Italian Information Security Association 2013 Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recent Developments in Cybersecurity Melanie J
American University Business Law Review Volume 2 | Issue 2 Article 1 2013 Fiddling on the Roof: Recent Developments in Cybersecurity Melanie J. Teplinsky Follow this and additional works at: http://digitalcommons.wcl.american.edu/aublr Part of the Law Commons Recommended Citation Teplinsky, Melanie J. "Fiddling on the Roof: Recent Developments in Cybersecurity." American University Business Law Review 2, no. 2 (2013): 225-322. This Article is brought to you for free and open access by the Washington College of Law Journals & Law Reviews at Digital Commons @ American University Washington College of Law. It has been accepted for inclusion in American University Business Law Review by an authorized administrator of Digital Commons @ American University Washington College of Law. For more information, please contact [email protected]. ARTICLES FIDDLING ON THE ROOF: RECENT DEVELOPMENTS IN CYBERSECURITY MELANIE J. TEPLINSKY* TABLE OF CONTENTS Introduction .......................................... ..... 227 I. The Promise and Peril of Cyberspace .............. ........ 227 II. Self-Regulation and the Challenge of Critical Infrastructure ......... 232 III. The Changing Face of Cybersecurity: Technology Trends ............ 233 A. Mobile Technology ......................... 233 B. Cloud Computing ........................... ...... 237 C. Social Networking ................................. 241 IV. The Changing Face of Cybersecurity: Cyberthreat Trends ............ 244 A. Cybercrime ................................. ..... 249 1. Costs of Cybercrime -
2020 Sonicwall Cyber Threat Report
2020 SONICWALL CYBER THREAT REPORT sonicwall.com I @sonicwall TABLE OF CONTENTS 3 A NOTE FROM BILL 4 CYBERCRIMINAL INC. 11 2019 GLOBAL CYBERATTACK TRENDS 12 INSIDE THE SONICWALL CAPTURE LABS THREAT NETWORK 13 KEY FINDINGS FROM 2019 13 SECURITY ADVANCES 14 CRIMINAL ADVANCES 15 FASTER IDENTIFICATION OF ‘NEVER-BEFORE-SEEN’ MALWARE 16 TOP 10 CVES EXPLOITED IN 2019 19 ADVANCEMENTS IN DEEP MEMORY INSPECTION 23 MOMENTUM OF PERIMETER-LESS SECURITY 24 PHISHING DOWN FOR THIRD STRAIGHT YEAR 25 CRYPTOJACKING CRUMBLES 27 RANSOMWARE TARGETS STATE, PROVINCIAL & LOCAL GOVERNMENTS 31 FILELESS MALWARE SPIKES IN Q3 32 ENCRYPTED THREATS GROWING CONSISTENTLY 34 IOT ATTACK VOLUME RISING 35 WEB APP ATTACKS DOUBLE IN 2019 37 PREPARING FOR WHAT’S NEXT 38 ABOUT SONICWALL 2 A NOTE FROM BILL The boundaries of your digital empire are In response, SonicWall and our Capture Labs limitless. What was once a finite and threat research team work tirelessly to arm defendable space is now a boundless organizations, enterprises, governments and territory — a vast, sprawling footprint of businesses with actionable threat devices, apps, appliances, servers, intelligence to stay ahead in the global cyber networks, clouds and users. arms race. For the cybercriminals, it’s more lawless And part of that dedication starts now with than ever. Despite the best intentions of the 2020 SonicWall Cyber Threat Report, government agencies, law enforcement and which provides critical threat intelligence to oversight groups, the current cyber threat help you better understand how landscape is more agile than ever before. cybercriminals think — and be fully prepared for what they’ll do next. -
Internet Security Threat Report Volume 24 | February 2019
ISTRInternet Security Threat Report Volume 24 | February 2019 THE DOCUMENT IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. SYMANTEC CORPORATION SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENT. THE INFORMATION CONTAINED IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. INFORMATION OBTAINED FROM THIRD PARTY SOURCES IS BELIEVED TO BE RELIABLE, BUT IS IN NO WAY GUARANTEED. SECURITY PRODUCTS, TECHNICAL SERVICES, AND ANY OTHER TECHNICAL DATA REFERENCED IN THIS DOCUMENT (“CONTROLLED ITEMS”) ARE SUBJECT TO U.S. EXPORT CONTROL AND SANCTIONS LAWS, REGULATIONS AND REQUIREMENTS, AND MAY BE SUBJECT TO EXPORT OR IMPORT REGULATIONS IN OTHER COUNTRIES. YOU AGREE TO COMPLY STRICTLY WITH THESE LAWS, REGULATIONS AND REQUIREMENTS, AND ACKNOWLEDGE THAT YOU HAVE THE RESPONSIBILITY TO OBTAIN ANY LICENSES, PERMITS OR OTHER APPROVALS THAT MAY BE REQUIRED IN ORDER FOR YOU TO EXPORT, RE-EXPORT, TRANSFER IN COUNTRY OR IMPORT SUCH CONTROLLED ITEMS. TABLE OF CONTENTS 1 2 3 BIG NUMBERS YEAR-IN-REVIEW FACTS AND FIGURES METHODOLOGY Formjacking Messaging Cryptojacking Malware Ransomware Mobile Living off the land Web attacks and supply chain attacks Targeted attacks Targeted attacks IoT Cloud Underground economy IoT Election interference MALICIOUS -
Systematization of Vulnerability Discovery Knowledge: Review
Systematization of Vulnerability Discovery Knowledge Review Protocol Nuthan Munaiah and Andrew Meneely Department of Software Engineering Rochester Institute of Technology Rochester, NY 14623 {nm6061,axmvse}@rit.edu February 12, 2019 1 Introduction As more aspects of our daily lives depend on technology, the software that supports this technology must be secure. We, as users, almost subconsciously assume the software we use to always be available to serve our requests while preserving the confidentiality and integrity of our information. Unfortunately, incidents involving catastrophic software vulnerabilities such as Heartbleed (in OpenSSL), Stagefright (in Android), and EternalBlue (in Windows) have made abundantly clear that software, like other engineered creations, is prone to mistakes. Over the years, Software Engineering, as a discipline, has recognized the potential for engineers to make mistakes and has incorporated processes to prevent such mistakes from becoming exploitable vulnerabilities. Developers leverage a plethora of processes, techniques, and tools such as threat modeling, static and dynamic analyses, unit/integration/fuzz/penetration testing, and code reviews to engineer secure software. These practices, while effective at identifying vulnerabilities in software, are limited in their ability to describe the engineering failures that may have led to the introduction of vulnerabilities. Fortunately, as researchers propose empirically-validated metrics to characterize historical vulnerabilities, the factors that may have led to the introduction of vulnerabilities emerge. Developers must be made aware of these factors to help them proactively consider security implications of the code that they contribute. In other words, we want developers to think like an attacker (i.e. inculcate an attacker mindset) to proactively discover vulnerabilities. -
Viewed Through the Prism of Clausewitzian Strategy
CYBERWAR – VIEWED THROUGH THE PRISM OF CLAUSEWITZIAN STRATEGY Commodore Vishwanathan K Ganapathi, VSM Introduction In a globalised world where speed and reliability of information exchange is thesine qua non of technological advancement, the importance of cyberspace to a country is immeasurable. Knowledge and awareness, which derive from the degree to which cyberspace can be exploited for rapidly storing, manipulating and disseminating data, have become important measures of a nation’s power.1 As a consequence, the destruction or disruption of any of the constituent elements of cyberspace from a cyber attack would not just blunt a country’s ability to gain strategic advantage from its technological superiority but would gravely threaten its security as well. Depending on their intensity and complexity, cyber attacks can inflict a wide spectrum of damage ranging from less dangerous depredations like the theft of personal information and digital heists to highly destructive actions like the disruption of critical infrastructure- ‘the facilities, systems, sites and networks necessary for the delivery of essential services and functions’2 - industrial sabotage, subversion, data destruction or theft of sensitive information. It is the latter category, most often believed to be orchestrated for political reasons by a potential adversary, which has transformed cyber attacks from being perceived as a trivial problem befitting address by an IT professional to one that merits the focus of policy planners and strategists alike.3 The concerns of governments about the gravity of the threat from cyber attacks stem from the certitude that easily accessible destructive technologies are being exploited by state and non-state actors alike to launch attacks even against powerful adversaries several thousand miles away. -
Zerohack Zer0pwn Youranonnews Yevgeniy Anikin Yes Men
Zerohack Zer0Pwn YourAnonNews Yevgeniy Anikin Yes Men YamaTough Xtreme x-Leader xenu xen0nymous www.oem.com.mx www.nytimes.com/pages/world/asia/index.html www.informador.com.mx www.futuregov.asia www.cronica.com.mx www.asiapacificsecuritymagazine.com Worm Wolfy Withdrawal* WillyFoReal Wikileaks IRC 88.80.16.13/9999 IRC Channel WikiLeaks WiiSpellWhy whitekidney Wells Fargo weed WallRoad w0rmware Vulnerability Vladislav Khorokhorin Visa Inc. Virus Virgin Islands "Viewpointe Archive Services, LLC" Versability Verizon Venezuela Vegas Vatican City USB US Trust US Bankcorp Uruguay Uran0n unusedcrayon United Kingdom UnicormCr3w unfittoprint unelected.org UndisclosedAnon Ukraine UGNazi ua_musti_1905 U.S. Bankcorp TYLER Turkey trosec113 Trojan Horse Trojan Trivette TriCk Tribalzer0 Transnistria transaction Traitor traffic court Tradecraft Trade Secrets "Total System Services, Inc." Topiary Top Secret Tom Stracener TibitXimer Thumb Drive Thomson Reuters TheWikiBoat thepeoplescause the_infecti0n The Unknowns The UnderTaker The Syrian electronic army The Jokerhack Thailand ThaCosmo th3j35t3r testeux1 TEST Telecomix TehWongZ Teddy Bigglesworth TeaMp0isoN TeamHav0k Team Ghost Shell Team Digi7al tdl4 taxes TARP tango down Tampa Tammy Shapiro Taiwan Tabu T0x1c t0wN T.A.R.P. Syrian Electronic Army syndiv Symantec Corporation Switzerland Swingers Club SWIFT Sweden Swan SwaggSec Swagg Security "SunGard Data Systems, Inc." Stuxnet Stringer Streamroller Stole* Sterlok SteelAnne st0rm SQLi Spyware Spying Spydevilz Spy Camera Sposed Spook Spoofing Splendide -
Defending Against Increasingly Sophisticated Cyber Attacks HP Tippingpoint Bolsters Enterprise Data Center Protection
50 Years of Growth, Innovation and Leadership Defending Against Increasingly Sophisticated Cyber Attacks HP TippingPoint Bolsters Enterprise Data Center Protection A Frost & Sullivan White Paper Chris Rodriguez Senior Industry Analyst www.frost.com Frost & Sullivan The Evolving Enterprise Security Threat............................................................................. 3 Driving Trends ....................................................................................................................... 3 Key Challenges ..................................................................................................................... 4 Recent High-Profile Security Breaches ............................................................................... 5 Protecting Enterprise Physical and Virtual Data Centers.................................................. 6 Meeting Critical Enterprise Needs ...................................................................................... 6 Optimizing for a Virtualized Environment .......................................................................... 8 Weighing Vendor Solutions ................................................................................................... 8 Why HP? ................................................................................................................................. 9 HP DVLabs’ Cutting Edge Research .................................................................................... 9 Benefits of HP’s NGIPS Technology ................................................................................... -
2019 Sonicwall Cyber Threat Report
MID-YEAR UPDATE | JULY 2019 2019 SONICWALL CYBER THREAT REPORT Arm Your Business with the Latest Threat Intelligence from the First Half of 2019 SONICWALL CAPTURE LABS 1 MILLION + THREAT NETWORK Sensors 215 + Countries & Territories 24 x 7 x 365 Monitoring < 24 HOURS Threat Response 140K + Malware Samples Collected Daily 28M + Attacks BlockeD Daily 2019 GLOBAL CYBER ARMS RACE 2018 1H 2019 1H SonicWall recorded more than 4.78 billion malware attacKs for the first half of 2019 — a 20% year-to-date 5.99 Billion decrease. 4.78 Billion Global malware volume dips to start 2019, but other attack types rebound. MALWARE INTRUSION WEB APP RANSOMWARE IOT ENCRYPTED CYBERATTACK TRENDS ATTACKS ATTEMPTS ATTACKS ATTACKS MALWARE THREATS 76% 55% As global malware 11% 15% volume declines, 4% other attacK types increase during -20% the first half of 2019. 4.8 BILLION 2.0 TRILLION 19.2 MILLION 110.9 MILLION 13.5 MILLION 2.5 MILLION 2019 MALWARE VOLUME: TOP GLOBAL COUNTRIES 2019 Malware Attacks Top Countries Malware attacks 52.0 are largely down in France -53% 2019 witH a few Netherlands 56.5 +3% exceptions. Germany 66.5 -63% Switzerland 75.9 +72% InDia (25%), SwitzerlanD Brazil -4% 121.2 (72%) anD tHe China -61% 138.3 NetHerlanDs (3%) were the top coUntries that Canada -11% 155.4 sUffereD increaseD India +25% 226.9 malware activity. United Kingdom -9% 313.6 United States -17% 2,494.5 - 500 1,000 1,500 2.000 2,500 3,000 MILLIONS RANSOMWARE STILL RISING Ransomware VolUme YTD 110.9 Million Ransomware AttacKs 1H 2018 1H 2019 Change U.K. -
Indicative Guidelines for Chemical Safety and Security in Small and Medium-Sized Enterprises to Foster the Peaceful Uses of Chemistry
Indicative Guidelines for Chemical Safety and Security in Small and Medium-sized Enterprises to Foster the Peaceful Uses of Chemistry OPCW Organisation for the Prohibition of Chemical Weapons © Organisation for the Prohibition of Chemical Weapons, The Hague, the Netherlands, 2021 No use of this document may be made for any commercial purpose whatsoever without prior permission in writing from the OPCW. The views expressed in any article of this document do not necessarily represent those of the OPCW and the OPCW accepts no responsibility for them. Mention of the names of firms and commercial products does not imply endorsement by the OPCW. The use of general descriptive names, registered names, trademarks, etc. does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Editors: N. Kojevnikov, L. Zhao, H. Mat Som, T. Zhang Indicative Guidelines for Chemical Safety and Security in Small and Medium-sized Enterprises to Foster the Peaceful Uses of Chemistry The Outcome of the Workshops on Developing Tools for Chemical Safety and Security Management TABLE OF CONTENTS 1 PREFACE ..................................................................................................................... 1 2 TABLE OF ACRONYMS AND ABBREVIATIONS ............................................... 3 3 INTRODUCTION ........................................................................................................ 5 3.1 Role of the Employer ........................................................................................... -
Morpheus Adaptive Defenses for Tomorrow’S Secure Systems
Morpheus Adaptive Defenses for Tomorrow’s Secure Systems Todd Austin University of Michigan [email protected] Joint work with: Valeria Bertacco (UM) Sharad Malik (Princeton) Mohit Tiwari (UT-Austin) Assessing the State of Security • Jeep hacked remotely while driving • DHS attacks Boeing 757, details classified • Pacemaker wirelessly infiltrated • Mirai botnet disables DynDNS • Entire baby monitor market hacked • Atrium fish tank thermometer hacked 2 Why is Security So Hard to Get Right? • Currently, a patch-based approach • Find and fix vulnerabilities • Complexity growth far outstrips security • Manual testing & analyses don’t scale • Endless security arms race • Patch and pray… • How do we protect against unknown (0-day) attacks? • Anticipate the “unknown unknowns” 3 Attacking is Easy, Protecting is HARD • Attacking is easier than protecting • Attackers needs only one vulnerability • Protecting requires 100% coverage • Related software growth rates: • Protections: doubles every 2 years • Malware: 40% growth in 30 years • Vulnerabilities are on the rise • Rate of attacks is exploding 4 Durable Security: the Big Unsolved Challenge • What we do well: Synopsys’ Valgrind • Finding and fixing vulnerabilities Coverity Tools Intel’s • Deploying system protections that ARM’s Control-Flow stop well-known attacks TrustZone Enforcement • Where we fail: identifying and stopping emergent attacks 5 What If a Secure System Could… • Respond lightning-fast against common attacks • Self-adapt quickly to unknown emerging threats • Learn and prioritize -
Controlling Cyberwarfare International Laws of Armed Conflict and Human Rights in the Cyber Realm
Controlling Cyberwarfare International Laws of Armed Conflict and Human Rights in the Cyber Realm by William James Jordan A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Philosophy Waterloo, Ontario, Canada, 2021 © William James Jordan 2021 Examining Committee Membership The following served on the Examining Committee for this thesis. Thedeci sion of the Examining Committee is by majority vote. External Examiner: Col. David Barnes Professor, Department of English and Philosophy United States Military Academy Supervisor: W. Mathieu Doucet Associate Professor, Department of Philosophy University of Waterloo Internal Member: Brian D. Orend Professor, Department of Philosophy University of Waterloo Internal Member: Patricia A. Marino Professor, Department of Philosophy University of Waterloo InternalExternal Member: Veronica M. Kitchen Associate Professor, Department of Political Science University of Waterloo ii Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my ex aminers. I understand that my thesis may be made electronically available to the pub lic. iii Abstract Cyberwarfare, military activities in cyberspace conducted by a state against another state and intended to disrupt or destroy computing or communica tion systems or data, is a recent addition to the warfaring arsenal. The in ternational laws of armed conflict set out an obligation for states at warto protect civilians from the effects of the conflict. As societies continue toex pand their activities in the cyber realm, the risk of cyberwarfare negatively affecting the civilian population increases. -
Digital Dependence: Cybersecurity in the 21St Century
Digital Dependence: Cybersecurity in the 21st Century Melissa E. Hathaway Senior Advisor, Belfer Center for Science and International Affairs Harvard University Presented as part of Project Minerva 14 October 2010 © 2010, Hathaway Global Strategies, LLC Sunday, November 28, 2010 October 29, 1969: The First Transmission ❖ http://www.picsearch.com/info.cgi?q=1969%20Internet&id=PVUGViNVCGnNvPh-pX1_sm_AoVagXS4c9lomC0G41zY © 2010, Hathaway Global Strategies, LLC Sunday, November 28, 2010 Timeline of Digital Dependence 1971—Creeper Worm demonstrates mobility and self- replicating 1978: TCP-IP Commitment 1979—Intel introduces programs on becomes to anonymity universally- 8088 CPU and ARPANet ushers in the new era and open 1974—Development of the accepted global of the microprocessor. systems Graphical User Interface standard to supply (GUI) at the Xerox Palo Alto network layer and Research Center (PARC) transport layer ARPANet 1972: File Transfer functionality 1981: IBM personal Transmisison and TCP (packet switch) computer 1969 1970 1972 1973 1974 1977 1978 1979 1981 1982 1973: Collaboration of ARPANet Virtual 1977: Emergence of 1982: AT&T Scientists Communication Smaller divestiture in with Europe Computers (Tandy return for and Apple 1979: First opportunity to Computers) commercially go into 1970—Intel introduces 1973: Motorola invented automated cellular computer first 1k DRAM the first cellular portable network (the 1G business generation) was launched chip. telephone to be 1977: Microsoft commercialized in Japan by Nippon Forms Telegraph