of sufficient importance to merit a short description. Since the term "neolithic" is frequently applied to ground and polished stone implements and since it is permissible to assume for the present that the East African axes belong to this cultural phase, it may not be out of place to summarise the bases on which the term is applied in the area under review. It seems that for the greater part of Africa, excluding the Egyptian field, the characteristics of the neolithic stage in cultural development are generally recognised as being somewhat different to those understood for Europe. There, the combination of agriculture, the domestication of stock, pottery and the grinding and polishing of stone implements are usually considered essential criteria and are frequently found together in the same context. In East Africa, on the other hand, where our knowledge is still extremely scanty, although two or more of the above features may be present, all four have not hitherto been discovered in association. -
Wildlife Safari in Kenya September 1-15, 2023
Wildlife Safari in Kenya September 1-15, 2023 (Pre-Trip Extension #1: Victoria Falls/Botswana Aug 22-31) (Pre-Trip Extension #2: Cape Town Adventure Aug 18-22) 15 Nights – 2 Full Weeks on Safari During the Migration Season! Accommodations in some of the Premier Tent Camps & Lodges Kenya has to offer! Samburu and Mara Reserves + Lake Elementeita Daily Game Drives and Other Activities Animals, Animals, Animals, as well as Local Culture and Color Transportation provided in your own, dedicated, 4-person Toyota Land Cruiser driven by some of the best guides in Kenya! Visit to the world-famous Daphne Sheldrick Elephant Orphanage Plus a visit to Hope Streams Academy, an inspiring success story for one of Nairobi’s largest slums DAY -2 - WED AUG 30 OPTIONAL: Those traveling from the West Coast may wish to spend the night near JFK. For those interested in doing this, I will make reservations for the group. DAY -1 - THUR AUG 31 Board your flight from the States (if not doing Vic Falls/Botswana pre-trip) and begin your journey to Nairobi. DAY 1 - FRI SEP 1 NAIROBI Today we arrive in Nairobi, are met by our host representative and transferred to our hotel. We will meet this evening for a Welcome Reception. Accommodation: Karen Blixen Coffee Garden and Cottages DAY 2 NAIROBI After breakfast we head out for a day of activities in and around Nairobi. The morning will be spent visiting the Karen Blixen Museum followed by a moving visit to Hope Streams Academy. We will then visit Utamaduni, the famous arts and crafts emporium before heading back to Karen Blixen Cottages for lunch. -
Analysis and Mapping of Water-Related Conflicts in the Catchment of Lake Naivasha (Kenya)
Competition over water resources: analysis and mapping of water-related conflicts in the catchment of Lake Naivasha (Kenya) Carolina Boix Fayos February 2002 Competition over water resources: analysis and mapping of water-related conflicts in the catchment of Lake Naivasha (Kenya) By Carolina Boix Fayos Supervisors: Dr. M.McCall (Social Sciences) Drs. J. Verplanke (Social Sciences) Drs. R. Becht (Water Resources) Thesis submitted to the International Institute for Geoinformation Science and Earth Observation in partial fulfilment of the requirements for the degree of Master of Science in Water Resources and Environmental Management Degree Assessment Board Chairman: Prof. Dr. A.M.J. Meijerink (Water Resources) External examiner: Prof. A. van der Veen (University of Twente) Members: Dr. M.K. McCall (Social Sciences) Drs. J.J. Verplanke (Social Sciences) Drs. R. Becht (Water Resources) INTERNATIONAL INSTITUTE FOR GEOINFORMATION SCIENCE AND EARTH OBSERVATION ENSCHEDE, THE NETHERLANDS Disclaimer This document describes work undertaken as part of a programme of study at the International Institute for Geoinformation Science and Earth Observation. All views and opinions expressed therein remain the sole responsibility of the author, and do not necessarily represent those of the institute. A mi abuelo Paco (Francisco Fayos Artés) que me enseñó a apreciar la tierra y sus gentes y a disfrutar con la Geografía y la Historia ACKNOWLEDGEMENT The experience of ITC has been very special. I am very grateful to the Fundación Alfonso Martín Escudero (Madrid, Spain) who paid the ITC fees and supported me economically during the whole period. I am also very grateful to my supervisors Dr. Mike McCall, Drs. -
Kenyan Stone Age: the Louis Leakey Collection
World Archaeology at the Pitt Rivers Museum: A Characterization edited by Dan Hicks and Alice Stevenson, Archaeopress 2013, pages 35-21 3 Kenyan Stone Age: the Louis Leakey Collection Ceri Shipton Access 3.1 Introduction Louis Seymour Bazett Leakey is considered to be the founding father of palaeoanthropology, and his donation of some 6,747 artefacts from several Kenyan sites to the Pitt Rivers Museum (PRM) make his one of the largest collections in the Museum. Leakey was passionate aboutopen human evolution and Africa, and was able to prove that the deep roots of human ancestry lay in his native east Africa. At Olduvai Gorge, Tanzania he excavated an extraordinary sequence of Pleistocene human evolution, discovering several hominin species and naming the earliest known human culture: the Oldowan. At Olorgesailie, Kenya, he excavated an Acheulean site that is still influential in our understanding of Lower Pleistocene human behaviour. On Rusinga Island in Lake Victoria, Kenya he found the Miocene ape ancestor Proconsul. He obtained funding to establish three of the most influential primatologists in their field, dubbed Leakey’s ‘ape women’; Jane Goodall, Dian Fossey and Birute Galdikas, who pioneered the study of chimpanzee, gorilla and orangutan behaviour respectively. His second wife Mary Leakey, whom he first hired as an artefact illustrator, went on to be a great researcher in her own right, surpassing Louis’ work with her own excavations at Olduvai Gorge. Mary and Louis’ son Richard followed his parents’ career path initially, discovering many of the most important hominin fossils including KNM WT 15000 (the Nariokotome boy, a near complete Homo ergaster skeleton), KNM WT 17000 (the type specimen for Paranthropus aethiopicus), and KNM ER 1470 (the type specimen for Homo rudolfensis with an extremely well preserved Archaeopressendocranium). -
The Estimation of Lake Naivasha Area Changes Using of Hydro-Geospatial Technologies
http://dx.doi.org/10.4314/rj.v1i1S.3D The Estimation of Lake Naivasha Area Changes Using of Hydro-Geospatial Technologies A. Ruhakana Soil and Water Management Research Program Rwanda Agriculture Board, Huye, Rwanda [email protected] Abstract: Remote Sensing (RS) and Geographical Information System (GIS) were proved as new technology to intervene in monitoring, managing and protecting environmental resources among others lake and water reservoir are mostly anxious resources. The objective of the study was to estimate the surface area change of the lake Naivasha using RS, GIS techniques and hydrological modeling for the lake water balance. Landat images Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) taken respectively in the same month of January 1986; 1995; 2003 and 2010 were the input data used to assess the different changes of the lake area on one hand. on other hand the spread sheet data set helped to build the hydrological model to estimate the long term lake Level fluctuation, the rainfall versus evaporation as in flow and out flow from the lake. The lake volume showed the dynamic of ground water to simulate the long-term fluctuation of the lake level. The lake area changes from the model were calculated from the spread sheet input data from 1986 to 2003 while the lake area changes from the Landsat images were calculated from 1986 to 2010. The comparative results from the area lake changes both from Landsat images and hydrological model confirmed the correlation results, 45.72 Km2 or 32.03 % in 2010 for the Landsat while the hydrological model estimated to 12km2 or 8% area reduction in 2003. -
Application of Stable Isotope Geochemistry to Tracing Recharge and Flow Systems of Fluids in the Olkaria Geothermal Field, Kenya
Orkustofnun, Grensasvegur 9, Reports 2014 IS-108 Reykjavik, Iceland Number 24 APPLICATION OF STABLE ISOTOPE GEOCHEMISTRY TO TRACING RECHARGE AND FLOW SYSTEMS OF FLUIDS IN THE OLKARIA GEOTHERMAL FIELD, KENYA Melissa Nailantei Nkapiani Kenya Electricity Generating Company – KenGen P.O. Box 785 – 20117, Naivasha KENYA [email protected] ABSTRACT The long term success of any geothermal energy utilization depends on understanding groundwater movements and recharge areas. Water and steam condensates from subfields in the Olkaria geothermal field have been studied using the stable isotope ratios of hydrogen and oxygen to gain information on thermal fluid flow and to trace the origin of thermal waters. Isotope fractionation factors and mass balance equations were used to characterize reservoir fluid composition of wells in the area, assuming single stage steam separation. Comparison of the two methods yields coherent results for the oxygen- 18 isotope ratio, but the deuterium isotope ratio varies to some extent. The reservoir fluid isotope composition of the thermal waters suggests three recharge zones for the field: one from groundwater from the eastern Rift wall with δD about = -24‰; groundwater from the western Rift flank with δD about = -30‰; and the other from an evapo-concentrated source with δD about = 36‰. Qualitative interpretation of the available data suggests that the evapo-concentrated source largely contributes to the recharge of the East field, North East field and a part of the Domes field. Groundwater from the western rift wall recharges the West field of the area. The eastern Rift wall groundwater contributes to the southeast part of the Domes field. -
Geology Natvasha Area
Report No. 55 GOVERNMENT OF KENYA* MINISTRY OF COMMERCE AND INDUSTRY GEOLOGICAL SURVEY OF KENYA GEOLOGY OF THE NATVASHA AREA EXPLANATION OF DEGREE SHEET 43 S.W. (with coloured geological map) by A. O. THOMPSON M.Sc. and R. G. DODSON M.Sc. Geologists Fifteen Shillings - 1963 Scanned from original by ISRIC - World Soil Information, as ICSU World Data Centre for Soils. The purpose is to make a safe depository for endangered documents and to make the accrued information available for consultation, following Fair Use Guidelines. Every effort is taken to respect Copyright of the materials within the archives where the identification of the Copyright holder is clear and, where feasible, to contact the originators. For questions please contact soil.isric(a>wur.nl indicating the item reference number concerned. ISRIC LIBRARY ü£. 6Va^ [ GEOLOGY Wageningen, The Netherlands | OF THE EXPLANATION OF DEGREE SHEET 43 S.W. (with coloured geological map) by A. O. THOMPSON M.Sc. and R. G. DODSON M.Sc. Geologists FOREWORD Previous to the undertaking of modern geological surveys the Naivasha area, in the south-central part of Kenya Rift Valley, was probably the best known part of the Colony from the geological point of view. This resulted partly from ease of access, as from the earliest days the area was crossed by commonly used routes of com munication, and partly from the presence of lakes, which in Pleistocene times were much larger and made the country an ideal habitat for Prehistoric Man and animals that have left their traces behind them in the beds that were then deposited. -
Technical Report KMF/RS/2018/C 1.7 31ST MARCH 2018
KENYA MARINE AND FISHERIES RESEARCH INSTITUTE FRESH WATER SYSTEMS ASSESSMENT OF THE FISHERIES STATUS IN RIVER MALEWA TO GUIDE MANAGEMENT OF THE FISHERY Technical Report KMF/RS/2018/C 1.7 31ST MARCH 2018 i DOCUMENT CERTIFICATION Certification by KMFRI Assistant Director Freshwater Systems I hereby certify that this report has been done under my supervision and submitted to the Director. Name: Christopher Aura Mulanda (PhD) Signature: 8th Feb., 2018 Certification by Director KMFRI I hereby acknowledge receipt of this Report Name: Prof. James M. Njiru (PhD) Signature: Date: 18th June 2018 ii Produced by: Kenya Marine and Fisheries Research Institute P. O. Box 81651-80100 Mombasa Kenya Tel: +254 (041)475151/4 Website: www.kmfri.co.ke Email: [email protected] Suggested citation formats: Nzioka, A., Morara, G., Boera, P.,Waithaka, E., Mutie, A., Obegi, B., and Loki, P (2017). Assessment of the fisheries status in River Malewa to guide management of the fishery. Technical report KMF/RS/2018/C1.7. Kenya Marine and Fisheries Research Institute. 28pp iii Acknowledgements We wish to thank the Government of Kenya for funding this activity through the Director KMFRI and Deputy Director Fresh Water systems for facilitating. Many thanks to KMFRI Naivasha technical team for assisting with logistics and sampling, and to the entire KMFRI Naivasha staff for their support. iv Abstract This study presents the first documentation of the status of the River Malewa fishery, a major river draining into Lake Naivasha and, to relate the status of the current commercial fishery to information on potential yields so as to identify whether or not there is a scope for better management and utilization of the resource (River Malewa fishery).Six sampling sites were selected from the upper catchment area of the Malewa river system to the lower catchment as it drains into Lake Naivasha.An integrated assessment of water quality to all sites, including the collection of fish communities, physical habitat and chemical information to assess river Malewa conditions was conducted. -
Biosearch 2004 Report
Biosearch Nyika: Malawi 2004 Edited by Marianne J Overton FOREWORD Peter Overton It is ten years since the Biosearch Nyika project was first mooted and agreement with the Director of National Parks and Wildlife obtained for our exploration of the remoter parts of the Nyika National Park. Over this period the teams have focused mainly on the northern part of the park where patrolling has been very limited and our gathering of intelligence has been most helpful to the Nyika management. In 2004 we undertook the most challenging expedition to date, launched from the extreme north of the park at Uledi, a four-hour drive from Thazima. The team‟s first challenge was to cross the unbridged North Rukuru River with all their supplies. They then had to climb up the western escarpment of the Mpanda ridge to a point on the Mpero River, where they set up a Base Camp, from which to launch out on their surveys. The greatest achievement was to climb both Mpanda and Kawozya and discover the remote Bleak House, now derelict but offering stunning views over Lake Malawi and far beyond. At this point they could certainly claim to be in remote country since this old site is much talked about but very rarely seen by visitors. We have yet to have clear information about who built it, when and why. Perhaps it was a holiday „retreat‟ for Livingstonia or a staging post for missionaries who conducted business on the west of the Nyika National Park and into Zambia. In many ways this expedition was the pinnacle of logistical achievement. -
Distribution, Ecology, Chemistry and Toxicology of Plant Stinging Hairs
toxins Review Distribution, Ecology, Chemistry and Toxicology of Plant Stinging Hairs Hans-Jürgen Ensikat 1, Hannah Wessely 2, Marianne Engeser 2 and Maximilian Weigend 1,* 1 Nees-Institut für Biodiversität der Pflanzen, Universität Bonn, 53115 Bonn, Germany; [email protected] 2 Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53129 Bonn, Germany; [email protected] (H.W.); [email protected] (M.E.) * Correspondence: [email protected]; Tel.: +49-0228-732121 Abstract: Plant stinging hairs have fascinated humans for time immemorial. True stinging hairs are highly specialized plant structures that are able to inject a physiologically active liquid into the skin and can be differentiated from irritant hairs (causing mechanical damage only). Stinging hairs can be classified into two basic types: Urtica-type stinging hairs with the classical “hypodermic syringe” mechanism expelling only liquid, and Tragia-type stinging hairs expelling a liquid together with a sharp crystal. In total, there are some 650 plant species with stinging hairs across five remotely related plant families (i.e., belonging to different plant orders). The family Urticaceae (order Rosales) includes a total of ca. 150 stinging representatives, amongst them the well-known stinging nettles (genus Urtica). There are also some 200 stinging species in Loasaceae (order Cornales), ca. 250 stinging species in Euphorbiaceae (order Malphigiales), a handful of species in Namaceae (order Boraginales), and one in Caricaceae (order Brassicales). Stinging hairs are commonly found on most aerial parts of the plants, especially the stem and leaves, but sometimes also on flowers and fruits. The ecological role of stinging hairs in plants seems to be essentially defense against mammalian herbivores, while they appear to be essentially inefficient against invertebrate pests. -
General Keywords
General keywords A Ballast, 6, 9–11, 29, 37, 38, 44, 46, 52 Ballast sediments, 339, 645, 653 Abiotic resistance, 647, 648, 654 Ballast water, 29, 37, 38, 44, 52–54, 56, Accidental introductions, 113, 131, 145, 59, 60 234, 645, 646, 700 Ballast water: treatment, 657–661, 664, Activity patterns, 166, 248, 354, 407, 445 665 Age, 240, 244, 246, 263, 264, 281, Basking, 148, 162, 163, 167, 170 291–295 Bern Convention, 516, 630, 633, 634 Age structure, 264 Bioaccumulation, 614 Aggression, 53, 167, 396, 447, 528, 585 Biocontrol, biological control, 95–97, 99, Aggressive behaviour, 279, 283, 495, 146, 153, 205, 383, 523 497, 585, 587 Biodiversity, 86, 96, 114, 123, 152, 186, Alarm odours, 514 187, 200, 202, 204 Alien invasive species, 194, 199, 204 Biofouling, 238 Allelopathy, 224 Biogeography, 123 Allometric growth, 264 Bioindicators, 112, 114 Altricial life history, 283 Biological flexibility, 307, 309, 311, 313, Amphibious plants, 218 315, 317, 319, 321, 323, 325, Anthropogenicdisturbances,426,427,454 327 Antioxidant response, 613, 617, 621 Biological invasions, 396, 430, 437, 627, Aquaculture, 37, 38, 60, 145, 146, 628, 633–635 340–343, 382 Biological plasticity, 11 Aquarium trade, 39, 49, 220, 234, 292, Biomonitoring, 613, 614 357, 383, 628 Biomonotony, 369–376 Artificial canals, 382, 463 Biotic homogenization, 147, 148, 369, 371, 376, 415 B Biotic resistance, 11, 18, 647, 648 Bioturbation, 527, 528, 531 Bait-bucket, 37 Booms and busts, 452 Bait-bucket introductions, 37 Bottlenecks, 10, 396, 517, 640 703 704 General keywords Botulism, 279