A Chemotactic Signaling Surface on Chey Defined by Suppressors of Flagellar Switch Mutations S

Total Page:16

File Type:pdf, Size:1020Kb

A Chemotactic Signaling Surface on Chey Defined by Suppressors of Flagellar Switch Mutations S JOURNAL OF BACTERIOLOGY, Oct. 1992, p. 6247-6255 Vol. 174, No. 19 0021-9193/92/196247-09$02.00/0 Copyright X 1992, American Society for Microbiology A Chemotactic Signaling Surface on CheY Defined by Suppressors of Flagellar Switch Mutations S. J. ROMAN, M. MEYERS,t K. VOLZ, AND P. MATSUMURA* Department ofMicrobiology and Immunology (MIC 790), University of Illinois, Box 6998, Chicago, Illinois 60680 Received 22 May 1992/Accepted 3 August 1992 CheY is the response regulator protein that interacts with the flagellar switch apparatus to modulate flagellar rotation during chemotactic signaling. CheY can be phosphorylated and dephosphorylated in vitro, and evidence indicates that CheY-P is the activated form that induces clockwise flagellar rotation, resulting in a tumble in the cell's swimming pattern. The flagellar switch apparatus is a complex macromolecular structure composed of at least three gene products, FliG, FliM, and FliN. Genetic analysis of Escherichia coli has identified fliG and fliM as genes in which mutations occur that allele specifically suppress cheY mutations, indicating interactions among these gene products. We have generated a class of cheY mutations selected for dominant suppression offliG mutations. Interestingly, these cheY mutations dominantly suppressed bothfiG and fliM mutations; this is consistent with the idea that the CheY protein interacts with both switch gene products during signaling. Biochemical characterization of wild-type and suppressor CheY proteins did not reveal altered phosphorylation properties or evidence for phosphorylation-dependent CheY multimerization. These data indicate that suppressor CheY proteins are specifically altered in the ability to transduce chemotactic signals to the switch at some point subsequent to phosphorylation. Physical mapping of suppressor amino acid substitutions on the crystal structure of CheY revealed a high degree of spatial clustering, suggesting that this region of CheY is a signaling surface that transduces chemotactic signals to the switch. In Escherichia coli and Salmonella typhimurium, chemo- We have used genetic suppression, a useful tool for taxis is achieved by regulating the direction of flagellar investigation of protein interactions (for general reviews, see rotation (reviewed in reference 46). Flagellar rotation is references 7, 14, and 18; for specific examples, see refer- controlled by the flagellar motor switch apparatus, a multi- ences 1, 2, 12, 13, 19, 21, 23, 26, 29, 30, 32, 43, 49, and 50), component macromolecular structure composed of at least to study structure-function aspects of CheY activity at the three different protein subunits, FliG, FliM, and FliN (55, switch. A number of earlier suppression studies have dem- 56), which imparts either clockwise (CW) or counterclock- onstrated interactions between cheY and flagellar switch wise (CCW) rotation to the motor. CW flagellar rotation genes fliG, fliM, and fliN (37, 38, 44, 55). In this study, we results in a tumble in the swimming pattern, while CCW extended the genetics of the CheY-switch interaction to the rotation results in smooth swimming. By continually sam- mapping of dominant suppressors of flagellar switch muta- pling the environment over time and modulating flagellar tions on the molecular structure of CheY. The amino acid rotation accordingly, cells can move toward a more favor- residues shown here to be critical for CheY signaling cluster able, and away from a less favorable, environment. on one face of the CheY protein, suggesting that this region The chemotaxis (Che) proteins couple flagellar rotation to of CheY transduces chemotactic signals directly to the the environment by transducing chemotactic signals from switch. specific transmembrane chemoreceptors to the flagellar switch apparatus. One of these proteins, CheY, is a small (14-kDa), single-domain protein homologous to the regulator MATERIALS AND METHODS proteins of bacterial two-component sensory transduction systems (3) and is the only two-component signaling protein Reagents. Restriction enzymes and T4 DNA ligase were for which the high-resolution crystal structure has been purchased from Bethesda Research Laboratories (Gaithers- determined (47, 51). Like other regulators, CheY activity burg, Md.). Bacto-Tryptone, Bacto-Agar, and Bacto-Yeast appears to be controlled by phosphorylation (reviewed in Extract were from Difco Laboratories (Detroit, Mich.). Calf references 8 and 48); cheY function is required for CW intestinal alkaline phosphatase, used in some cloning exper- flagellar rotation (34, 35); CheY is phosphorylated in vitro by iments, was obtained from Boehringer Mannheim Biochem- CheA (16, 17, 33, 54); and cheY or cheA mutations that icals (Indianapolis, Ind.). Molecular biology grade agarose disrupt phosphotransfer reactions also result in smooth- was from International Biotechnologies, Inc. (New Haven, swimming phenotypes, suggesting that CheY-P is the active Conn.). Penicillin, hydroxylamine hydrochloride, protein CW generator (9, 33). While CheY is thought to act directly A-agarose, cyanogen bromide-activated Sepharose 4B, and on the switch apparatus to regulate flagellar rotation (11, 38, 3-3-indoleacrylic acid were obtained from Sigma Chemical 39, 53, 55), exactly how CheY functions is not known. Co. (St. Louis, Mo.). 125I-labeled protein A was purchased from ICN Biomedicals, Inc. (Costa Mesa, Calif.), and * Corresponding author. [y-32P]ATP was from Amersham Corp. (Arlington Heights, t Present address: Department of Biochemistry, Molecular Biol- Ill.). Other specialized enzymes and reagents are noted ogy and Cell Biology, Northwestern University, Evanston, IL where applicable. All other reagents and chemicals were of 60208. reagent grade and were obtained from Sigma Chemical Co., 6247 6248 ROMAN ET AL. J. BACT1ERIOL. TABLE 1. Bacterial strains and plasmids Strain or plasmid Characteristic(s) Source (reference); Strains RP437 Wild type (Che+) J. S. Parkinson RP4139 cheZ280 recA J. S. Parkinson RP4079 cheY216 recA J. S. Parkinson RP4650 cheB270 J. S. Parkinson RP5135 Atar-cheZ J. S. Parkinson RP4500 fliG1009 cheY+ J. S. Parkinson' RP4501 fliGlOlO cheY+ J. S. Parkinson' RP4503 fliGlO12 cheY+ J. S. Parkinson' RP4504 fliG1013 cheY+ J. S. Parkinson' RP4505 fliG1014 cheY+ J. S. Parkinson' RP4520 fliGlO29 cheY+ J. S. Parkinson' RP4496 fliMi005 cheY+ J. S. Parkinson RP4506 fliM1015 cheY+ J. S. Parkinson' RP4510 fliM1019 cheY+ J. S. Parkinson" RP4511 fliMi020 cheY+ J. S. Parkinson RP4517 fliM1026 cheYr J. S. Parkinson' AZ37 fliGlO37 cheYr This workb AZ38 fliGlO38 cheY+ This work" AZ39 fliG1O39 cheY+ This work' Plasmids pFZY oriF (low copy number) Penr A. Koop (20) via M. Winkler pMM1 tar operon (tar tap cheR cheB cheY cheZ flhB') in pFZY M. Meyers pRL22 Overproduces CheY and CheZ from tqp promoter R. Linzmeier pRL22AYC cheY deletion, overproduces CheZ only D. Vacante pRL22AZd cheZ deletion, overproduces CheY only This work pDV4 Overproduces CheA and CheW from trp promoter D. Vacante pYBO902 pMM1 cheY0902[T112I] This work pYBO903 pMM1 cheYO903[A9OV] This work pYBO904 pMM1 cheY0904[E117K] This work pYBO905 pMM1 cheYO905[E117K] This work pYBO906 pMM1 cheY0906[V108M] This work pYB1304 pMMl cheY1304[V11M] This work pYB1308 pMM1 cheY1308[T1121] This work pYB1409 pMM1 cheY1409[A9OT] Tlhis work pYB1610 pMM1 cheY1610[F111V] This work' pYB2885 pMM1 cheY2885[E27K] This worke pRYBO902d pRL22 cheY0902[T112I] This work pRYBO903d pRL22 cheYO903[A9OV] This work pRYBO904d pRL22 cheY0904[E117K] This work pRYBo9O5d pRL22 cheYO905[E117K] This work pRYBO906d pRL22 cheY0906[V108M] This work pRYB1304d pRL22 cheY1304[V11M] This work pRYB1308d pRL22 cheYl308[T112I] This work pRYB1409d pRL22 cheY1409[A90T] This work pRYB1610d pRL22 cheY1610[F111V] This work pRYB2885d pRL22 cheY2885[E27K] This work pRBB40.cheYD13K pRL22 derivative R. Bourret pRBB40.cheYD13KAZ AcheZ derivative This work pRBB40.cheYD57N pRL22 derivative R. Bourret pRBB40.cheYD57NAZ AcheZ derivative This work a J. S. Parkinson's original fliG (scyB) and fliM (scyA) allele numbers are retained as the last digits of our allele numbers. For example, fliGl100 = scyB1O, fliM1005 = scyAS, etc. b These strains were constructed in our laboratory from spontaneous chromosomal fliG suppressors of cheY304[Vl1M]. C pRL224Y, which was used to express CheZ, was produced by ExolIl-Sl digestion from the Sall site in cheY. In this construction, approximately 51 bp are deleted from cheY, resulting in an in-frame deletion that yields an internally deleted, nonfunctional CheY peptide (50a). d AZ versions of all high-copy-number cheY expression plasmids (both cheY+ and suppressor cheY alleles) were produced by PvuII deletion of cheZ. These plasmids were used to overproduce wild-type and suppressor CheY proteins in the absence of CheZ. The original strains with these cheY alleles are from J. S. Parkinson. The cheY alleles were cloned from the chromosome with mini-Mu and then subcloned into M13 and sequenced (5). To characterize dominant suppression, the cheY alleles were subcloned from mini-Mu into pMM1. Aldrich Chemical Co. (Milwaukee, Wis.), or Fisher Scien- tonA31 tsx-78), a Che+ reference strain that is itself a tific Co. (Fair Lawn, N.J.). derivative of E. coli K-12 (36). Switch mutant tester strains Bacterial strains and plasmids. Strains used in this study are Mot' Che- (motile but nonchemotactis), genotypically are listed with their relevant genotypes in Table 1. All strains denotedfliG cheY+ orfliM cheY+. They containfliG orfliM are derivatives of RP437 (F- thr-l(Amn) leuB6
Recommended publications
  • Interplay Between Ompa and Rpon Regulates Flagellar Synthesis in Stenotrophomonas Maltophilia
    microorganisms Article Interplay between OmpA and RpoN Regulates Flagellar Synthesis in Stenotrophomonas maltophilia Chun-Hsing Liao 1,2,†, Chia-Lun Chang 3,†, Hsin-Hui Huang 3, Yi-Tsung Lin 2,4, Li-Hua Li 5,6 and Tsuey-Ching Yang 3,* 1 Division of Infectious Disease, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan; [email protected] 2 Department of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; [email protected] 3 Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; [email protected] (C.-L.C.); [email protected] (H.-H.H.) 4 Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan 5 Department of Pathology and Laboratory Medicine, Taipei Veterans General Hosiptal, Taipei 112, Taiwan; [email protected] 6 Ph.D. Program in Medical Biotechnology, Taipei Medical University, Taipei 110, Taiwan * Correspondence: [email protected] † Liao, C.-H. and Chang, C.-L. contributed equally to this work. Abstract: OmpA, which encodes outer membrane protein A (OmpA), is the most abundant transcript in Stenotrophomonas maltophilia based on transcriptome analyses. The functions of OmpA, including adhesion, biofilm formation, drug resistance, and immune response targets, have been reported in some microorganisms, but few functions are known in S. maltophilia. This study aimed to elucidate the relationship between OmpA and swimming motility in S. maltophilia. KJDOmpA, an ompA mutant, Citation: Liao, C.-H.; Chang, C.-L.; displayed compromised swimming and failure of conjugation-mediated plasmid transportation. The Huang, H.-H.; Lin, Y.-T.; Li, L.-H.; hierarchical organization of flagella synthesis genes in S.
    [Show full text]
  • Xanthomonas Fuscans Subsp
    Darrasse et al. BMC Genomics 2013, 14:761 http://www.biomedcentral.com/1471-2164/14/761 RESEARCH ARTICLE Open Access Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads Armelle Darrasse1,2,3, Sébastien Carrère4,5, Valérie Barbe6, Tristan Boureau1,2,3, Mario L Arrieta-Ortiz7,14, Sophie Bonneau1,2,3, Martial Briand1,2,3, Chrystelle Brin1,2,3, Stéphane Cociancich8, Karine Durand1,2,3, Stéphanie Fouteau6, Lionel Gagnevin9,10, Fabien Guérin9,10, Endrick Guy4,5, Arnaud Indiana1,2,3, Ralf Koebnik11, Emmanuelle Lauber4,5, Alejandra Munoz7, Laurent D Noël4,5, Isabelle Pieretti8, Stéphane Poussier1,2,3,10, Olivier Pruvost9,10, Isabelle Robène-Soustrade9,10, Philippe Rott8, Monique Royer8, Laurana Serres-Giardi1,2,3, Boris Szurek11, Marie-Anne van Sluys12, Valérie Verdier11, Christian Vernière9,10, Matthieu Arlat4,5,13, Charles Manceau1,2,3,15 and Marie-Agnès Jacques1,2,3* Abstract Background: Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences. Results: Comparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes.
    [Show full text]
  • In Situ Structures of Periplasmic Flagella Reveal a Distinct Cytoplasmic Atpase Complex in Borrelia Burgdorferi
    bioRxiv preprint doi: https://doi.org/10.1101/303222; this version posted April 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 In situ structures of periplasmic flagella reveal a distinct cytoplasmic ATPase complex in Borrelia 2 burgdorferi 3 4 Zhuan Qin1, 2*, Akarsh Manne3*, Jiagang Tu2*, Zhou Yu3, Kathryn Lees3, Aaron Yerke3, Tao Lin2, 5 Chunhao Li4, Steven J. Norris2, Md A. Motaleb3#, Jun Liu1, 2# 6 7 1 Department of Microbial Pathogenesis & Microbial Sciences Institute, Yale University, New 8 Haven, CT 06519 9 2 Department of Pathology and Laboratory Medicine, McGovern Medical School, Houston, TX 10 77030. 11 3 Department of Microbiology and Immunology, Brody School of Medicine, East Carolina 12 University, Greenville, NC 27834 13 4 Philips Research Institute, School of Dental Medicine, Virginia Commonwealth University, 14 Richmond, VA 23298 15 16 17 * Z. Q., A.M., and J.T. contributed equally to this work. 18 19 # Corresponding authors: 20 [email protected] (J. L.); 21 [email protected] (M.A.M.) 22 23 24 Running title: Novel ATPase complex structure in periplasmic flagella 25 26 1 bioRxiv preprint doi: https://doi.org/10.1101/303222; this version posted April 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • The Nonequilibrium Mechanism for Ultrasensitivity in a Biological Switch: Sensing by Maxwell’S Demons
    The nonequilibrium mechanism for ultrasensitivity in a biological switch: Sensing by Maxwell’s demons Yuhai Tu* T. J. Watson Research Center, IBM, P. O. Box 218, Yorktown Heights, NY 10598 Communicated by Charles H. Bennett, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, May 20, 2008 (received for review December 19, 2007) The Escherichia coli flagellar motor senses the intracellular concen- focusing on understanding the mechanism for E. coli flagellar tration of the response regulator CheY-P and responds by varying motor’s ultrasensitive response to CheY-P. Our choice of this the bias between its counterclockwise (CCW) and clockwise (CW) particular system is motivated by the recent experimental mea- rotational states. The response is ultrasensitive with a large Hill surements of detailed single motor switching statistics (13). coefficient (Ϸ10). Recently, the detailed distribution functions of the CW and the CCW dwell times have been measured for different Results CW biases. Based on a general result on the properties of the Nonexponential Dwell-Time Statistics and the Breakdown of Detailed dwell-time statistics for all equilibrium models, we show that the Balance. The observable state of the flagellar motor is repre- observed dwell-time statistics imply that the flagellar motor switch sented by a binary variable s: s ϭ 0, 1 corresponds to the CW and operates out of equilibrium, with energy dissipation. We propose CCW rotational states of the motor. The internal state of the a dissipative allosteric model that generates dwell-time statistics switch is described by an integer variable n: n ϭ 0,1,2,...,N consistent with the experimental results.
    [Show full text]
  • SUPPLEMENTARY INFORMATION Sequence Analysis of Hypothetical Proteins from Helicobacter Pylori 26695 to Identify Potential Virule
    SUPPLEMENTARY INFORMATION Sequence Analysis of Hypothetical Proteins from Helicobacter pylori 26695 to Identify Potential Virulence Factors Ahmad Abu Turab Naqvi1§, Farah Anjum2§, Faez Iqbal Khan3, Asimul Islam1, Faizan Ahmad1, Md. Imtaiyaz Hassan1* 1Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India, 2Female College of Applied Medical Science, Taif University, Al-Taif 21974, Kingdom of Saudi Arabia, 3School of Chemistry and Chemical Engineering, Henan University of Technology, Henan 450001, China http://www.genominfo.org/src/sm/gni-14-125-s001.pdf. Supplementary Table 4. List of annotated function of 340 hypothetical proteins (HPs) from Helicobacter pylori using BLASTp, STRING, SMART, InterProScan and Motif Motif found Predicted functional partner No. UniProt ID Major BLAST hit SMART (STRING) InterProScan Motif 1 O24859 Valyl-tRNA synthetase DNA primase No result No result Protein similar to CwfJ C-terminus 1 2 O24860 TrbC/VIRB2 family VirB4 homolog TrbC/VIRB2 family Conjugal transfer TrbC/VIRB2 family protein TrbC/type IV secretion VirB2 (pfam) 3 O24861 ComB3 competence VirB4 homolog Transmembrane region Membrane-bound protein Photosystem I psaA/psaB protein protein Predicted membrane protein 4 O24863 No result Lipoprotein signal peptidase No result Prokaryotic membrane Prokaryotic membrane lipoprotein lipid lipoprotein lipid attachment site profile attachment site profile 5 O24869 No result No result No result No result No result 6 O24871 No result Isocitrate dehydrogenase
    [Show full text]
  • Bacterial Flagellar Filament: a Supramolecular Multifunctional Nanostructure
    International Journal of Molecular Sciences Review Bacterial Flagellar Filament: A Supramolecular Multifunctional Nanostructure Marko Nedeljkovi´c,Diego Emiliano Sastre and Eric John Sundberg * Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; [email protected] (M.N.); [email protected] (D.E.S.) * Correspondence: [email protected] Abstract: The bacterial flagellum is a complex and dynamic nanomachine that propels bacteria through liquids. It consists of a basal body, a hook, and a long filament. The flagellar filament is composed of thousands of copies of the protein flagellin (FliC) arranged helically and ending with a filament cap composed of an oligomer of the protein FliD. The overall structure of the filament core is preserved across bacterial species, while the outer domains exhibit high variability, and in some cases are even completely absent. Flagellar assembly is a complex and energetically costly process triggered by environmental stimuli and, accordingly, highly regulated on transcriptional, translational and post-translational levels. Apart from its role in locomotion, the filament is critically important in several other aspects of bacterial survival, reproduction and pathogenicity, such as adhesion to surfaces, secretion of virulence factors and formation of biofilms. Additionally, due to its ability to provoke potent immune responses, flagellins have a role as adjuvants in vaccine development. In this review, we summarize the latest knowledge on the structure of flagellins, capping proteins and filaments, as well as their regulation and role during the colonization and infection of the host. Citation: Nedeljkovi´c,M.; Sastre, D.E.; Sundberg, E.J. Bacterial Flagellar Keywords: bacterial flagella; flagellin; filament; FliD Filament: A Supramolecular Multifunctional Nanostructure.
    [Show full text]
  • Functional Dynamics of the Bacterial Flagellar Motor Driven by Fluorescent Protein Tagged Stators and by Evolutionary Modified Foreign Stators Minyoung Heo
    Functional dynamics of the bacterial flagellar motor driven by fluorescent protein tagged stators and by evolutionary modified foreign stators Minyoung Heo To cite this version: Minyoung Heo. Functional dynamics of the bacterial flagellar motor driven by fluorescent protein tagged stators and by evolutionary modified foreign stators. Molecular biology. Université Montpellier, 2016. English. NNT : 2016MONTT080. tel-01972611 HAL Id: tel-01972611 https://tel.archives-ouvertes.fr/tel-01972611 Submitted on 7 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par l’Université de Montpellier Préparée au sein de l’école doctorale Sciences Chimiques et Biologiques pour la Santé (ED168) Et de l’unité de recherche Centre de Biochimie Structurale (CBS) - CNRS UMR 5048 Spécialité : Biophysique de la molécule unique, la microscopie à fluorescence et évolution expérimentale Présentée par Minyoung HEO Dynamique fonctionnelle du moteur flagellaire bactérien entraîné par des stators marqués par des protéines fluorescentes et par des stators étrangers modifiés par évolution Soutenue le 25 Novembre 2016 devant le jury composé de M. Francesco PEDACI, Directeur de recherche, Directeur de thèse Centre de biochimie Structurale (CNRS INSERM) M. Emmanuel MARGEAT, Directeur de recherche, Directeur de thèse Centre de biochimie Structurale (CNRS INSERM) M.
    [Show full text]
  • Investigations on Flagellar Biogenesis, Motility and Signal Transduction of Halobacterium Salinarum
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Investigations on Flagellar Biogenesis, Motility and Signal Transduction of Halobacterium salinarum Wilfried Staudinger aus Heilbronn 2007 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 der Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Dieter Oesterhelt betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig und ohne unerlaubte Hilfe angefertigt. München, am 22. April 2008 .................. Wilfried Staudinger Dissertation eingereicht am: 09.11.2007 1. Gutachter: Prof. Dr. Dieter Oesterhelt 2. Gutachter: Prof. Dr. Wolfgang Marwan Mündliche Prüfung am: 17.03.2008 This dissertation was generated at the Max Planck Institute of Biochemistry, in the De- partment of Membrane Biochemistry under the guidance of Prof. Dr. Dieter Oesterhelt. Parts of this work were published previously or are in preparation for publi- cation: Poster presentation at the Gordon Conference on Sensory Transduction In Micro- organisms, Ventura, CA, USA, January 22-27, 2006. Behavioral analysis of chemotaxis gene mutants from H. salinarum. del Rosario, R. C., Staudinger, W. F., Streif, S., Pfeiffer, F., Mendoza, E., and Oesterhelt D. (2007). Modeling the CheY(D10K,Y100W) H. salinarum mutant: sensitivity analysis al- lows choice of parameter to be modified in the phototaxis model. IET Systems Biology, 1(4):207-221. Koch, M. K., Staudinger, W. F., Siedler, F., and Oesterhelt, D. (2007). Physiological sites of deamidation and methyl esterification in sensory transducers of H. salinarum. In preparation. Streif, S., Staudinger, W. F., Joanidopoulos, K., Seel, M., Marwan, W., and Oesterhelt, D. (2007). Quantitative analysis of signal transduction in motile and phototactic archaea by computerized light stimulation and tracking.
    [Show full text]
  • The Halobacterium Salinarum Taxis Signal Transduction Network: a Protein-Protein Interaction Study
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München The Halobacterium salinarum Taxis Signal Transduction Network: a Protein-Protein Interaction Study Matthias Schlesner aus Kiel 2008 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Dieter Oesterhelt betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig und ohne unerlaubte Hilfe angefertigt. Martinsried, am 07.10.2008 Matthias Schlesner Dissertation eingereicht am: 14.10.2008 1. Gutachter: Prof. Dr. Dieter Oesterhelt 2. Gutachter: Prof. Dr. Wolfgang Marwan Mündliche Prüfung am: 9.12.2008 Meiner Familie Contents Summary xvii 1 Background 1 1.1 H. salinarum, an archaeal model organism ................ 1 1.1.1 Halobacterium salinarum ...................... 1 1.1.2 Archaea ............................... 2 1.1.3 Halophiles and their ecology .................... 3 1.1.4 Adaptation to hypersaline environments ............. 4 1.1.5 Bioenergetics ............................ 5 1.2 Signal transduction and taxis in prokaryotes ............... 7 1.2.1 Two-component systems ...................... 8 1.2.2 The principles of prokaryotic taxis ................ 9 1.3 Protein-protein interaction analysis .................... 10 1.4 Objectives .................................. 12 2 Materials and methods 15 2.1 General materials .............................. 15 2.1.1 Instruments ............................. 15 2.1.2 Chemicals and Kits ......................... 15 2.1.3 Enzymes ............................... 15 2.1.4 Strains ................................ 17 2.1.5 Software ............................... 17 2.2 General methods .............................. 17 2.2.1 Growth and storage of E. coli ................... 17 2.2.2 Growth and storage of H. salinarum ................ 18 2.2.3 Separation of DNA fragments by agarose gel electrophoresis .. 18 2.2.4 Purification of DNA fragments ..................
    [Show full text]
  • Torque and Switching in the Bacterial Flagellar Motor. an Electrostatic Model
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector H~ UI 11 LdU [iwbij Torque and switching in the bacterial flagellar motor L.E I . An electrostatic model AApR 2H9Iq93 Richard M. Berry The Clarendon Laboratory, Oxford OX1 3PU, United Kingdom / H 'i ABSTRACT A model is presented for the rotary motor that drives bacterial flagella, using the electrochemical gradient of protons across the cytoplasmic membrane. The model unifies several concepts present in previous models. Torque is generated by proton-conducting particles around the perimeter of the rotor at the base of the flagellum. Protons in channels formed by these particles interact electrostati- cally with tilted lines of charges on the rotor, providing "loose coupling" between proton flux and rotation of the flagellum. Computer simulations of the model correctly predict the experimentally observed dynamic properties of the motor. Unlike previous models, the motor presented here may rotate either way for a given direction of the protonmotive force. The direction of rotation only depends on the level of occupancy of the proton channels. This suggests a novel and simple mechanism for the switching between clockwise and counterclockwise rotation that is the basis of bacterial chemotaxis. 1. INTRODUCTION The bacterial flagellar motor is the device that couples crete steps, providing evidence for eight independent transmembrane flux ofions to rotation ofhelical flagella force generators (7). Each generator is capable of rotat- in bacterial cell envelopes, providing a means ofpropul- ing either CW or CCW with approximately equal torque sion for the bacteria. The ion involved is usually H + but in both directions.
    [Show full text]
  • Biocontrol Traits of Bacillus Licheniformis GL174, a Culturable Endophyte of Vitis Vinifera Cv
    Nigris et al. BMC Microbiology (2018) 18:133 https://doi.org/10.1186/s12866-018-1306-5 RESEARCH ARTICLE Open Access Biocontrol traits of Bacillus licheniformis GL174, a culturable endophyte of Vitis vinifera cv. Glera Sebastiano Nigris1, Enrico Baldan2, Alessandra Tondello2, Filippo Zanella2, Nicola Vitulo3, Gabriella Favaro4, Valerio Guidolin2, Nicola Bordin2, Andrea Telatin5, Elisabetta Barizza2, Stefania Marcato2, Michela Zottini2, Andrea Squartini6, Giorgio Valle2 and Barbara Baldan1* Abstract Background: Bacillus licheniformis GL174 is a culturable endophytic strain isolated from Vitis vinifera cultivar Glera, the grapevine mainly cultivated for the Prosecco wine production. This strain was previously demonstrated to possess some specific plant growth promoting traits but its endophytic attitude and its role in biocontrol was only partially explored. In this study, the potential biocontrol action of the strain was investigated in vitro and in vivo and, by genome sequence analyses, putative functions involved in biocontrol and plant-bacteria interaction were assessed. Results: Firstly, to confirm the endophytic behavior of the strain, its ability to colonize grapevine tissues was demonstrated and its biocontrol properties were analyzed. Antagonism test results showed that the strain could reduce and inhibit the mycelium growth of diverse plant pathogens in vitro and in vivo. The strain was demonstrated to produce different molecules of the lipopeptide class; moreover, its genome was sequenced, and analysis of the sequences revealed the presence of many protein-coding genes involved in the biocontrol process, such as transporters, plant-cell lytic enzymes, siderophores and other secondary metabolites. Conclusions: This step-by-step analysis shows that Bacillus licheniformis GL174 may be a good biocontrol agent candidate, and describes some distinguished traits and possible key elements involved in this process.
    [Show full text]
  • <I>Thauera Aminoaromatica</I>
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2011 Genomic and Molecular Analysis of the Exopolysaccharide Production in the Bacterium Thauera aminoaromatica MZ1T Ke Jiang [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Bacteriology Commons, Bioinformatics Commons, Environmental Microbiology and Microbial Ecology Commons, and the Microbial Physiology Commons Recommended Citation Jiang, Ke, "Genomic and Molecular Analysis of the Exopolysaccharide Production in the Bacterium Thauera aminoaromatica MZ1T. " PhD diss., University of Tennessee, 2011. https://trace.tennessee.edu/utk_graddiss/984 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Ke Jiang entitled "Genomic and Molecular Analysis of the Exopolysaccharide Production in the Bacterium Thauera aminoaromatica MZ1T." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Microbiology. Gary S. Sayler, Major Professor We have read this dissertation
    [Show full text]