Metabolic Rate, Allometry, Energy-Equivalence Rule

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Rate, Allometry, Energy-Equivalence Rule Main Points 1) Diet -- primitive monogastric, cecal fermentation, and ruminant fermentation -- ruminant digestion and an adaptive radiation -- example: the global distribution of mammalian herbivores 2) Metabolism and allometries -- universal patterns in ecology -- example: allometries for population density in carnivores Terms: cellulose, meristem, frugivory, coprophagy, fermentation, cud, succession, metabolic rate, allometry, energy-equivalence rule Pre-reading: Wednesday 11 October = NA Monday 16 October = Emlen and Oring 1 Diet: Insectivores and Carnivores • insectivory (including myrmecophagy) and carnivory -- simplest digestive tract -- no fermentation or cecum (or cecum is very small) -- food is readily digested, because of high energy content, no cell walls, and low fiber 2 Diet: Herbivores • Plants as mammal food: -- leaves are low in protein -- sugars less concentrated -- protected by biotic, chemical, and mechanical defenses chili w/chemical defense barrel cactus bullhorn acacia (capsaicin) w/mechanical defense w/mechanical (thorns) and (spines) biotic defense (ants) 3 Diet: Herbivores • Plants as mammal food -- cellulose in cell walls -- ontogeny of plants -- graminoid vs. forb meristems 4 Diet: Herbivores • primitive monogastric digestion -- simple alimentary canal (AKA digestive tract) -- often leads to frugivory or omnivory collared peccary bearded pig giant forest hog 5 Diet: Herbivores • hindgut or cecal fermentation -- enlarged cecum houses fermentation -- short rate of passage, low cellulose utilization -- may lead to coprophagy in smaller species mountain tapir 6 Diet: Herbivores • foregut or ruminant fermentation -- fermentation occurs in four-chambered stomach -- long rate of passage, high cellulose utilization, cuds American bison 7 Discussion Q: Families Bovidae and Cervidae have proliferated in the past 15,000 years, while rhinos, horses, and equids have declined in number. Come up with a hypothesis for why this has happened. 15,000 5 MYA 34 MYA 8 elk vicuna saiga saola water chevrotain 9 • succession = predictable changes through time in ecological communities 10 • succession = predictable changes through time in ecological communities • Grazing succession -- materials pass twice as fast through cecal fermenters -- protein assimilation less efficient than ruminants 11 • Grazing succession -- smaller animals have higher mass-specific metabolic rates -- smaller animals have higher relative energy demands, but lower absolute energy demands -- for smaller animals, intake is less, but assimilation must be high 12 Metabolism and body size • metabolic rate = energy consumption or expenditure, typically measured in kJ or kCal consumed per day 13 Metabolism and body size • metabolic rate = energy consumption or expenditure, typically measured in kJ or kCal consumed per day • allometry = change in trait or process with body size that is non-linear 14 Metabolism and body size • allometry = change in trait or process with body size that is non-linear 1:1 line Positive allometry Log Log rostrum size Rostrum size increases steeply (slope >1) with skull size 15 Log skull size Metabolism and body size • allometry = change in trait or process with body size that is non-linear Negative allometry 1:1 line Head size increases slowly (slope <1) with body size Log Log head size 16 Log body size Metabolism and body size • metabolic rate • allometry linear axes log10 axes Kcal/kg/day Kcal/kg/day Kcal/day Kcal/day 17 body mass (kg) body mass (kg) Metabolism and body size • metabolic rate • allometry total metabolism (kJ) = a(mass^0.75) mass-specific metabolism (kJ) = a(mass^-0.25) 18 Metabolism and body size Metabolic rate (W) Metabolic Slope = 0.75 body mass (kg) 19 Metabolism and body size ) 2 Density Density / km (inds Slope = -0.75 100 101 102 103 104 105 106 107 From Brown 1995 20 body mass (g) Metabolism and body size • Energetic-equivalence rule = change in abundance with body size is offset by change in metabolic rate with body size, so that populations exhibit invariance in energy use with respect to size. etabolism of of etabolism population m body mass (g) 21 body mass (g) body mass (g) Metabolism and body size K. Roy. 2017. “How to be an elephant” 22 http://katherineroy.com/elephants/ Digestion and global diversity of ungulates • Predictors of plant quantity: -- more rain = more plants -- higher soil fertility = more plants 23 Digestion and global diversity of ungulates • Predictors of plant quality: -- more rain = lower N and P content -- higher soil fertility = higher N and P content 24 Digestion and global diversity of ungulates • Plants are most abundant in wet, high-fertility environments klipspringer ~20 kg plains zebra ~200 kg buffalo ~800 kg 25 Digestion and global diversity of ungulates • Plants are most abundant in wet, high-fertility environments • Plants are most nutritious in dry, high-fertility environments klipspringer ~20 kg plains zebra ~200 kg buffalo ~800 kg 26 Dicussion Q: in light of the fact that plant quantity is most important to large ungulates, and plant quality is most important to small ungulates, come up with a hypothesis for where ungulate diversity should be highest. klipspringer ~20 kg plains zebra ~200 kg buffalo ~800 kg 27 Global diversity of ungulates 3000 kg 15 kg Plant available moisture Plant available N From Olff et al. 2002. 28 Global diversity of ungulates 3000 kg 15 kg Plant available moisture Plant available N From Olff et al. 2002. 29 Global diversity of ungulates Plant available moisture Plant available N 30 Global diversity of ungulates • High correspondence between predicted and observed diversity of large herbivores, based on rain and soil fertility • Suggests that plant-available nutrients and moisture maintain species diversity of ungulates 31.
Recommended publications
  • The Herbivore Digestive System Buffalo Zebra
    The Herbivore Digestive System Name__________________________ Buffalo Ruminant: The purpose of the digestion system is to ______________________________ _____________________________. Bacteria help because they can digest __________________, a sugar found in the cell walls of________________. Zebra Non- Ruminant: What is the name for the largest section of Organ Color Key a ruminant’s Mouth stomach? Esophagus __________ Stomach Small Intestine Cecum Large Intestine Background Information for the Teacher Two Strategies of Digestion in Hoofed Mammals Ruminant Non‐ruminant Representative species Buffalo, cows, sheep, goats, antelope, camels, Zebra, pigs, horses, asses, hippopotamus, rhinoceros giraffes, deer Does the animal Yes, regurgitation No regurgitation regurgitate its cud to Grass is better prepared for digestion, as grinding Bacteria can not completely digest cell walls as chew material again? motion forms small particles fit for bacteria. material passes quickly through, so stool is fibrous. Where in the system do At the beginning, in the rumen Near the end, in the cecum you find the bacteria This first chamber of its four‐part stomach is In this sac between the two intestines, bacteria digest that digest cellulose? large, and serves to store food between plant material, the products of which pass to the rumination and as site of digestion by bacteria. bloodstream. How would you Higher Nutrition Lower Nutrition compare the nutrition Reaps benefits of immediately absorbing the The digestive products made by the bacteria are obtained via digestion? products of bacterial digestion, such as sugars produced nearer the end of the line, after the small and vitamins, via the small intestine. intestine, the classic organ of nutrient absorption.
    [Show full text]
  • Infectious Diseases of Saiga Antelopes and Domestic Livestock in Kazakhstan
    Infectious diseases of saiga antelopes and domestic livestock in Kazakhstan Monica Lundervold University of Warwick, UK June 2001 1 Chapter 1 Introduction This thesis combines an investigation of the ecology of a wild ungulate, the saiga antelope (Saiga tatarica, Pallas), with epidemiological work on the diseases that this species shares with domestic livestock. The main focus is on foot-and-mouth disease (FMD) and brucellosis. The area of study was Kazakhstan (located in Central Asia, Figure 1.1), home to the largest population of saiga antelope in the world (Bekenov et al., 1998). Kazakhstan's independence from the Soviet Union in 1991 led to a dramatic economic decline, accompanied by a massive reduction in livestock numbers and a virtual collapse in veterinary services (Goskomstat, 1996; Morin, 1998a). As the rural economy has disintegrated, the saiga has suffered a dramatic increase in poaching (Bekenov et al., 1998). Thus the investigation reported in this thesis includes ecological, epidemiological and socio-economic aspects, all of which were necessary in order to gain a full picture of the dynamics of the infectious diseases of saigas and livestock in Kazakhstan. The saiga is an interesting species to study because it is one of the few wildlife populations in the world that has been successfully managed for commercial hunting over a period of more than 40 years (Milner-Gulland, 1994a). Its location in Central Asia, an area that was completely closed to foreigners during the Soviet era, means that very little information on the species and its management has been available in western literature. The diseases that saigas share with domestic livestock have been a particular focus of this study because of the interesting issues related to veterinary care and disease control in the Former Soviet Union (FSU).
    [Show full text]
  • The Comparative Analysis of the Ruminal Bacterial Population in Reindeer (Rangifer Tarandus L.) from the Russian Arctic Zone: Regional and Seasonal Effects
    animals Article The Comparative Analysis of the Ruminal Bacterial Population in Reindeer (Rangifer tarandus L.) from the Russian Arctic Zone: Regional and Seasonal Effects Larisa A. Ilina 1,*, Valentina A. Filippova 1 , Evgeni A. Brazhnik 1 , Andrey V. Dubrovin 1, Elena A. Yildirim 1 , Timur P. Dunyashev 1, Georgiy Y. Laptev 1, Natalia I. Novikova 1, Dmitriy V. Sobolev 1, Aleksandr A. Yuzhakov 2 and Kasim A. Laishev 2 1 BIOTROF + Ltd., 8 Malinovskaya St, Liter A, 7-N, Pushkin, 196602 St. Petersburg, Russia; fi[email protected] (V.A.F.); [email protected] (E.A.B.); [email protected] (A.V.D.); [email protected] (E.A.Y.); [email protected] (T.P.D.); [email protected] (G.Y.L.); [email protected] (N.I.N.); [email protected] (D.V.S.) 2 Department of Animal Husbandry and Environmental Management of the Arctic, Federal Research Center of Russian Academy Sciences, 7, Sh. Podbel’skogo, Pushkin, 196608 St. Petersburg, Russia; [email protected] (A.A.Y.); [email protected] (K.A.L.) * Correspondence: [email protected] Simple Summary: The reindeer (Rangifer tarandus) is a unique ruminant that lives in arctic areas characterized by severe living conditions. Low temperatures and a scarce diet containing a high Citation: Ilina, L.A.; Filippova, V.A.; proportion of hard-to-digest components have contributed to the development of several adaptations Brazhnik, E.A.; Dubrovin, A.V.; that allow reindeer to have a successful existence in the Far North region. These adaptations include Yildirim, E.A.; Dunyashev, T.P.; Laptev, G.Y.; Novikova, N.I.; Sobolev, the microbiome of the rumen—a digestive organ in ruminants that is responsible for crude fiber D.V.; Yuzhakov, A.A.; et al.
    [Show full text]
  • Ruminant Animal? Many Different Species of Ruminant Animals Are Found Around the World
    What is a Ruminant Animal? Many different species of ruminant animals are found around the world. Ruminants include cattle, sheep, goats, buffalo, deer, elk, giraffes and camels. These animals all have a digestive system that is uniquely different from our own. Instead of one compartment to the stomach they have four. Of the four compartments the rumen is the largest section and the main digestive centre. The rumen is filled with billions of tiny microorganisms that are able to break down grass and other coarse vegetation that animals with one stomach (including humans, chickens and pigs) cannot digest. Ruminant animals do not completely chew the grass or vegetation they eat. The partially chewed grass goes into the large rumen where it is stored and broken down into balls of “cud”. When the animal has eaten its fill it will rest and “chew its cud”. The cud is then swallowed once again where it will pass into the next three compartments—the reticulum, the omasum and the true stomach, the abomasum. Dairy calves have a four-part stomach when they are born. However, they function primarily as a monogastric (simple-stomached) animal during the first part of their lives. At birth the first three compartments of a calf’s stomach—rumen, reticulum, and omasum—are inactive and undeveloped. As the calf grows and begins to eat a variety of feeds, its stomach compartments also begin to grow and change. The abomasum constitutes nearly 60 percent of the young calf’s stomach, decreasing to about 8 percent in the mature cow. The rumen comprises about 25 percent of the young calf’s stomach, increasing to 80 percent in the mature cow.
    [Show full text]
  • Hooves and Herds Lesson Plan
    Hooves and Herds 6-8 grade Themes: Rut (breeding) in ungulates (hoofed mammals) Location: Materials: The lesson can be taught in the classroom or a hybrid of in WDFW PowerPoints: Introduction to Ungulates in Washington, the classroom and on WDFW public lands. We encourage Rut in Washington Ungulates, Ungulate comparison sheet, teachers and parents to take students in the field so they WDFW career profile can look for signs of rut in ungulates (hoofed animals) and experience the ecosystems where ungulates call home. Vocabulary: If your group size is over 30 people, you must apply for a Biological fitness: How successful an individual is at group permit. To do this, please e-mail or call your WDFW reproducing relative to others in the population. regional customer service representative. Bovid: An ungulate with permanent keratin horns. All males have horns and, in many species, females also have horns. Check out other WDFW public lands rules and parking Examples are cows, sheep, and goats. information. Cervid: An ungulate with antlers that fall off and regrow every Remote learning modification: Lesson can be taught over year. Antlers are almost exclusively found on males (exception Zoom or Google Classrooms. is caribou). Examples include deer, elk, and moose. Harem: A group of breeding females associated with one breeding male. Standards: Herd: A large group of animals, especially hoofed mammals, NGSS that live, feed, or migrate. MS-LS1-4 Mammal: Animals that are warm blooded, females have Use argument based on empirical evidence and scientific mammary glands that produce milk for feeding their young, reasoning to support an explanation for how characteristic three bones in the middle ear, fur or hair (in at least one stage animal behaviors and specialized plant structures affect the of their life), and most give live birth.
    [Show full text]
  • Notes on Ruminant Ecology and Evolution and Rumination
    Notes on Ruminant Ecology and Evolution and Rumination Although the nature of ruminant evolution is still disputed, current theory based on genetic analysis suggests that the abomasum is evolutionarily the oldest compartment, the rumen evolved some time after the abomasums, and the omasum is the evolutionarily youngest stomach compartment. In addition According to the Journal of Dairy Science, volume 93, issue 4, the first ruminants evolved about 50 million years ago and were small (<5kg) forest dwelling omnivores. In contrast, the first marsupials and their digestive systems split from egg laying mammals about 120 million years ago. Today there are almost 200 living ruminant species in 6 families. Wild ruminants number about 75 million, range from about 2 to more than 800 kg, and generally prefer at least some browse in their diets. Nine species have been domesticated in the last 10,000 years. Their current combined population numbers 3.6 billion. In contrast to wild ruminants, domestic species naturally prefer at least some grass in their diets, and are of large body weight (BW; roughly from 35 to 800 kg), and excepting reindeer, belong to one family (Bovidae). This portion of The Grazing Academy will compare some of today’s common digestive systems and the look more closely at ruminant digestion in our domesticated species. Ruminants take their name from the important digestive process called rumination that allows for rapid ingestion of feed and completion of chewing at a later time. There are four steps to the rumination process: regurgitation, remastication, resalivation, and reswallowing. In cattle, rumination occupies up to 8 hours of the day, with one rumination cycle requiring about one minute.
    [Show full text]
  • Fallow Deer Fact Sheet
    FALLOW DEER FACT SHEET Plant and Animal Health Branch Livestock Health Management and Regulatory Unit Ministry of Agriculture 1767 Angus Campbell Rd Abbotsford BC V3G 2M3 Ph: (604) 556-3093 Fax: (604) 556-3015 Toll Free: 1-877-877-2474 TABLE OF CONTENTS Contents CHARACTERISTICS OF FALLOW DEER ........................................................... 3 BREEDING AND REPRODUCTION ..................................................................... 4 MATING ................................................................................................................ 7 FEEDING AND NUTRITION ................................................................................. 8 PLANNING A NEW OR EXPANDED OPERATION .............................................. 9 HEALTH MANAGEMENT ................................................................................... 11 FALLOW DEER DISEASES ............................................................................... 15 PRODUCTION FACILITIES ................................................................................ 16 FARM, YARD AND RACEWAY DESIGN ........................................................... 17 MECHANICAL RESTRAINT SYSTEMS ............................................................. 19 OTHER RESTRAINT SYSTEMS ........................................................................ 21 GLOSSARY ........................................................................................................ 22 REFERENCES ..................................................................................................
    [Show full text]
  • The North American Bison Dave Arthun and Jerry L
    The North American Bison Dave Arthun and Jerry L. Holechek Dept. of Animal and Range Science, New Mexico State University, Las Cruces 88003 Reprinted from Rangelands 4(3), June 1982 Summary Bison played a significant role in the settling of the Western United States and Canada. This article summarizes the major events in the history of bison in North America from the times of the early settlers to the twentieth century. The effect of bison grazing on early rangeland conditions is also discussed. The North American Bison No other indigenous animal, except perhaps the beaver, influenced the pages of history in the Old West as did the bison. The bison's demise wrote the final chapter for the Indian and opened the West to the white man and civilization. The soil-grass-buffalo-lndian relationship had developed over thousands of years, The bison was the essential factor in the plains Indian's existence, and when the herds were destroyed, the Indian was easily subdued by the white man. The bison belongs to the family Bovidae. This is the family to which musk ox and our domestic cattle, sheep, and goats belong. Members have true horns, which are never shed. Horns are present in both sexes. The Latin or scientific name is Bison bison, inferring it is not a true buffalo like the Asian and African buffalo. The true buffalo possess no hump and belong to the genus Bubalus, local venacular for the American bison has included buffalo, Mexican bull, shaggies, and Indian cattle. The bison were the largest native herbivore on the plains of the West.
    [Show full text]
  • WSC 11-12 Conf 14 Layout
    Joint Pathology Center Veterinary Pathology Services WEDNESDAY SLIDE CONFERENCE 2011-2012 Conference 14 25 January 2012 CASE I: NADC MVP-2 (JPC 3065874). Gross Pathology: The deer was of normal body condition with adequate deposits of body fat. There Signalment: 5-month-old female white-tailed deer was crusty exudate around the eyes. Multifocal areas (Odocoileus virginianus). of hemorrhage were seen in the heart (epicardial and endocardial), lungs, kidney, adrenal glands, spleen, History: Observed depressed, listless. Physical exam small and large intestines (mucosal and serosal revealed fever (102.5 F), mild dehydration, normal surfaces) and along the mesenteric border, mesenteric auscultation of heart and lungs, no evidence of lymph nodes and iliopsoas muscles. Multifocal ulcers diarrhea. Treated with IV fluids, antibiotics and a non- were present in the pyloric region of the abomasum. steroidal anti-inflammatory drug. Deer died within 5 hours. Laboratory Results: PCR for OvHV-2: positive PCR for EHV: negative PCR for Bluetongue virus: negative PCR for BVD: negative Contributor’s Histopathologic Description: Within the section of myocardium there is accentuation of medium to large arteries due to the infiltration of the vascular wall and perivascular spaces by inflammatory cells. Numerous lymphocytes and fewer neutrophils invade, and in some cases, efface the vessel wall. Fibrinoid degeneration and partially occluding fibrinocellular thrombi are present in the most severely affected vessels. Less affected vessels are characterized by large, rounded endothelial cells and intramural lymphocytes and neutrophils. Within the myocardium are multifocal areas of hemorrhage and scattered infiltrates of lymphocytes and macrophages. 1-1. Heart, white-tailed deer. Necrotizing arteritis characterized by Contributor’s Morphologic Diagnosis: marked expansion of the wall by brightly eosinophilic protein, numerous inflammatory cells, and cellular debris (fibrinoid necrosis).
    [Show full text]
  • The Effects of Increased Hay-Grain Ratio on Masai Giraffe Behavior, Health Indicators and Fecal Microflora Diversity Michael L
    THE EFFECTS OF INCREASED HAY-GRAIN RATIO ON MASAI GIRAFFE BEHAVIOR, HEALTH INDICATORS AND FECAL MICROFLORA DIVERSITY MICHAEL L. MONSON JR Bachelor of Science in Biology CLEVELAND STATE UNIVERSITY May 2013 submitted in partial fulfillment of requirements for the degree MASTER OF SCIENCE IN BIOLOGY at the CLEVELAND STATE UNIVERSITY September 2016 We hereby approve this thesis for Michael L. Monson Jr Candidate for the Master of Science in Biology degree for the Department of Biological, Geological, and Environmental Science And the CLEVELAND STATE UNIVERSITY College of Graduate Studies Date: _ Thesis Chairperson, Dr. Mandi Schook BGES/CSU Date: _ Thesis Committee Member, Dr. Robert Krebs BGES/CSU Date: _ Thesis Committee Member, Dr. Jeffrey Dean BGES/CSU Student’s Date of Defense: 21st June 2016 ACKNOWLEDGEMENTS Firstly, I would like to express my sincere gratitude to my advisor, Dr. Mandi Schook for her unrelenting support, patience, and encouragement. I could not imagine having a better advisor to do my masters under. I would also like to thank the rest of the Conservation and Science team at the Cleveland Metroparks Zoo: my fellow zoo students, Bonnie Bairds and Austin Leeds, for their support and mentoring and who will both go onto great things in the zoological field: Dr. Pam Dennis for the initial spark of an idea and her insightful discussions along the way: Dr. Kristen Lukas who always met me with a smile and encouraging wisdom: and Laura Amendolagine for her support and patience inside and out of the endocrinology lab. I’d also like to recognize Dr. David Burke, Dr.
    [Show full text]
  • The Rumen Bacterial Community of Reindeer in Different Age Periods from Russian Arctic Regions
    AGRICULTURAL SCIENCES (CROP SCIENCES, ANIMAL SCIENCES) DOI: 10.22616/rrd.24.2018.062 THE RUMEN BACTERIAL COMMUNITY OF REINDEER IN DIFFERENT AGE PERIODS FROM RUSSIAN ARCTIC REGIONS Larisa Ilina1, Valentina Filippova1, Andrey Dubrovin1, Elena Yildirim1, Timur Dunyashev1, Georgiy Laptev1, Kasim Laishev2 1BIOTROF+ LTD, Russia 2North-West Center for Interdisciplinary Research on Food Security Problems, Russia [email protected] Abstract Rangifer tarandus (reindeer) – is actively bred in the northern regions of different countries. Therefore, an urgent task is to deepen information about the features of reindeer adaptations. Rumen symbiotic microorganisms play an important role in the life of Rangifer tarandus, allowing animals to efficiently use scarce nutrient resources of the tundra and forest-tundra. The microbial community of the reindeer rumen, as well as its age-related changes, are the least studied compared to other ruminants. The comparative analysis results of rumen bacterial community composition of calf (4 months), young animals (1–2 years) and adults (3–6 years) Rangifer tarandus of the Russian Arctic are presented for the first time. The reindeer ruminal bacterial community composition was analyzed in the laboratory of the ‘BIOTROF+’ Ltd by T-RFLP method. In the ontogenesis, significant changes in the microorganism representation were noticed, the greatest of which was noted in microorganism involved in carbohydrate fermentation. The content of cellulolytic Clostridia and the acid-utilizing species of the Negativicutes (P<0.05) decreased with age, but bacteria with the amylo- and cellulosolytic properties of the phylum Bacteroidetes increased (P<0.05). A wide range of microorganisms which traditionally belong to the pathogens of various animals and humans diseases was revealed.
    [Show full text]
  • Ruminant Headgear: a Mystery Awaiting Unraveling 6 July 2011
    Ruminant headgear: A mystery awaiting unraveling 6 July 2011 cancer and osteoporosis, says lead author Edward Byrd Davis, a paleontologist in the department of geological sciences at the University of Oregon. "Antlers, for example, are the fastest growing bones of any living vertebrate today," said Davis, who also is fossil collection manager at the UO Museum of Natural and Cultural History and affiliate of the Robert D. Clark Honors College. "They are shed at the end of each season and replaced by new racks every year. "This is one of those things where you'd think we'd know more, but we don't," said Davis, who became interested in pronghorn antelopes while a doctoral student at the University of California, Berkeley. "Scientists get a lot of press coverage for dark matter or the Higgs boson because they are among deep mysteries that we are still unlocking. A lot of (PhysOrg.com) -- Emerging from the heads of people assume that most of biology is understood, most cud-chewing mammals, headgear inspire an yet something as fundamental as the age-old almost mystical and certainly majestic aura. But, question 'how did the cow get its horns?' is still not scientists say, we know shockingly little about well understood." them. Among assumptions only recently overturned was In a paper appearing online ahead of regular the idea that pronghorn antelope were related to publication in the Proceedings of the Royal Society antler-wearing deer or horned cattle, goats and B, a London-based international journal dedicated sheep. In fact, a mitochondrial DNA study co- to biology, a three-member scientific team spells authored by Spain's Manuel Hernandez Fernandez out what is known -- and not known -- about and Yale University's Elisabeth S.
    [Show full text]