Coa F128821.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Coa F128821.Pdf page 1 of 4 Version 1 CERTIFIED REFERENCE MATERIAL Triazine & Urea Pesticide Mixture - 29 components; 100ug/ml each of Atrazine [CAS:1912-24-9] ; Atrazine-desethyl [CAS:6190-65-4] ; Atrazine-desisopropyl [CAS:1007-28-9] ; Metamitron [CAS:41394-05-2] ; Chloridazon [CAS:1698-60-8] ; Metoxuron [CAS:19937-59-8] ; Carbetamide [CAS:16118-49-3] ; Bromacil [CAS:314-40-9] ; Simazine [CAS:122-34-9] ; Cyanazine [CAS:21725-46-2] ; Terbuthylazine-desethyl [CAS:30125-63-4] ; Methabenzthiazuron [CAS:18691-97-9] ; Chlortoluron [CAS:15545-48-9] ; Monolinuron [CAS:1746-81-2] ; Diuron [CAS:330-54-1] ; Isoproturon [CAS:34123-59-6] ; Metobromuron [CAS:3060-89-7] ; Metazachlor [CAS:67129-08-2] ; Propazine [CAS:139-40-2] ; Dimefuron [CAS:34205-21-5] ; Terbuthylazine [CAS:5915-41-3] ; Linuron [CAS:330-55-2] ; Chloroxuron [CAS:1982-47-4] ; Prometryn [CAS:7287-19-6] ; Chlorpropham [CAS:101-21-3] ; Terbutryn [CAS:886-50-0] ; Metolachlor [CAS:51218-45-2] ; Ethofumesate [CAS:26225-79-6] ; Ethidimuron [CAS:30043-49-3] in Acetonitrile Lot N: XXXXXX Ref N: F128821 Certification Date:XXXXXX Barcode: XXXXXXXX Component Certified Value* CAS Chemical Formula and uncertainty [µg/ml] Atrazine 99.71 ± 1.19 1912-24-9 C8H14ClN5 Atrazine-desethyl 99.76 ± 1.88 6190-65-4 C6H10ClN5 Atrazine-desisopropyl 100.08 ± 2.34 1007-28-9 C5H8ClN5 Metamitron 99.93 ± 1.09 41394-05-2 C10H10N4O Chloridazon 99.57 ± 1.26 1698-60-8 C10H8ClN3O Metoxuron 100.01 ± 1.34 19937-59-8 C10H13ClN2O2 Carbetamide 100.00 ± 1.48 16118-49-3 C12H16N2O3 Bromacil 99.70 ± 1.17 314-40-9 C9H13BrN2O2 Simazine 100.09 ± 1.48 122-34-9 C7H12ClN5 Cyanazine 100.33 ± 1.50 21725-46-2 C9H13ClN6 Terbuthylazine-desethyl 100.19 ± 1.15 30125-63-4 C7H12ClN5 Methabenzthiazuron 100.00 ± 2.82 18691-97-9 C10H11N3OS Chlortoluron 99.88 ± 1.69 15545-48-9 C10H13ClN2O Monolinuron 99.72 ± 1.36 1746-81-2 C9H11ClN2O2 Diuron 99.80 ± 1.54 330-54-1 C9H10Cl2N2O Isoproturon 100.11 ± 1.21 34123-59-6 C12H18N2O Metobromuron 100.46 ± 1.26 3060-89-7 C9H11BrN2O2 Metazachlor 100.14 ± 1.66 67129-08-2 C14H16ClN3O Propazine 99.87 ± 1.57 139-40-2 C9H16ClN5 Dimefuron 100.18 ± 2.62 34205-21-5 C15H19ClN4O3 Terbuthylazine 100.31 ± 1.36 5915-41-3 C9H16ClN5 Linuron 99.97 ± 1.63 330-55-2 C9H10Cl2N2O2 Chloroxuron 99.73 ± 1.77 1982-47-4 C15H15ClN2O2 Prometryn 99.69 ± 1.70 7287-19-6 C10H19N5S Chlorpropham 100.36 ± 1.28 101-21-3 C10H12ClNO2 Terbutryn 100.27 ± 1.42 886-50-0 C10H19N5S Metolachlor 100.19 ± 1.06 51218-45-2 C15H22ClNO2 Ethofumesate 100.05 ± 1.62 26225-79-6 C13H18O5S Ethidimuron 99.86 ± 1.98 30043-49-3 C7H12N4O3S2 * WQP 5.15.1/2 The certified value was obtained gravimetrically and confirmed experimentally by GC/MS or HPLC Density 0.7874 g/cm3 at 20°C Starting Material Purity, Batch page 2 of 4 Atrazine 99.2% (41369623) Atrazine-desethyl 99.06% (41294239) Atrazine-desisopropyl 98.95% (41300251) Metamitron 98.6% (41328996) Chloridazon 99.9% (41368121) Metoxuron 99.5% (41292471) Carbetamide 96.71% (41337738) Bromacil 98.7% (41349892) Simazine 99.9% (41384985) Cyanazine 99.5% (41349939) Terbuthylazine-desethyl 97.4% (41356746) Methabenzthiazuron 97.95% (41335246) Chlortoluron 99.7% (41382271) Monolinuron 99.8% (41370919) Diuron 99.9% (41338735) Isoproturon 99.4% (41378304) Metobromuron 99.5% (41292099) Metazachlor 98.0% (41359228) Propazine 99.33% (41341049) Dimefuron 99.7% (41372302) Terbuthylazine 99.28% (41347225) Linuron 98.7% (41375938) Chloroxuron 99.5% (41291436) Prometryn 99.9% (41359648) Chlorpropham 99.9% (41342985) Terbutryn 98.0% (41374115) Metolachlor 97.8% (41350447) Ethofumesate 99.4% (41355596) Ethidimuron 99.0% (41271032) Storage Conditions: Store in a freezer at -18°C or below Expiry Date: XXXXXXXXXX Concept of Certification and traceability statement: This certified reference material is produced by gravimetric measurement and dissolving the individual substances in Acetonitrile . The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with EA 4/02 and incorporates the uncertainties of the raw-material purity, the mass and the volume. The metrological traceability is defined as the “property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty”. The metrological traceability is ensured through gravimetric measurement and dissolving of certified reference material/s (traceable to SI) from laboratories/producers, accredited according to ISO 17034. The measurement results are traceable to SI. All analytical balances used for the preparation of the solution are calibrated yearly under an in-house procedure with class E1 and class E2 analytical weights, traceable to SI (DKD), and are checked daily. Class A laboratory glassware is used. The results from temperature measurement are traceable to SI. The thermometers used for solution's calibration are calibrated from an ISO 17025 accredited laboratory. The ambient conditions are controlled with a hygrometer calibrated from an ISO 17025 accredited laboratory. Both, purity of the starting materials and solvent, were checked using appropriate analytical instrument. Intended use: For Laboratory Use Only This CRM is intended for: Calibration of TLC, GC/FID, GC/TCD, GC/ECD, GC/MS, GC/MS/MS, LC/UV, LC/MS and LC/MS/MS Validation of analytical methods Preparation of “working reference samples” Detection limit and linearity studies This statement is not intended to restrict the use for other purposes. Instructions for the correct use of this certified reference material: This CRM can be used directly or can be diluted in an appropriate solvent. Only a clean class A glassware should be used. Do not pipet from container. Obtained concentration (in mg/l) after dilution is a result from the multiplication of certified value of CRM concentration and the CRM's volume used for dilution and divided into the flask's volume used for dilution. For quantitative analysis, we recommend analyzing this mixture separately, without mixing it with other solutions, to ensure accurate results for every compound. Stability and storage: This CRM is with a guaranteed stability until ±5% of the certified concentration for a period of 6 months. Stability is guaranteed of an unopened original packaging stored, as written in the section: Storage Conditions. Even if the product is stable at normal laboratory conditions, in order to increase its stability, we highly recommend it to be stored in a refrigerator. The product should be used shortly after opening to avoid concentration changes due to evaporation. Warranty does not apply to a product stored after opening. Hazardous situation: The normal laboratory safety precautions should be observed when working with this RM. Further details for the handling of this RM are available in a safety data sheet. Level of homogeneity page 3 of 4 This solution was mixed according to an in-house procedure (MQP 5.13.1) and is guaranteed to be homogeneous. To ensure sufficient homogeneity of the sample prior to use thoroughly mix by inversion or sonicate. Names of certifying officers: Laboratory: Margarita Dimitrova Manager: Krassimira Taralova This document QF 5.17.1/1 version 1 is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31, ISO Guide 35,and Eurachem / CITAC Guides This certificate relates solely to the lot number given above. All processes (including generating of this certificate) are completely controlled by the specialized Computer-Aided-Manufacturing (CAM) software. This Certified Reference Material was produced under a quality management system that is: - Registered to ISO 9001 Quality Management System (Lloyd's Register Quality Assurance Ltd Cert No 0039638) - Accredited according to ISO/IEC 17025 – Testing (ANAB Cert No AT-1836) - Accredited according to ISO 17034 - Reference Material Producer (ANAB Cert No AR-1835) Additional Information Analytical Data: LC Conditions: Column Agilent Poroshell 120 EC-C18 3x50 mm, 2.7 µm Gradient elution Mobile phase A: 0.1 % Formic acid B: Acetonitrile Time A% B% Flow rate 0.5 ml/min 0 80 20 Injection volume 1µl 3 50 50 Column temp. 30°C 5 50 50 8 80 20 10 80 20 ESI Conditions: Drying Gas Flow 10 l/min Nebulizer Pressure 40 psig Capillary Voltage 4000 V Drying gas temperature 350°C Quad temp 100°C Gravimetric Data Component Purity Source Weighed Final Bulk/ Concen- Chemist % Lot No quantity, g quantity, Standard tration ID kg.10-3 Solution mg/kg lot No Atrazine 99.2 41369623 0.0248 3.5744 91666864 6882.7 AS 91666864 0.2173 11.8115 XXXXXXXX 126.623 KR Atrazine-desethyl 99.06 41294239 0.01123 2.9580 91659118 3760.8 AS 91659118 0.3979 11.8115 XXXXXXXX 126.693 KR Atrazine-desisopropyl 98.95 41300251 0.00932 2.2975 91665911 4014.0 AS 91665911 0.374 11.8115 XXXXXXXX 127.100 KR Metamitron 98.6 41328996 0.0326 3.5383 91645739 9084.5 AS 91645739 0.165 11.8115 XXXXXXXX 126.907 KR Chloridazon 99.9 41368121 0.0212 3.2900 91664594 6437.4 AS 91664594 0.232 11.8115 XXXXXXXX 126.443 KR Metoxuron 99.5 41292471 0.022 3.0789 91667793 7109.7 AS 91667793 0.211 11.8115 XXXXXXXX 127.008 KR Carbetamide 96.71 41337738 0.0245 3.0975 91646477 7649.4 AS 91646477 0.1961 11.8115 XXXXXXXX 126.999 KR Bromacil 98.7 41349892 0.0257 3.2041 91667786 7916.7 AS page 4 of 4 91667786 0.1889 11.8115 XXXXXXXX 126.612 KR Simazine 99.9 41384985 0.01577 4.0324 91665454
Recommended publications
  • 2,4-Dichlorophenoxyacetic Acid
    2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators.
    [Show full text]
  • Herbicide Mode of Action Table High Resistance Risk
    Herbicide Mode of Action Table High resistance risk Chemical family Active constituent (first registered trade name) GROUP 1 Inhibition of acetyl co-enzyme A carboxylase (ACC’ase inhibitors) clodinafop (Topik®), cyhalofop (Agixa®*, Barnstorm®), diclofop (Cheetah® Gold* Decision®*, Hoegrass®), Aryloxyphenoxy- fenoxaprop (Cheetah®, Gold*, Wildcat®), fluazifop propionates (FOPs) (Fusilade®), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) Cyclohexanediones (DIMs) butroxydim (Factor®*), clethodim (Select®), profoxydim (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) Phenylpyrazoles (DENs) pinoxaden (Axial®) GROUP 2 Inhibition of acetolactate synthase (ALS inhibitors), acetohydroxyacid synthase (AHAS) Imidazolinones (IMIs) imazamox (Intervix®*, Raptor®), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, Lightning®*, Midas®* OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) Pyrimidinyl–thio- bispyribac (Nominee®), pyrithiobac (Staple®) benzoates Sulfonylureas (SUs) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*, Trimac Plus®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron (Logran®, Logran® B-Power®*), tribenuron (Express®),
    [Show full text]
  • 40 CFR Ch. I (7–1–18 Edition) § 455.61
    § 455.61 40 CFR Ch. I (7–1–18 Edition) from: the operation of employee show- § 455.64 Effluent limitations guidelines ers and laundry facilities; the testing representing the degree of effluent of fire protection equipment; the test- reduction attainable by the applica- ing and emergency operation of safety tion of the best available tech- showers and eye washes; or storm nology economically achievable water. (BAT). (d) The provisions of this subpart do Except as provided in 40 CFR 125.30 not apply to wastewater discharges through 125.32, any existing point from the repackaging of microorga- source subject to this subpart must nisms or Group 1 Mixtures, as defined achieve effluent limitations rep- under § 455.10, or non-agricultural pes- resenting the degree of effluent reduc- ticide products. tion attainable by the application of the best available technology economi- § 455.61 Special definitions. cally achievable: There shall be no dis- Process wastewater, for this subpart, charge of process wastewater pollut- means all wastewater except for sani- ants. tary water and those wastewaters ex- § 455.65 New source performance cluded from the applicability of the standards (NSPS). rule in § 455.60. Any new source subject to this sub- § 455.62 Effluent limitations guidelines part which discharges process waste- representing the degree of effluent water pollutants must meet the fol- reduction attainable by the applica- lowing standards: There shall be no dis- tion of the best practicable pollut- charge of process wastewater pollut- ant control technology (BPT). ants. Except as provided in 40 CFR 125.30 through 125.32, any existing point § 455.66 Pretreatment standards for existing sources (PSES).
    [Show full text]
  • Dicamba Emissions Under Field Conditions As Affected by Surface
    Weed Technology Dicamba emissions under field conditions as www.cambridge.org/wet affected by surface condition Thomas C. Mueller1 and Lawrence E. Steckel2 1 2 Research Article Professor, Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA and Professor, Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA Cite this article: Mueller TC and Steckel LE (2021) Dicamba emissions under field Abstract conditions as affected by surface condition. Weed Technol. 35: 188–195. doi: 10.1017/ The evolution and widespread distribution of glyphosate-resistant broadleaf weed species cata- wet.2020.106 lyzed the introduction of dicamba-resistant crops that allow this herbicide to be applied POST to soybean and cotton. Applications of dicamba that are most cited for off-target movement Received: 15 June 2020 have occurred in June and July in many states when weeds are often in high densities and Revised: 13 July 2020 Accepted: 11 September 2020 at least 10 cm or taller at the time of application. For registration purposes, most field studies First published online: 17 September 2020 examining pesticide emissions are conducted using bare ground or very small plants. Research was conducted in Knoxville, TN, in the summer of 2017, 2018, and 2019 to examine the effect of Associate Editor: application surface (tilled soil, dead plants, green plants) on dicamba emissions under field con- Kevin Bradley, University of Missouri ditions. Dicamba emissions after application were affected by the treated surface in all years, Nomenclature: with the order from least to most emissions being dead plants < tilled soil < green plant Dicamba; cotton; Gossypium hirsutum l.; material.
    [Show full text]
  • Herbicidal Composition
    (19) TZZ ¥ ¥_T (11) EP 2 832 223 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 04.02.2015 Bulletin 2015/06 A01N 47/36 (2006.01) A01N 41/10 (2006.01) A01N 43/10 (2006.01) A01N 43/40 (2006.01) (2006.01) (2006.01) (21) Application number: 13769011.1 A01N 43/70 A01N 43/80 A01N 43/824 (2006.01) A01P 13/00 (2006.01) (22) Date of filing: 29.03.2013 (86) International application number: PCT/JP2013/059673 (87) International publication number: WO 2013/147225 (03.10.2013 Gazette 2013/40) (84) Designated Contracting States: • OKAMOTO, Hiroyuki AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Kusatsu-shi GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Shiga 525-0025 (JP) PL PT RO RS SE SI SK SM TR • TERADA, Takashi Designated Extension States: Kusatsu-shi BA ME Shiga 525-0025 (JP) (30) Priority: 30.03.2012 JP 2012079935 (74) Representative: Müller-Boré & Partner Patentanwälte PartG mbB (71) Applicant: Ishihara Sangyo Kaisha, Ltd. Friedenheimer Brücke 21 Osaka-shi, Osaka 550-0002 (JP) 80639 München (DE) (72) Inventors: • YAMADA, Ryu Kusatsu-shi Shiga 525-0025 (JP) (54) HERBICIDAL COMPOSITION (57) To provide a high active herbicidal composition at least one 4-hydroxyphenylpyruvate dioxygenase in- having a broad herbicidal spectrum. hibitor selected from the group consisting of sulcotrione, A herbicidal composition comprising, as active in- bicyclopyrone, mesotrione, topramezone and their salts; gredients, (a) nicosulfuron or its salt, (b) terbuthylazine and group C2 is at least one very long chain fatty acid or its salt and (c) compound C (compound C is at least biosynthesis inhibitor selected from the group consisting one herbicidal compound selected from the group con- of dimethenamid-P, flufenacet and their salts).
    [Show full text]
  • Redox Imbalance Caused by Pesticides: a Review of OPENTOX-Related Research
    Marjanović Čermak AM, et al. Redox imbalance caused by pesticides Arh Hig Rada Toksikol 2018;69:126-134 126 Review DOI: 10.2478/aiht-2018-69-3105 Redox imbalance caused by pesticides: a review of OPENTOX-related research Ana Marija Marjanović Čermak, Ivan Pavičić, and Davor Želježić Institute for Medical Research and Occupational Health, Zagreb, Croatia [Received in February 2018; Similarity Check in February 2018; Accepted in May 2018] Pesticides are a highly diverse group of compounds and the most important chemical stressors in the environment. Mechanisms that could explain pesticide toxicity are constantly being studied and their interactions at the cellular level are often observed in well-controlled in vitro studies. Several pesticide groups have been found to impair the redox balance in the cell, but the mechanisms leading to oxidative stress for certain pesticides are only partly understood. As our scientific project “Organic pollutants in environment – markers and biomarkers of toxicity (OPENTOX)” is dedicated to studying toxic effects of selected insecticides and herbicides, this review is focused on reporting the knowledge regarding oxidative stress-related phenomena at the cellular level. We wanted to single out the most important facts relevant to the evaluation of our own findings from studies conducted onin vitro cell models. KEY WORDS: antioxidants; apoptosis; glyphosate; in vitro; neonicotinoids; organophosphates; oxidative stress; pyrethroids; reactive oxygen species Over the years, population growth and changes in food (HrZZ), is dedicated to studying the toxic effects of two consumption patterns have challenged agricultural major pesticide classes with three subgroups each: (A) production to meet the demand for food and quality insecticides (organophosphates, neonicotinoids, and standards.
    [Show full text]
  • 12 Chemical Fact Sheets
    1212 ChemicalChemical factfact sheetssheets A conceptual framework for Introduction implementing the Guidelines (Chapter 1) (Chapter 2) he background docudocu-- ments referred to in FRAMEWORK FOR SAFE DRINKING-WATER SUPPORTING Tments referred to in INFORMATION thisthis chapterchapter (as the princi-princi- Health-based targets Public health context Microbial aspects pal reference for each fact (Chapter 3) and health outcome (Chapters 7 and 11) sheet) may be found on Water safety plans Chemical aspects (Chapter 4) (Chapters 8 and 12) thethe Water, Sanitation, HyHy-- System Management and Radiological Monitoring giene and Health web site assessment communication aspects at http://www.who.int/ (Chapter 9) Acceptability Surveillance water_sanitation_health/ aspects (Chapter 5) dwq/chemicals/en/indewater-quality/guidelines/x. (Chapter 10) htmlchemicals/en/. A complete. A complete list of rlist eferences of references cited citedin this in Application of the Guidelines in specic circumstances chapter,this chapter, including including the (Chapter 6) background documents Climate change, Emergencies, Rainwater harvesting, Desalination forfor each cchemical, hemical, is pro-pro- systems, Travellers, Planes and vided in Annex 22.. ships, etc. 12.1 Chemical contaminants in drinking-water Acrylamide Residual acrylamideacrylamide monomermonomer occursoccurs inin polyacrylamidepolyacrylamide coagulantscoagulants used used in in thethe treattreat-- ment of drinking-water. In general, thethe maximummaximum authorizedauthorized dosedose ofof polymerpolymer isis 11 mg/l. mg/l. At a monomer content of 0.05%, this corresponds to a maximum theoretical concen-- trationtration ofof 0.5 µg/l of the monomer in water.water. Practical concentrations maymay bebe lowerlower byby aa factor factor of 2–3. This applies applies to to thethe anionic anionic and and non-ionic non-ionic polyacrylamides, polyacrylamides, but but residual residual levelslevels fromfrom cationic polyacrylamides maymay bebe higher.higher.
    [Show full text]
  • List of Herbicide Groups
    List of herbicides Group Scientific name Trade name clodinafop (Topik®), cyhalofop (Barnstorm®), diclofop (Cheetah® Gold*, Decision®*, Hoegrass®), fenoxaprop (Cheetah® Gold* , Wildcat®), A Aryloxyphenoxypropionates fluazifop (Fusilade®, Fusion®*), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) butroxydim (Falcon®, Fusion®*), clethodim (Select®), profoxydim A Cyclohexanediones (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) A Phenylpyrazoles pinoxaden (Axial®) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, B Sulfonylureas Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron, (Logran®, Logran® B Power®*), tribenuron (Express®), trifloxysulfuron (Envoke®, Krismat®*) florasulam (Paradigm®*, Vortex®*, X-Pand®*), flumetsulam B Triazolopyrimidines (Broadstrike®), metosulam (Eclipse®), pyroxsulam (Crusader®Rexade®*) imazamox (Intervix®*, Raptor®,), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, B Imidazolinones Lightning®*, Midas®*, OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) B Pyrimidinylthiobenzoates bispyribac (Nominee®), pyrithiobac (Staple®) C Amides: propanil (Stam®) C Benzothiadiazinones: bentazone (Basagran®,
    [Show full text]
  • Journal of Plant Protection Research ISSN 1427-4345
    Journal of Plant Protection Research ISSN 1427-4345 ORIGINAL ARTICLE A study on Sorghum bicolor (L.) Moench response to split application of herbicides Sylwia Kaczmarek* Department of Weed Science and Plant Protection Techniques, Institute of Plant Protection – National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland Vol. 57, No. 2: 152–157, 2017 Abstract DOI: 10.1515/jppr-2017-0021 Field experiments to evaluate the split application of mesotrione + s-metolachlor, mesot- rione + terbuthylazine, dicamba + prosulfuron, terbuthylazine + mesotrione + s-metol- Received: March 10, 2017 achlor, and sulcotrione in the cultivation of sorghum var. Rona 1 were carried out in 2012 Accepted: May 24, 2017 and 2013. Th e fi eld tests were conducted at the fi eld experimental station in Winna Góra, Poznań, Poland. Treatments with the herbicides were performed directly aft er sowing (PE) *Corresponding address: and at leaf stage 1–2 (AE1) or at leaf stage 3–4 (AE2) of sorghum. Th e treatments were car- [email protected] ried out in a laid randomized block design with 4 replications. Th e results showed that the tested herbicides applied at split doses were eff ective in weed control. Aft er the herbicide application weed density and weed biomass were signifi cantly reduced compared to the infested control. Th e best results were achieved aft er the application of mesotrione tank mixture with s-metolachlor and terbuthylazine. Application of split doses of herbicides was also correlated with the density, biomass, and height of sorghum. Key words: herbicides, mesotrione, s-metolachlor, sorghum, split doses, terbuthylazine, weed control Introduction Sorghum, the oldest cultivated crop in the world, is a total area of 390,000 ha.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.451,767 B2 Nolte Et Al
    US00945.1767B2 (12) United States Patent (10) Patent No.: US 9.451,767 B2 Nolte et al. (45) Date of Patent: Sep. 27, 2016 (54) AQUEOUS COMPOSITION COMPRISING (52) U.S. Cl. DCAMIBA AND A DRIFT CONTROL AGENT CPC ............... A0IN 33/04 (2013.01); A0IN 37/10 (2013.01); A0IN 37/40 (2013.01); A0IN (71) Applicant: BASF SE, Ludwigshafen (DE) 37/44 (2013.01) (58) Field of Classification Search (72) Inventors: Marc Nolte, Mannheim (DE); Wen Xu, CPC ...................................................... AO1N 37/44 Cary, NC (US); Steven Bowe, Apex, USPC .......................................................... 514/564 NC (US); Maarten Staal, Durham, NC See application file for complete search history. (US); Terrance M. Cannan, Raleigh, NC (US) (56) References Cited (73) Assignee: BASF SE, Ludwigshafen (DE) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this WO WO O2,34047 5, 2002 patent is extended or adjusted under 35 W. w838g 1239 U.S.C. 154(b) by 101 days. WO WO 2011/O19652 2, 2011 WO WO 2011/O102.11 9, 2011 (21) Appl. No.: 14/408,172 WO WO 2012/076567 6, 2012 (22) PCT Filed: Jun. 11, 2013 OTHER PUBLICATIONS International Search Report dated Jul. 12, 2013, prepared in Inter (86). PCT No.: PCT/EP2013/061962 national Application No. PCT/EP2013/061962. S 371 (c)(1), International Preliminary Report on Patentability dated Jun. 6. (2) Date: Dec. 15, 2014 2014, prepared in International Application No. PCT/EP2013/ O61962. (87) PCT Pub. No.: WO2013/189773 Primary Examiner — Raymond Henley, III PCT Pub. Date: Dec. 27, 2013 (74) Attorney, Agent, or Firm — Brinks Gilson & Lione (65) Prior Publication Data (57) ABSTRACT US 2015/O173354 A1 Jun.
    [Show full text]
  • PESTICIDES Criteria for a Recommended Standard
    CRITERIA FOR A RECOMMENDED STANDARD OCCUPATIONAL EXPOSURE DURING THE MANUFACTURE AND FORMULATION OF PESTICIDES criteria for a recommended standard... OCCUPATIONAL EXPOSURE DURING THE MANUFACTURE AND FORMULATION OF PESTICIDES * U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health July 1978 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 DISCLAIMER Mention of company names or products does not constitute endorsement by the National Institute for Occupational Safety and Health. DHEW (NIOSH) Publication No. 78-174 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and provide for the safety of workers occupationally exposed to an ever-increasing number of potential hazards. The National Institute for Occupational Safety and Health (NIOSH) has implemented a formal system of research, with priorities determined on the basis of specified indices, to provide relevant data from which valid criteria for effective standards can be derived. Recommended standards for occupational exposure, which are the result of this work, are based on the effects of exposure on health. The Secretary of Labor will weigh these recommendations along with other considerations, such as feasibility and means of implementation, in developing regulatory standards. Successive reports will be presented as research and epideiriologic studies are completed and as sampling and analytical methods are developed. Criteria and standards will be reviewed periodically to ensure continuing protection of workers. The contributions to this document on pesticide manufacturing and formulating industries by NIOSH staff members, the review consultants, the reviewer selected by the American Conference of Governmental Industrial Hygienists (ACGIH), other Federal agencies, and by Robert B.
    [Show full text]
  • Glyphosate and Glufosinate-Ammonium Runoff from a Corn-Growing Area in Italy Claudio Screpanti, Cesare Accinelli, Alberto Vicari, Pietro Catizone
    Glyphosate and glufosinate-ammonium runoff from a corn-growing area in Italy Claudio Screpanti, Cesare Accinelli, Alberto Vicari, Pietro Catizone To cite this version: Claudio Screpanti, Cesare Accinelli, Alberto Vicari, Pietro Catizone. Glyphosate and glufosinate- ammonium runoff from a corn-growing area in Italy. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2005, 25 (3), pp.407-412. hal-00886310 HAL Id: hal-00886310 https://hal.archives-ouvertes.fr/hal-00886310 Submitted on 1 Jan 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Agron. Sustain. Dev. 25 (2005) 407–412 407 © INRA, EDP Sciences, 2005 DOI: 10.1051/agro:2005031 Research article Glyphosate and glufosinate-ammonium runoff from a corn-growing area in Italy Claudio SCREPANTI, Cesare ACCINELLI*, Alberto VICARI, Pietro CATIZONE Department of Agro-Environmental Science and Technology, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy (Accepted 4 May 2005) Abstract – The main objective of this experiment was to estimate field-scale runoff losses of glyphosate and glufosinate-ammonium under natural rainfall conditions. Investigations were carried out at the Runoff Monitoring Station of the University of Bologna (Italy). Glyphosate and glufosinate-ammonium were applied as pre-emergence herbicides on 350-m2 field plots characterized by a uniform slope of 15%.
    [Show full text]