Quick viewing(Text Mode)

MASTER's THESIS Wind Driven Plate Tectonics

MASTER's THESIS Wind Driven Plate Tectonics

2007:082 MASTER'S THESIS

Wind Driven

Asim Mohamed Widatalla

Luleå University of Technology Master Thesis, Continuation Courses Environmental Engineering Department of Civil and Environmental Engineering Division of Renewable

2007:082 - ISSN: 1653-0187 - ISRN: LTU-PB-EX--07/082--SE

Dept.ofEnvironmentalEngineering WindDrivenPlateTectonics Masterthesis AsimMohamedWidatalla 2

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 3

Abstract Theobjectiveofthisprojectwastoinvestigateifplatetectonicscouldbepartlyinfluencedby the dominating winds i.e. to investigate how predominate winds over the continents are correlatedtotectonicplatemovements. Thisreportpresentstheprincipleexplanationsandcalculationmethodstothehypothesis.The requireddataofthemonthlymeanwindandthewinddirectionat117locationson thecontinentsoftheworldwerecollected.Bycalculatingthemonthlymeanwindforcethe resulting monthly force was calculated. The result indicates a relatively strong correlation betweentheplatemovementandpredominantwindinfouroutoffivecases. These results are mainly of scientific interest but could also be of interest for the change,sincechangingwindpatternwouldeventuallyaffectthetectonicplatemovements. Keywords:platetectonics,windvelocityanddirection,climatechangeeffects

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 4

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 5

Preface Whilelookingforatopicforthemasterthesis,Iwasplanningtoselectatopicinrenewable energy,ImeetProfessorBoNordell,wherewediscusseddifferentthingsandtopics,andhe mentionedthathekeptanideaforseveralyears,inwhichheassumedthattheplatetectonics maybeinfluencedbythewindforces.Becausemybackgroundisfarfromthesciences, itwasthefirstformetoknowaboutthistectonicstheory,soIwasalittlebitawareof that.ButsincestillIshouldworkinaseniordesignprojectinRenewableEnergy,andthis topicwassuggestedtobeoneoftheoptionsforthatproject,Iplannedtostartandtogivethe finaldecisionlater. Afterawhile,Ifoundthat,Ihadthechancetoseethewholeworldinadifferentview.Plates moveinslowmotion,thiscouldbemeasuredtypicallyabout2cmperyear.Iwassupposedto investigateifthedominantwindcouldbeamongthefactorsthatwillaffectthismotion. Soattheendoftheday,Ifoundmyself,spentnotonlyasinglecourseperiod,butmostofthe winterandspringinfrontofacomputer,selectingdifferentcitesandlocationsallaroundthe five continents, drawing maps, analyzing the data, correlating the results with the actual movement of the plates, and trying to come up with amazing conclusion, this is quite a challengingthingtodo.EventhoughIamgladthisperiodisnowover,ithasbeenavery interestinglearningprocesstogothrough,whichhasbeenfacilitatedbyquiteafewpeople whomIwouldliketothank: ◙ Professor Bo Nordell for his friendly and fruitfulway of supervision, and for givingthe constructivefeedbackandcomments; ◙Mybelovedparents–whotheyeverbelieveinscienceandknowledgefortheircontinuous supporting,caring,prayers,andstilltheyareencouragingmetogofurther. ◙Hishammybrotherforbeingapartofeverynicestepinmy; ◙Reemmywifefortakingtherightdecisionatthedifficulttime,studyingthenanophysics, and caring of our kids, giving me the strength and a reason to overcome challenges and achievethings. ◙ToMohamedandOmermysons,forgivingtherealmeaningandlovelytastetothelife, andmakingmelookatthefutureasaworldofpossibilities. ◙Finally,Iwouldliketothanksmysisters,relativesandfriends,especiallythosewhospent thenightsprayingforme,andthosewhokeepthinkingofmeandbelievingthat,Iwilldoit. MythankswilleverbeatthebeginningandtheendtoAllahwhosaid: ………..‘‘AndwhenyourLordmadeitknown:Ifyouaregrateful,Iwouldcertainlygiveto youmore,andifyouareungrateful,Mychastisementistrulysevere’’ ………………………………..(14:7) Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 6

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 7

TableofContent Abstract ...... 3 Preface...... 5 Preface...... 5 TableofContent...... 7 ListofFigures ...... 8 ListofTables...... 9 1BACKGROUND...... 10 1.1PlateTectonics ...... 10 1.2Majorplates...... 11 1.3ClimateChange...... 11 2OBJECTIVES ...... 12 3METHOD...... 13 3.1TheforceEquation:...... 13 3.2TheTorqueEquations ...... 13 4PROCEDUREANDRESULTS ...... 14 4.1General ...... 14 4.2Australia ...... 14 4.2.1OverallSitemethod...... 15 4.2.2OverallTimemethod ...... 17 5DISCUSSIONANDSUMMARY...... 19 5.1General: ...... 19 5.2Australia ...... 19 6CONCLUSION ...... 22 7 REFERENCES...... 24 APPENDIX ...... 25 A:SouthAmerica:...... 25 B:NorthAmerica...... 32 C:Africa...... 40 D:Eurasia...... 48 REFERENCES:...... 54

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 8

ListofFigures Figure1:MajorandminortectonicsplatesofEarth[UPRM,4]...... 11 Figure2:Simplifiedpictureillustratingthewindoverland...... 13 Figure3:Locationofselected20sitesandareacenterofAustralia...... 14 Figure4:TheAustralianplate,centerofcontinent(AliceSprings)andcentreofplate [ESUM,10] ...... 19 Figure5:MonthlywindforceoverAustralia...... 20 Figure6:MonthlywindforcedirectionoverAustralia...... 20 Figure7:ThearrowsindicatetheactualandcalculateddirectionoftheAustralianplate movement,[ESUM,10] ...... 21 Figure8:Majorplates,plateboundaries,andplatemovements.[Christopherson,11]...... 21 Figure9:DigitalTectonicsActivityMapplateboundariesplatemovements.[NASA , 12]...... 22 Figure10:Locationofselected21sitesandmasscenterofgravitation,SouthAmerica...... 25 Figure11:SouthAmericanplateandthelocationofSaoCarloscity,theareacenterofthe continent,andthesuggestedlocationofthecenteroftheplate,[USGS,13]...... 29 Figure12:CalculatedmonthlywindforceofSouthAmerica...... 30 Figure13:CalculatedmonthlywindforcedirectionofSouthAmerica...... 30 Figure14:ActualandcalculateddirectionoftheSouthAmericanplatemovement.[USGS, 13]...... 31 Figure15:Locationoftheselected30sitesinNorthAmerican.[Theodora,14]...... 32 Figure16:TheNorthAmericaplateandthelocationofInternationalFallscity,theareacenter ofthecontinent,andthesuggestedlocationofthecenterofthe[15]...... 37 Figure17:TotalmonthlywindforceinNorthAmerica...... 37 Figure18:MonthlywindforcedirectionoverNorthAmerica...... 38 Figure19:ActualandcalculateddirectionoftheNorthAmericanplatemovement.[15]...... 38 Figure20:ModifiedmapofSanAndreasFault,[16]...... 39 Figure21:Locationoftheselected29sitesinAfrica,[ABC,17]...... 40 Figure22:TheAfricanplate,AfricaandthelocationofYangambicitytheareacenterofthe continent,andthesuggestedlocationofthecenteroftheplate[18]...... 45 Figure23:CalculatedmonthlywindforceinAfrica...... 46 Figure24:CalculatingwindforcedirectioninAfricaovertheyear...... 46 Figure25:ActualandcalculateddirectionoftheAfricanplatemovement[18]...... 47 Figure26:Locationoftheselected18sitesontheEurasiancontinent[19] ...... 48 Figure27:TheEurasianplateanditscenteratEkibastuzcity,theareacenterofthecontinent, andthesuggestedlocationofthecenteroftheplate[19]...... 52 Figure28:Calculatedmonthlywindforceovertheyear...... 52 Figure29:CalculatedwindforcedirectionoverEurasiaduringtheyear...... 53 Figure30:ActualandcalculateddirectionoftheEurasianplatemovement[19]...... 53

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 9

ListofTables Table 1: Calculated wind force and at specific sites...... 15 Table 2: Calculated overall wind force for different sites...... 16 Table 3: Calculated wind force in Australia (January)...... 17 Table 4: The overall wind force based on monthly resultant force calculation...... 18 Table 5: Results of the Overall Site and Overall Time methods for Australia ...... 20 Table 6: Summary of calculated wind force, torque, actual plate movement of major plates...... 23 Table 7: Calculated monthly wind force and wind direction at Vladivia-Pichoy ... Erreur!Signetnon défini. Table 8: Calculated wind force and direction at difference locations in South America...... 27 Table 9: Calculated wind force for a specific month (South America)...... 28 Table 10: Resulting overall wind force based on monthly data, South America...... 28 Table 11: Results of the Overall Site and Overall Time methods for South America...... 29 Table 12: Calculated wind force and direction at a specific site (Astoria)...... 33 Table 13: Overall wind force and direction based on site calculations...... 34 Table 14: Calculated wind force in North America for January...... 35 Table 15: Calculated overall wind force based on monthly force calculations...... 36 Table 16: Overall Site and Time methods (North America)...... 36 Table 17: Calculated monthly wind force and wind direction at ‘Port Sudan’...... 41 Table 18: Overall wind force in Africa based on the sites calculation...... 42 Table 19: The wind force calculation in a specific month (Africa) ...... 43 Table 20: The overall wind force based on monthly resultant force calculation...... 44 Table 21: The results of the Overall Site and Time methods (Africa) ...... 45 Table 22: Calculated wind force at Bolsoj Santar...... 49 Table 23: The overall wind force based on monthly resultant force calculation...... 49 Table 24: Show the calculation of the wind force in a specific month (January) ...... 50 Table 25: The result of the overall Site and Time methods (Eurasia)...... 51 Table 26: The results of the Overall Site and Time methods (Eurasia) ...... 51

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 10

1BACKGROUND 1.1 Plate Tectonics

Plate Tectonics is the theory that provides an explanation for the behaviour of the Earth's crust, particularly the global distribution of mountain building, earthquake activity, and volcanisminaseriesoflinearbelts.Numerousothergeologicalphenomenasuchaslateral variations in surface heat flow, the of basins, and various associations of igneous,metamorphic,andsedimentaryrockscanalsobelogicallyrelatedbyplatetectonics theory.

Thetheoryofplatetectonicsaroseoutoftwoseparategeologicalobservations:continental drift, noticed in the early 20 th century, and seafloor spreading, noticed in the 1960s. The theoryitselfwasdevelopedduringthelate1960sandhassincebeenuniversallyacceptedby virtuallyallscientists.Ithasrevolutionizedtheearthsciencesand,becauseofitsunifyingand explanatorypowerfordiversegeologicalphenomena,andbecauseitwasverysuccessfulat predictingmanyfeaturesofEarth'scrust.Essentialfeaturesoftheplatetectonicshypothesis arewidelyaccepted [Keith2001,1];butevenso,somegeologistswerenotsatisfieduntilthe slow motion of the plates could be measured typically about 2 cm per year. This was accomplishedinthe1980susingsatellites,lasers,andthepositionsofverydistantgalaxies. Themainfeaturesofplatetectonicsare: • ThesurfaceofEarthconsistsofseverallithosphericplates;theplatesencompassthecrust andtheuppermantle. • Plateboundariesareoffourtypes:midoceanridgeswherenewmaterialisaddedtothe plates, subduction zones where denser and more ductile parts of plates are destroyed, transform faults where plates slide past another, and basal viscous shear zones along which motion between the base of lithospheric plates and underlying mantle (asthenosphere)occurs. • currentsbeneaththeplatesmovethelithosphericplatesindifferentdirections. • The energy source driving the convection currents is radioactivity of Earth’s mantle. ConvectionisalsodrivenbydensitycontrastsoftheEarth.

ThePlateTectonicstheoryassertsthatEarthisdividedintocore,mantle,andcrust.Thecrust issubdividedintooceanicandcontinentalcrust.Thistheoryisbasedonasimplemodelofthe Earth in which a rigid outer shell of 50–150 km thick, the lithosphere, consisting of both oceanicandcontinentalcrustaswellastheuppermantle,isconsideredtolieaboveahotter, weaker semiplastic asthenosphere. The asthenosphere extends from the base of the litho spheretoadepthofabout700km.

TheimportantgeologictheoryofplatetectonicsassertsthattheEarth'ssurfaceiscomposed of about seven major blocks, or plates, and many more minor plates that move across the Earth'ssurfaceataveryslowrate.Althoughtheplates creepalongatarateofjustcmper year,thismovementstillcausesstressandstrainintheEarth'scrustalstructure.Theseshifting platescausefaults,mountains,trenches,midoceanicridgesandrifts,andevenoceanbasins, some movements may result in violent earthquakes and volcanic eruptions. The theory is explaining geologic changes that result from the movement of lithospheric platesover the

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 11

asthenosphere.Thevisiblecontinents,apartofthelithosphericplatesuponwhichtheyride, shiftslowlyovertimeasaresultoftheforcesdrivingplatetectonics.

Plate tectonics is the surface expression of mantle convection driven by radiogenic heat [Dickinson1981,2]and theplatesareabletomovebecauseoftherelativeweaknessofthe asthenosphere. Dissipation of heat from the mantle is acknowledged to be the source of energy driving plate tectonics. Threedimensional imaging of the Earth's interior indicates that, convection of some sort is occurring throughout the mantle [Tanimoto 2000, 3]. Somehow, this energy must be translated to the lithosphere in order for tectonic plates to move.Thereareessentiallytwoforcesthatcouldbeaccomplishingthis:and. 1.2 Major plates ThemainplatesasshowninthemapinFigure1beloware:

1. AfricanPlate,coveringtheAfricanContinent. 2. AntarcticPlate,coveringtheAntarcticanContinent. 3. AustralianPlate,coveringtheAustralianContinent. 4. EurasianPlatecoveringtheEurasiaContinent. 5. NorthAmericanPlatecoveringtheNorthAmericanContinentandnortheastSiberia. 6. SouthAmericanPlatecoveringtheSouthAmericanContinent. 7. PacificPlate,coveringthePacificOcean.

NotableminorplatesincludetheIndianPlate,theArabianPlate,theCaribbeanPlate,andthe ScotiaPlate.

Figure1:MajorandminortectonicsplatesofEarth[UPRM,4]. 1.3 Climate Change

ClimatechangereferstothevariationintheEarth'sglobalclimateorregionalover time. It describes changes in the variability or average state of the over time

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 12

scales ranging from decades to millions of years. These changes may come from internal processes,bedrivenbyexternalforcesor,mostrecently,becausedbyhumanactivities.

Inrecentusage,especiallyinthecontextofenvironmentalpolicy,theterm"climatechange" is often used to refer only to the ongoing changes in modern climate, includingthe rise in averagesurfaceknownasglobalwarming.

The global climate change has large implications for both humans and wildlife. Many threatened and endangered species,which already lead a precarious existence, are likely to suffer further declines. It’s checked clearly that the climatic changes have significantly affectednaturalinmanyregionsoftheworld.Thesechangesincludealterations in community structure, composition, biological productivity, and spatial patterns[Wangetal.2007,5]. Globalwarmingalsothreatenspopulationsofspeciesthatwereoncerelativelysecure,andis likely to result in the endangerment of more species in the future. A study of habitats comprising 20 percentof the earth's surface suggested that 15 to 37 percent of the world's speciesmaybeextinctby2050ifrecentwarmingtrendscontinue [Poundsetal,2004,6]and thealterationsintheseecosystemsleadtodramaticchangesinphysicalproperties,soil and surface water dynamics and in the soil carbon cycle, which in turn exert a profound influenceontheentire [Christensenetal.,2004,7] and [Wangetal.2007,5].

Earth'sclimateisadelicatebalanceofenergyinput,chemicalandbiologicalprocesses,and physical phenomena. The Earth's atmosphere plays a critical role in planetary surface temperature. Some , such as carbon dioxide (CO 2) and methane (CH 4), absorb and maintainheatinthesamewaythatglasstrapsheatinagreenhouse.Thesegreenhousegases inEarth'satmosphereallowtobuildup,keepingtheplanetwarmandhabitable tothelifeformsthathaveevolvedhere.Thisphenomenoniscalledthegreenhouseeffect.

Thisstudyisbasedontheideathatplatetectonicscouldbepartyinfluencedbydominating winds, i.e. the resulting wind force on the different plates. As a consequence the ongoing climatechangeandpossiblechangesinwinddirectionandwindmightchangethe movementsoftheplates.

2OBJECTIVES

The aim of this initial study is to investigate if there is any correlation between plate movementsandpredominantwinddirections.Morespecificallytheaimistoinvestigate:

1 Toanalysetheglobalwinddirectionsandthewindvelocities. 2 Tocalculateresultingwindforceinordertochecktheinfluenceofthatforceon thePlateTectonicsmovements. 3 Tocorrelatetheresultingwindforcewiththeplatemovement.

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 13

3METHOD 3.1 The force Equation: The wind causes a skin friction on the ground surface. According to [Taylor 1916, 8], if it were possible to measure the tangential force exerted by the wind as it blows over a large tract of land, it shouldbeequaltotheskinfrictiononasimilarsmall surfacewhensubjectedtotheactionoftheveryhigh wind. So,toreducethetractoflandtoasimilarsmallflat plate, the trees and houses would be reduced to a mereroughnessontheplate.Itistobeexpected,if the skin friction on unit area of the earth's surface, thewindforce,F(N/m 2),canbeexpressed Figure2:Simplifiedpicture illustratingthewindoverland. . F=kρQ² (1) WhereQisthewindvelocitynearthesurface(m/s),ρisthedensityoftheairassumedtobe 1.29Kg/m³,andaccordingto:G.I.Taylor(1916),thevalueoftheskinfrictioncoefficientk willbethesameastheconstantwhichwouldbefoundinthelaboratorybyexperimenting withasmall,slightlyroughenedplate. Sosincetheactualvaluesoftheskinfrictioncoefficientkareofthesameorderofmagnitude, butprobablysomewhatsmallerthanthosefoundinthelaboratory,being0.002to0.003as against the value 0.004 found for skin friction in a pipe, so we assumed the value of the constanttobe0.003.

3.2 The Torque Equations Torqueisknownastheapplicationofforcewherethereisrotationalmotion,anditcanbe expressedaccordingtothefollowingrelation:

T=F tot *r (2) Where F tot is the total force on the specific continent (resulting force per m² x area of the continent) attached in centre, and r is the perpendicular (or smallest) distance to the mass centeroftheplate.Hereweareassumingthatthemasscenterisequivalenttotheareacenter.

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 14

4PROCEDUREANDRESULTS 4.1 General The wind data were investigated at many locations, selected all around each continent, as shownbythemapsillustratingchosenlocations(seeblow),Monthlywinddataoftheselected points were determined by using the METEONORM Version 5.1 software [Meteonorm, 2007,9]. Thedifferentlocationsineachcontinentorplatewereselectedrandomly,butthebasicidea behindtheselectionisthat: 1 Evenlydistributedonallsidesofthecontinent. 2 Theselectionofthespecificlocationsistogiveanideaoftheactualeffectsofthewind forcesonthespecificcontinentandthespecificplate. Twocalculationsmethodshavebeenusedtodeterminethewindforceinthisstudy;Inthe OverallSite Method theoverallannualwindforceofthesiteswasusedasthebasicdatafor thefinaloverallresult.IntheOverallTimeMethod theoverallmonthlywindforcewasused asthebasicdataforcalculatingthefinaloverallresult. 4.2 Australia For the analytical study of the Australian plate, the wind data were investigated at twenty locationsallaroundAustralia,asshowninFigure3. AliceSpringscitywhichlocatedatthecenteroftheAustraliancontinent,assumedasthearea centerofthecontinent.

Figure3:Locationofselected20sitesandareacenterofAustralia.

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 15

4.2.1OverallSitemethod Basedontheaboveequationandassumptions,foreachofthetwentysites,thewindforceand directionwascalculated,toshowthecalculationprocessherebelowisCarnarvonAirpsite mentionedasexample. Table1:Calculatedwindforceandwinddirectionatspecificsites. Site:CarnarvonAirp.

Month Wind WindDirectionF(N/m2) Fy(N/m2) Fx(N/m2) Jan 7.5 194 0.22 0.2 0.1 Feb 6.9 197 0.18 0.2 0.1 Mar 6.5 212 0.16 0.1 0.1 Apr 5.2 230 0.10 0.1 0.1 May 4.5 207 0.08 0.1 0.0 Jun 4.3 229 0.07 0.0 0.1 Jul 4.4 224 0.07 0.1 0.1 Aug 4.9 231 0.09 0.1 0.1 Sep 6.1 214 0.14 0.1 0.1 Oct 7 211 0.19 0.2 0.1 Nov 7.3 198 0.21 0.2 0.1 Dec 7.8 185 0.24 0.2 0.0 Yearlymean 6.0 211 0.147 0.128 0.063 WindDirection 206.3 WindForce 0.143 Bycalculatingthewindforceandwinddirectionofeachlocation,wecangettheoverallwind forceandwinddirection.

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 16

Table2:Calculatedoverallwindforcefordifferentsites.

Location WindForce WindDirection Fy=F*COS(Θ180) Fx=F*SIN(Θ180) CarnarvonAirp 0.143 206.3 0.13 0.06 SheoaksAws 0.003 180.2 0.00 0.00 Elchoisland 0.001 90.7 0.00 0.00 DoubleIsIpT 0.194 195.9 0.19 0.05 MallacootaAws 0.036 136.2 0.03 0.02 Adeleisiawa 0.019 125.9 0.01 0.02 thursday/hall 0.013 128.6 0.01 0.01 GooseberryHill 0.118 255.5 0.03 0.11 WilliamtownAirp 0.024 245.5 0.01 0.02 Thangool 0.011 127.3 0.01 0.01 Learmonthairp 0.042 120.9 0.02 0.04 MtGambier 0.017 180.3 0.02 0.00 Lancelin 0.074 246.4 0.03 0.07 Esperance 0.004 223.7 0.00 0.00 CooktownMission 0.071 167.6 0.07 0.02 GreaterWollongo 0.042 208.9 0.04 0.02 SwanburneAws 0.112 252.8 0.03 0.11 AlbanyAirp 0.002 152.1 0.00 0.00 Naracoorte 0.018 213.9 0.01 0.01 GreenIsland 0.23 167.7 0.22 0.05 0.043 0.015 WindDirection 199.2 WindForce 0.046

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 17

4.2.2OverallTimemethod Sincethewindvariesinvelocityanddirectionovertheyeartheeffectofthewindforceon thedifferentsiteswasstudiedduringeachmonth,asthecalculationsprocedureandtheresults shownforthefirstmonthoftheyearinthetablebelow Table3:CalculatedwindforceinAustralia(January).

Location WindForceWindForce WindDirection Fy=F*COS(Θ180) Fx=F*SIN(Θ180) CarnarvonAirp 0.22 194 0.21 0.05 SheoaksAws 0.09 180 0.09 0.00 Elchoisland 0.01 270 0.00 0.01 DoubleIsIpT 0.25 188 0.25 0.03 MallacootaAws 0.09 90 0.00 0.09 Adeleisiawa 0.08 293 0.03 0.07 thursday/hall 0.02 315 0.01 0.01 GooseberryHill 0.19 213 0.16 0.10 WilliamtownAirp 0.07 180 0.07 0.00 Thangool 0.02 120 0.01 0.02 Learmonthairp 0.14 293 0.05 0.13 MtGambier 0.1 180 0.10 0.00 Lancelin 0.12 213 0.10 0.07 Esperance 0.13 90 0.00 0.13 CooktownMission 0.04 168 0.04 0.01 GreaterWollon. 0.07 180 0.07 0.00 SwanburneAws 0.14 213 0.12 0.08 AlbanyAirp 0.07 90 0.00 0.07 Naracoorte 0.06 225 0.04 0.04 GreenIsland 0.16 168 0.16 0.03 0.054 0.005 WindForceWindForce 0.054 WinddirectionΘWinddirectionΘ 364.7 BasedontheaboveresultsofJanuaryandtheresultsoftherestmonthsoftheyear,onecan observe the overall effect of the wind force from the different locations around Australia, throughtheyear.Thiscanbecalculatedeasilybythefollowingprocedure,wherethewind force and the angle of direction of each month were used as basic data, and then both the overallresultantforceandtheangleofdirectioncanbecalculatedasanaveragevalue:

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 18

Table4:Theoverallwindforcebasedonmonthlyresultantforcecalculation. Wind Wind Fy=F*COS(Θ Fx=F*SIN(Θ Month Force Direction PI/180 180) 180) Jan 0.054 364.7 0.017456 0.05 0.00 Feb 0.042 314.3 0.017456 0.03 0.03 Mar 0.044 222.3 0.017456 0.03 0.03 Apr 0.045 315 0.017456 0.03 0.03 May 0.038 297.3 0.017456 0.02 0.03 Jun 0.023 292 0.017456 0.01 0.02 Jul 0.021 252.7 0.017456 0.01 0.02 Aug 0.011 174.9 0.017456 0.01 0.00 Sep 0.013 227.7 0.017456 0.01 0.01 Oct 0.022 187.6 0.017456 0.02 0.00 Nov 0.039 179.6 0.017456 0.04 0.00 Dec 0.035 172.1 0.017456 0.03 0.00 0.001 0.014 WindForce 0.014 WinddirectionΘ 265.7

ThetotallandareaofAustraliais7,617,930km 2(7.6.1012m 2)isaffectedbyatotalwind forceof0.04N/m²*7.610 12 m 2=3.04 .10 11 N. Thisresultingwindforceisattackingthecontinentinitsareacentre.Sincethecentreofthe Australian plate is not the same as the centre of the continent this force results in an anti clockwise torque. The perpendicular distance between the force and the area centre of the platewasestimated293km. Thetotaltorqueinanticlockwisedirectionisaccordingtoeq.(2)givenby; 5 11 16 Torque T = F ∗ r = .2 93∗10 ∗ .3 04 ∗10 = .8 91∗10 Nm

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 19

5DISCUSSIONANDSUMMARY 5.1 General: Byusingthecalculationprocedures,andtheresultsmentionedabove,itwillbepossibleto analysetheglobalwinddirectionsandthewindvelocities,andthiswillleadtothecalculation of the resulting wind force needed for investigating its influence on the different plate tectonicsmovement. Asshowninthecalculationprocedure,theretwodifferentwaysofcalculationswereused. TheOverallSitemethodisbasedintheoverallannualwindforceofthesite.Inthesecond method, the Overall Time Method, the overall monthly wind force is the basic data of the final overall result. By using the second method we will be able to recognize the seasonal variationofthewindforce. Asmentionedabove,themainobjectivesbehindthestudyaretocorrelatetheresultingwind forcewiththeplatemovement.TheactualdirectionofplatemovementisseeninFigure7.

5.2 Australia TheforceoftheOverallSiteMethodwasusedtocalculatethetorqueofthewindforce.Here Overwhichdependontheassumptionofaspecificlocationasacentreofgravitationandby measuringthedistanceofeachlocationfromthiscentreandaccordingtothefirstrelationthat mentioned previously, we can calculate the overall torque, the location of the centre of gravitationshowninFigure4below.

Figure4:TheAustralianplate,centerofcontinent(AliceSprings)andcentreofplate [ESUM, 10 ]

Basedontheresultofthesecondmethodofcalculation–theOverallTimeMethod–Figure5 illustratesthedifferentwindforcevalueofeachMonth.Fromthegraphitcanbeseenthatthe greatestwindforceovertheAustralianplateoccursduringJanuary–0.048N/m²whilethe lowestwindforcevalueoccursinSeptemberwherethevalueusedtoreach0.012N/m².

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 20

Theresultsofthewindforceandthewindangleofdirectionbasedonthetwomethodsof calculations,besidethewindtorqueresultswereshownhereinthetablebelow:

Table5:ResultsoftheOverallSiteandOverallTimemethodsforAustralia Method OverallSiteMethod OverallTimeMethod WindForce 0.046N/m² 0.014N/m² WindDirection 199.2º 265.7º WindTorque 8.91 .10 16 Nm

WindForce

0.06 0.05 0.04 Windforce 0.03 N/m2 0.02 0.01 0 Jan Mar May Jul Sep Nov Months Figure5:MonthlywindforceoverAustralia. ThecorrespondingwindforcedirectionsthroughtheyearareshowninFigure6.

Windforcedirection

400 350 300 250 200 150 100 Angleofdirection 50 0 0 2 4 6 8 10 12 14 Months Figure6:MonthlywindforcedirectionoverAustralia.

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 21

Sofromthecalculatedwindforcedirectionthatmentionedaboveintable26,wheretheangle ofdirectionisbetween199.2and265.7thatcanbeillustratedinthemapasinthefigure10 belowifwecomparethatwiththeactualmovementoftheAustralianplateasshowninthe map from After Christopherson (1997), figure 11, we will find the same direction of movementoftheplate.

Figure7:ThearrowsindicatetheactualandcalculateddirectionoftheAustralianplate movement,[ESUM,10]

Figure8:Majorplates,plateboundaries,andplatemovements.[Christopherson,11]

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 22

5.3SUMMARY Thedescribedcalculationmethodsofthewind,windforceandtorqueusedfortheAustralian platewereappliedontherestofthemajorplates(SouthAmerica,NorthAmerica,Africaand Eurasia).Theresultingwindforceswerecorrelatedwiththesizeoftheactualmovementof theseplatesbasedonthedataofDigitalTectonicsActivityMapoftheEarthinFigure9.A summaryoftheseresultsaregiveninTable6. AllthedetailsofthecalculationsprocessesareavailableintheAppendicesA,B,CandD.

Figure9:DigitalTectonicsActivityMapplateboundariesplatemovements.[NASA,12]. 6CONCLUSION AsseenintheTable6,thecorrelationofthecalculatedforceofthewinddirectionofNorth Americaisalmostthesameastheactualplatemovement,wherethedifferenceintheangleof directionis7.3 o.ThedifferenceintheanglesofdirectionforSouthAmericareach16.4 o, eventheplatesofEurasiaandAfricabasedontheabovecorrelationwerefoundindirections near to the actual movement directions of these plates, but the difference in the angles of directionwasfound37.8 oand93.8 o respectively.

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 23

Table6:Summaryofcalculatedwindforce,torque,actualplatemovementofmajorplates. Calculatedwindforcedata Difference Plate mm 2 Torque Windforce Force(N/m ) movement per Θ1Θ2 (Nm) directionΘ1 Θ2 year . 16 Australia 0.0140.046 8.91 10 199.2265.7 230 72 30.835.7 South 1.17 .10 15 0.0220.047 55.073.6 90 35 35.016.4 America North 4.3 .10 15 0.00750.021 210.0187.3 180 35 7.330.0 America . 16 Africa 0.0070.025 1.66 10 176.2152.8 270 33 93.8 . 16 Eurasia 0.0190.023 7.34 10 376.2352.8 315 19 37.861.2 Thewindvelocityvaluesarenotrandom,buttherandomselectionofthelocationsfromall aroundaspecificplate,willnotgiveenoughdata,whichwillreflectaveryclearviewofthe actualsituationoftheeffectofthewindforce. Theangleofdirectionforthewindforcethatobtainedfromthestudyfortheallfiveplatesis closertotheactualmovementdirectionoftheseplates,wherethedifferencevariesfromplate toother. Bothmethodsshowthat,eventheresultvalueofthewindforceatthestudyissmall,butthe influenceofthewindforceontheplatetectonicsmovements,expectedtobehigher,ifthe windvelocitiesincreasedduetoanyreasonssuchastheglobalclimatechange.

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 24

7 REFERENCES 1. MacKenzie,Keith,Evidenceforaplatetectonicsdebate,EarthScienceReviews55 2001235–336. 2. W.R.Dickinson,Platetectonicsthroughgeologicaltime,Phil.Trans.R.SOG.LOIUI. A301,207215(1981). 3. Tanimoto,ToshiroandThorneLay(2000)Mantledynamicsandseismictomography, Proc.Natl.Acad.Sci.USA,Vol.97,No.23(Jan.1,1916),pp.1240912410. 4. ThewebsiteofUniversidaddePuertoRicoMayagüez, http://geology.uprm.edu/Morelock/1_image/plate.jpg 5. GenxuWanga,c,YiboWangb,YuanshouLic,HuiyanCheng,Influencesofalpine responsestoclimaticchangeonsoilpropertiesontheQinghai–Tibet Plateau,China.Catena70(2007)506–514. 6. J.AlanPoundsandRobertPuschendorf,Cloudedfutures,,2004. http://www.nature.com/nature/journal/v427/n6970/pdf/427107a.pdfetal,2004 7. Christensen,T.R.,Johansson,Torbjom,Akerman,JonasH.,Masterpanov,Mihail, 2004.Thawingsubarcticpermafrost:effectsonvegetationandmethaneemissions. GeophysicalResearchLetters31,L04501. 8. G.I.Taylor(1916)SkinFrictionoftheWindontheEarth'sSurface,Proceedingsof theRoyalSocietyofLondon.SeriesA,ContainingPapersofaMathematicaland PhysicalCharacter,Vol.92,No.637(Jan.1,1916),pp.196199. 9. Meteonorm,2007.TheMeteonormModel. http://software.cstb.fr/soft/present.asp?page_id=us!meteonorm 10.ESUMThewebsiteoftheSchoolofEarthSciencesUniversityofMelbourne Australia http://web.earthsci.unimelb.edu.au/antarctica/plateTectonics.html 11.Christopherson.R.W.,1997.Geosystems,3 rd Ed.PrenticeHallcorp.UpperSaddle River,NJ.656pp. 12.NASA, Planetary Geodynamics Laboratory at the National Aeronautics and Administration. http://denali.gsfc.nasa.gov/dtam/data/ftp/dtam.jpg 13.USGS,ThewebsiteoftheU.S.GeologicalSurvey, http://pubs.usgs.gov/publications/text/slabs.html 14.ThepopulareducationalwebsiteofInformationTechnologyAssociates(ITA). http://www.theodora.com/maps/ 15.TheZetatalkwebsite, http://www.zetatalk.com/info/tinfo05t.htm 16.Geology, http://geology.com/articles/images/sanandreasfaultmap.jpg 17. ABC,TheABCteachwebsite, http://www.abcteach.com/Savannah/map.htm 18.TheZetatalkwebsite, http://www.zetatalk.com/info/tinfo05r.htm 19.TheZetatalkwebsite, http://www.zetatalk.com/info/tinfo05s.htm

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 25

APPENDIX A: South America: For the analytical study of the South American plate, the wind data were investigated at twentyonelocations,allaroundSouthAmerica,asshowninfigure6. JiParanaBRcitywhichlocatedatthecenteroftheSouthAmericancontinent,assumedas theareacenterofthecontinent.

Figure10:Locationofselected21sitesandmasscenterofgravitation,SouthAmerica.

OverallSitemethod Based on the above equations and assumptions, for each of the twentyone sites, the wind forceanddirectionwascalculated,toshowthecalculationprocessherebelowisVladivia Pichoysitementionedasexample.

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 26

Table7:CalculatedmonthlywindforceandwinddirectionatVladiviaPichoy. Month WindSpeed Θ F(N/m2) Fy(N/m2) Fx(N/m2) Jan 3.4 180 0.04 0.0 0.0 Feb 3.1 180 0.04 0.0 0.0 Mar 2.6 180 0.03 0.0 0.0 Apr 2.1 0 0.02 0.0 0.0 May 2 0 0.02 0.0 0.0 Jun 2.6 0 0.03 0.0 0.0 Jul 2.6 0 0.03 0.0 0.0 Aug 2.8 0 0.03 0.0 0.0 Sep 2.9 0 0.03 0.0 0.0 Oct 3 0 0.03 0.0 0.0 Nov 3.1 180 0.04 0.0 0.0 Dec 3.2 180 0.04 0.0 0.0 Yearlymean 2.783 75.000 0.031 0.000 0.000 WindDirection 172.9 WindForce 0.000 Bycalculatingtheresultingwindforceanddirectionatdifferentlocations(e.g.Table8),we caneasilygettheoverallwindforce,directionandtorque,asshowninTable9.

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 27

Table8:CalculatedwindforceanddirectionatdifferencelocationsinSouthAmerica.

Location WindForceWindForce WindDirection Fy=F*COS(Θ180) Fx=F*SIN(Θ180) VladiviaPichoy 0 172.9 0.00 0.00 Concepcion 0.03 239.8 0.02 0.03 AricaShacalluta 0.027 253.2 0.01 0.03 SanJuandeMarcona 0.041 180 0.04 0.00 Lima 0.064 180 0.06 0.00 IslotesEvangelista 0.49 258 0.10 0.48 EsmeraldasEC 0.04 180.1 0.04 0.00 Cali/AlfonsoBonill 0.005 180.1 0.00 0.00 SimonBolivarAirp. 0.086 206.6 0.08 0.04 Caracas/LaCarlota 0.018 258.1 0.00 0.02 Mabaruma 0.018 248.1 0.01 0.02 CayenneRochea 0.063 263.6 0.01 0.06 SaoLuiz 0.061 90 0.00 0.06 Macau 0.071 92.1 0.00 0.07 LoaoPessoa 0.038 92.2 0.00 0.04 Salvador 0.093 94.9 0.01 0.09 PuntaDelEste 0.131 253 0.04 0.13 ViedmaCastello 0.139 256.2 0.03 0.13 ComodoroRivadavi 0.144 112.9 0.06 0.13 RioGallegosAirp 0.172 258 0.04 0.17 UshuaiaAirp 0.112 258 0.02 0.11 0.027 0.039 WindForce 0.047 WinddirectionΘ 55.0

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 28

OverallTimeMethod Table9:Calculatedwindforceforaspecificmonth(January). Fx=F*SIN( Θ Location WindForce WindDirection Fy=F*COS( Θ180) 180) VladiviaPichoy 0.04 180 0.04 0.00 Concepcion 0.08 225 0.06 0.06 AricaShacalluta 0.04 248 0.01 0.04 SanJuandeMarcona 0.06 180 0.06 0.00 Lima 0.08 180 0.08 0.00 IslotesEvangelista 0.6 258 0.13 0.59 EsmeraldasEC 0.06 0 0.06 0.00 Cali/AlfonsoBonill 0.01 0 0.01 0.00 SimonBolivarAirp. 0.13 23 0.12 0.05 Caracas/LaCarlota 0.02 78 0.00 0.02 Mabaruma 0.02 68 0.01 0.02 CayenneRochea 0.07 68 0.03 0.06 SaoLuiz 0.06 90 0.00 0.06 Macau 0.06 90 0.00 0.06 LoaoPessoa 0.03 90 0.00 0.03 Salvador 0.1 90 0.00 0.10 PuntaDelEste 0.12 78 0.02 0.12 ViedmaCastello 0.2 248 0.07 0.19 ComodoroRivadavia 0.21 293 0.08 0.19 RioGallegosAirp 0.24 258 0.05 0.23 UshuaiaAirp 0.15 258 0.03 0.15 0.009 0.044 WindForce 0.045 WinddirectionΘ 257.9 BasedontheaboveresultsofJanuaryandtheresultsoftherestmonthsoftheyear,onecan observe the overall effect of the wind force from the different locations around South America,throughtheyearasshownbelow: Table10:Resultingoverallwindforcebasedonmonthlydata,SouthAmerica. Month WindForceWindForce WindDirectionFy=F*COS( Θ180) Fx=F*SIN( Θ180) Jan 0.045 257.9 0.01 0.04 Feb 0.027 257.7 0.01 0.03 Mar 0.022 256.2 0.01 0.02 Apr 0.022 263.6 0.00 0.02 May 0.018 100.6 0.00 0.02 Jun 0.013 110.9 0.00 0.01 Jul 0.027 265.7 0.00 0.03 Aug 0.021 248.3 0.01 0.02 Sep 0.021 256.4 0.00 0.02 Oct 0.026 255.7 0.01 0.03 Nov 0.04 253.2 0.01 0.04 Dec 0.038 254 0.01 0.04 0.006 0.021 WindForce 0.022 WinddirectionΘ 73.6

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 29

ThetotallandareaofSouthAmericais17,858,520km 2i.e.17.9 .10 12 m 2,withameanwind forceof0.04N. Consequently,thetotalforceaffectingthecontinentisaffectedbyatotalwindforceof: = .0 04N / m2 ∗17 9. ∗1012 m2 = .7 16 ∗1011 N Thisresultingwindforceisattackingthecontinentinitsareacentre.Sincethecentreofthe SouthAmericanplateisnotthesameasthecentreofthecontinentthisforceresultsinan anticlockwisetorque.Theperpendiculardistancebetweentheforceandtheareacentreofthe platewasestimated1639km. Thiswindforceactingonitscontinentalareaandthetotaltorqueinanticlockwisedirection is7.16*10 11 *r Thetotaltorqueinanticlockwisedirectionisaccordingtoeq.(2)givenby; Torque T = F ∗ r = .7 16 ∗1011 ∗ .1 64 ∗103 = .1 17 ∗1015 Nm Table11:ResultsoftheOverallSiteandOverallTimemethodsforSouthAmerica. Method OverallSiteMethod OverallTimeMethod WindForce 0.047N/m² 0.022N/m² WindDirection 55.03º 73.6º WindTorque 1.17 .10 15 Nm The first method was used to calculate the torque of the wind force which depend on the assumptionofaspecificlocationasacentreofgravitationandbymeasuringthedistanceof eachlocationfromthiscentreandaccordingtothefirstrelationthatmentionedpreviously,we cancalculatetheoveralltorque,thelocationofthecentreofgravitationshownin Figure (11) below.

Figure11:SouthAmericanplateandthelocationofSaoCarloscity,theareacenterofthe continent,andthesuggestedlocationofthecenteroftheplate,[USGS,13]

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 30

Basedontheresultofthesecondmethodofcalculation–theOverallTimeMethod–Figure (12)illustratesthedifferentwindforcevalueofeachmonth.Fromthegraphitcanbeseen thatthegreatestwindforceovertheSouthAmericanplateoccursduringthewinter fromNovembertoJanuary0.035–0.04N/m²whilethelowestwindforcevalueoccursin Junewherethevalueusedtoreach0.014N/m².

WindForce

0.05 0.045 0.04 0.035 0.03 0.025 0.02 0.015 WindForce(N/m2) 0.01 0.005 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Months Figure12:CalculatedmonthlywindforceofSouthAmerica. ThecorrespondingwindforcedirectionsthroughtheyearareshowninFigurebelow.

WindForcedirection

300

250

200

150

Degrees 100

50

0 0 2 4 6 8 10 12 14 Months Figure13:CalculatedmonthlywindforcedirectionofSouthAmerica. Sofromthecalculatedwindforcedirectionthatmentionedaboveintable11,wheretheangle ofdirectionisbetween55.03and73.6thatcanbeillustratedinthemapasinthefigure(14) below,ifwecomparethatwiththeactualmovementoftheAustralianplateasshowninthe

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 31

mapfromAfterChristopherson(1997),figure(8)above,wewillfindthesamedirectionof movementoftheplate.

Figure14:ActualandcalculateddirectionoftheSouthAmericanplatemovement. [USGS, 13]

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 32

B: North America For the analytical study of the North American plate, the wind data were investigated at twentyninelocations,allaroundNorthAmerica,asshownherebelowinfigure4. InternationalFallsstation,whichlocatedatthecenteroftheNorthAmericancontinent,was assumedastheareacentreofthecontinent.

Figure15:Locationoftheselected30sitesinNorthAmerican.[Theodora, 14 ]

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 33

OverallSiteMethod: Basedontheaboveequationsandassumptions,foreachofthe30sites,thewindforceand directionwascalculated,toshowthecalculationprocessherebelowisAstoriasitementioned asexample. Table12:Calculatedwindforceanddirectionataspecificsite(Astoria).

Month WindSpeed WindDirectionF(N/m2) Fy(N/m2) Fx(N/m2) Jan 4.4 90 0.07 0.00 0.07 Feb 4.4 90 0.07 0.00 0.07 Mar 4.3 113 0.07 0.03 0.07 Apr 4.2 248 0.07 0.03 0.06 May 4.1 293 0.07 0.03 0.06 Jun 4.2 315 0.07 0.05 0.05 Jul 4.1 315 0.07 0.05 0.05 Aug 3.9 315 0.06 0.04 0.04 Sep 3.7 225 0.05 0.04 0.04 Oct 3.7 113 0.05 0.02 0.05 Nov 4.3 113 0.07 0.03 0.07 Dec 4.4 90 0.07 0.00 0.07 Yearlymean 4.1 193 0.07 0.00 0.01 WindDirection 259.0 WindForce 0.009 Bycalculatingthewindforceanddirectionatthedifferentlocations,wecaneasilygetthe overallwindforce,directionandtorque,asshowninthefollowingtable.

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 34

Table13:Overallwindforceanddirectionbasedonsitecalculations.

Location WindForce WindDirection Fy=F*COS(Θ180) Fx=F*SIN(Θ180) Astoria 0.009 259 0.00 0.01 Colima 0.024 254.7 0.01 0.02 CampbellRiverAirp. 0.002 109.5 0.00 0.00 MclnnesIslandsBC 0.063 237.2 0.03 0.05 MiddletonIsl.Amos 0.15 259.5 0.03 0.15 PointHope 0.059 265.3 0.00 0.06 SanFelipe 0.073 142 0.06 0.04 SanFranciscoCA 0.079 250.9 0.03 0.07 StikaJaponski 0.045 106.8 0.01 0.04 TogiacVillage 0.03 207.4 0.03 0.01 BarrowAK 0.128 253.1 0.04 0.12 HenrikKoreyerholme 0.131 177.9 0.13 0.00 Isachsen 0.008 254.2 0.00 0.01 SachsHarbour 0.059 90 0.00 0.06 Kaptobin 0.046 260.2 0.01 0.05 PrinsChristianSund 0.135 97.8 0.02 0.13 Cartwright 0.081 103.9 0.02 0.08 PortAuxBasques 0.071 269.9 0.00 0.07 LonguePtDeMongue 0.014 258.5 0.00 0.01 ChathamAirp.NB 0.042 248.3 0.02 0.04 WesternHead 0.047 126.5 0.03 0.04 PortlandME 0.023 238.6 0.01 0.02 StorrsCT 0.045 250 0.02 0.04 AtlanticCity 0.037 96.3 0.00 0.04 Kinston5se 0.026 223.1 0.02 0.02 JacksonvilleAirp. 0.006 264.4 0.00 0.01 WestPalmBeach 0.029 94.4 0.00 0.03 TampaFL 0.026 247.4 0.01 0.02 HoustonAirp. 0.016 100.1 0.00 0.02 0.018 0.010 WindForce 0.021 WinddirectionΘ 210.0

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 35

OverallTimeMethod:

Table14:CalculatedwindforceinNorthAmericaforJanuary.

Location WindForce WindDirectionFy=F*COS(Θ180) Fx=F*SIN(Θ180) Astoria 0.07 90 0.00 0.07 Colima 0.02 258 0.00 0.02 CampbellRiverAirp. 0.01 0 0.01 0.00 MclnnesIslandsBC 0.036 180 0.04 0.00 MiddletonIsl.Amos 0.23 78 0.05 0.22 PointHope 0.22 113 0.09 0.20 SanFelipe 0.07 111 0.03 0.07 SanFranciscoCA 0.05 123 0.03 0.04 StikaJaponski 0.06 113 0.02 0.06 TogiacVillage 0.1 360 0.10 0.00 BarrowAK 0.14 68 0.05 0.13 HenrikKoreyerholme 0.21 180 0.21 0.00 Isachsen 0.02 90 0.00 0.02 SachsHarbour 0.11 270 0.00 0.11 Kaptobin 0.05 65 0.02 0.05 PrinsChristianSund 0.26 258 0.05 0.25 Cartwright 0.14 270 0.00 0.14 PortAuxBasques 0.29 270 0.00 0.29 LonguePtDeMongu 0.03 270 0.00 0.03 ChathamAirp.NB 0.06 270 0.00 0.06 WesternHead 0.09 360 0.09 0.00 PortlandME 0.07 270 0.00 0.07 StorrsCT 0.05 258 0.01 0.05 AtlanticCity 0.07 293 0.03 0.06 Kinston5se 0.04 225 0.03 0.03 JacksonvilleAirp. 0.04 315 0.03 0.03 WestPalmBeach 0.07 315 0.05 0.05 TampaFL 0.04 45 0.03 0.03 HoustonAirp. 0.04 360 0.04 0.00 0.012 0.044 WindForce 0.046 WinddirectionΘ 255.2 BasedontheaboveresultsofJanuaryandtheresultsoftherestmonthsoftheyear,onecan observe the overall effect of the wind force from the different locations around North America,throughtheyearasshownbelow:

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 36

Table15:Calculatedoverallwindforcebasedonmonthlyforcecalculations.

Month WindForce WindDirection Fy=F*COS(Θ180) Fx=F*SIN(Θ180) Jan 0.046 255.2 0.01 0.04 Feb 0.01 243.1 0.00 0.01 Mar 0.011 138 0.01 0.01 Apr 0.013 140.3 0.01 0.01 May 0.016 223.1 0.01 0.01 Jun 0.009 188.2 0.01 0.00 Jul 0.005 102.9 0.00 0.00 Aug 0.014 184 0.01 0.00 Sep 0.009 103.6 0.00 0.01 Oct 0.014 248.8 0.01 0.01 Nov 0.009 160.1 0.01 0.00 Dec 0.036 95.5 0.00 0.04 0.007 0.001 WindForce 0.0075 WinddirectionΘ 187.3

ThetotallandareaofNorthAmericais24,490,000km2i.e.24.5.1012m2,withameanwind forceof0.0144N. Consequently,thetotalforceaffectingthecontinentisaffectedbyatotalwindforceof: = .0 0144N / m2 ∗ 24 5. ∗1012 m2 = .3 53∗1011 N Thisresultingwindforceisattackingthecontinentinitsareacentre.Sincethecentreofthe North American plate is not the same as the centre of the continent this force results in a clockwise torque. The perpendicular distance between the force and the area centre of the platewasestimated1220km. Thetotaltorqueinanticlockwisedirectionisaccordingtoeq.(2)givenby; Torque T = F ∗ r = .3 53∗1011 ∗ .1 22 ∗103 = 3.4 ∗1015 Nm

Table16:OverallSiteandTimemethods(NorthAmerica). Method OverallSiteMethod OverallTimeMethod WindForce 0.021N/m² 0.0075N/m² WindDirection 210.0º 187.3º WindTorque 4.3 .10 15 Nm

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 37

The first method was used to calculate the torque of the wind force which depend on the assumptionofaspecificlocationasacentreofgravitationandbymeasuringthedistanceof eachlocationfromthiscentreandaccordingtothefirstrelationthatmentionedpreviously,we cancalculatetheoveralltorque,thelocationofthecentreofgravitationshownin Figure (11) below.

Figure16:TheNorthAmericaplateandthelocationofInternationalFallscity,thearea centerofthecontinent,andthesuggestedlocationofthecenterofthearea[15].

Basedontheresultofthesecondmethodofcalculation–theOverallTimeMethod–Figure 17illustratesthedifferentwindforcevalueofeachmonth.Fromthegraphitcanbeseenthat the greatest wind force over the North American plate occurs during the winter season in December and January 0.036, 0.046 N/m² respectively, while the lowest wind force value occursinJulywherethevalueusedtoreach0.005N/m².

WindForce

0.050

0.040

WindForce 0.030 (N/m2) 0.020

0.010

0.000 Jan Mar May Jul Sep Nov Months Figure17:TotalmonthlywindforceinNorthAmerica.

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 38

ThecorrespondingwindforcedirectionsthroughtheyearareshowninFigurebelow.

Windforcedirection

300.0

250.0

200.0

150.0

100.0

Angleofdirection 50.0

0.0 0 2 4 6 8 10 12 14 Months Figure18:MonthlywindforcedirectionoverNorthAmerica. So from the calculated wind force direction that mentioned above in table (16), where the angleofdirectionisbetween187.3and210.0thatcanbeillustratedinthemapasinthe figure(19)below,ifwecomparethatwiththeactualmovementof theEurasian plateas showninthemapfromAfterChristopherson(1997),figure(8),wewillfindthedirectionof movement of the is same as a function of the effect of the San Andreas Fault, figure (20) below.‘

Figure19:ActualandcalculateddirectionoftheNorthAmericanplatemovement.[15]

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 39

Figure20:ModifiedmapofSanAndreasFault,[16]

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 40

C: Africa For the analytical study of the Africa n plate, the wind data were investigated at twenty nine locations,selectedallaround Africa ,asshownherebelowinfigure(14). Yangambicitywhichlocatedatthecenterofthe Africancontinent ,assumedastheareacenterof continent.

Figure21:Locationoftheselected29sitesinAfrica,[ABC,17]

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 41

OverallSiteMethod: Basedontheaboveequationandassumptions,foreachofthe35sites,thewindforceanddirection wascalculated,toshowthecalculationprocessherebelowisPortSudansitementionedasexample. Table17:Calculatedmonthlywindforceandwinddirectionat‘PortSudan’.

Month WindSpeed WindDirection F(N/m2) Fy(N/m2) Fx(N/m2) Jan 4.9 360 0.09 0.09 0.00 Feb 4 360 0.06 0.06 0.00 Mar 4 360 0.06 0.06 0.00 Apr 3.6 360 0.05 0.05 0.00 May 3.1 45 0.04 0.03 0.03 Jun 3.1 45 0.04 0.03 0.03 Jul 3.1 360 0.04 0.04 0.00 Aug 3.1 90 0.04 0.00 0.04 Sep 3.1 45 0.04 0.03 0.03 Oct 3.1 360 0.04 0.04 0.00 Nov 4 360 0.06 0.06 0.00 Dec 4.5 360 0.08 0.08 0.00 Yearlymean 3.6 259 0.05 0.05 0.01 Direction 191.6 Force 0.048 Bycalculatingthewindforceanddirectionresultsofthedifferentlocations,wecaneasilygetthe overallwindforce,directionandtorque,asshowninthefollowingtable.

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 42

Table18:OverallwindforceinAfricabasedonthesitescalculation.

Location WindForce WindDirectionFy=F*COS(Θ180) Fx=F*SIN(Θ180) PortSudan 0.0480 192 0.05 0.01 Alula 0.0150 90.1 0.00 0.01 Djibouti 0.0310 90.1 0.00 0.03 Mogadisho 0.0280 161 0.03 0.01 DarEsSalaam 0.0310 112 0.01 0.03 Lumbo 0.0180 124 0.01 0.02 Beira 0.0730 120 0.04 0.06 Mabuto/Benfica 0.0420 142 0.03 0.03 Durban 0.0670 0.1 0.07 0.00 PortElizabeth 0.0920 246.4 0.04 0.08 CapeTown 0.0900 180 0.09 0.00 Alexander 0.0390 117 0.02 0.03 LuandaObserva 0.0160 268 0.00 0.02 Mouila 0.0460 268 0.00 0.05 Cocobeach 0.0470 166 0.05 0.01 PortHarcourt 0.0030 225 0.00 0.00 LomeAirp. 0.0340 225 0.02 0.02 Accra 0.0460 213 0.04 0.03 SassandraAirp. 0.0080 220 0.01 0.01 Bo 0.0070 187 0.01 0.00 Bolama 0.0200 119 0.01 0.02 Nouadhibou 0.2570 184 0.26 0.02 AlMassiraMc 0.0110 160 0.01 0.00 Casablanca 0.0060 161 0.01 0.00 Mecheria 0.0190 104 0.00 0.02 Jendouba 0.0060 262 0.00 0.01 Jerba 0.0220 264 0.00 0.02 Alexandria 0.0320 168 0.03 0.01 Halaib 0.0400 148 0.03 0.02 0.025 0.002 WindForce 0.025 WinddirectionΘ 176.2 Sincethewindvariesinvelocityanddirectionovertheyeartheeffectofthewindforceon thedifferentsiteswasstudiedduringeachmonth,asthecalculationsprocedureandtheresults shownforthefirstmonthoftheyearinthetablebelow:

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 43

OverallTimeMethod: Table19:Thewindforcecalculationinaspecificmonth(Africa).

Location WindForce WindDirectionFy=F*COS(Θ180) Fx=F*SIN(Θ180) PortSudan 0.0929 360 0.09 0.00 Alula 0.0502 90 0.00 0.05 Djibouti 0.0819 90 0.00 0.08 Mogadisho 0.0372 90 0.00 0.04 DarEsSalaam 0.0651 23 0.06 0.03 Lumbo 0.0651 0 0.07 0.00 Beira 0.1007 90 0.00 0.10 Mabuto/Benfica 0.1007 90 0.00 0.10 Durban 0.0819 0 0.08 0.00 PortElizabeth 0.121 225 0.09 0.09 CapeTown 0.1789 180 0.18 0.00 AlexanderBay 0.097 225 0.07 0.07 LuandaObservaor 0.021 270 0.00 0.02 Mouila 0.0262 270 0.00 0.03 Cocobeach 0.03 147 0.02 0.01 PortHarcourt 0.0022 225 0.00 0.00 LomeAirp. 0.0171 225 0.01 0.01 Accra 0.0262 213 0.02 0.01 SassandraAirp. 0.0074 280 0.00 0.01 Bo 0.0028 40 0.00 0.00 Bolama 0.0367 68 0.01 0.03 Nouadhibou 0.184 45 0.13 0.13 AlMassiraMc 0.0372 180 0.04 0.00 Casablanca 0.0155 180 0.02 0.00 Mecheria 0.0559 248 0.02 0.05 Jendouba 0.0205 270 0.00 0.02 Jerba 0.0589 270 0.00 0.06 Alexandria 0.0784 180 0.08 0.00 Halaib 0.0454 315 0.03 0.03 0.002 0.006 WindForce 0.0065 Winddirection 109.6 BasedontheaboveresultsofJanuaryandtheresultsoftherestmonthsoftheyear,onecan observe the overall effect of the wind force from the different locations around Africa, throughtheyearasshownbelow:

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 44

Table20:Theoverallwindforcebasedonmonthlyresultantforcecalculation. Month WindForce WindDirection Fy=F*COS(Θ180) Fx=F*SIN(Θ180) Jan 0.0060 109.6 0.00 0.01 Feb 0.0008 197.8 0.00 0.00 Mar 0.0090 150.6 0.01 0.00 Apr 0.0150 105.6 0.00 0.01 May 0.012 166.8 0.01 0.00 Jun 0.0170 187 0.02 0.00 Jul 0.0180 130.4 0.01 0.01 Aug 0.0120 118.5 0.01 0.01 Sep 0.007 212.4 0.01 0.00 Oct 0.001 161 0.00 0.00 Nov 0.006 248 0.00 0.01 Dec 0.004 257 0.00 0.00 0.006 0.003 WindForce 0.007 WinddirectionΘ 152.8

ThetotallandareaofAfricais30,221,532km2i.e.30.221*1012m2,withameanwind forceof0.0063N/m². Consequently,thetotalforceaffectingthecontinentisaffectedbyatotalwindforceof: 12 10 = .0 0063N / m2 ∗30 2. ∗10 m2 = .1 904 ∗10 N Thisresultingwindforceisattackingthecontinentinitsareacentre.Sincethecentreofthe African plate is not the same as the centre of the continent this force results in an anti clockwise torque. The perpendicular distance between the force and the area centre of the platewasestimated873km. Thetotaltorqueinanticlockwisedirectionisaccordingtoeq.(2)givenby; Torque T = F ∗ r = .1 904 ∗1010 ∗ .8 73∗105 = .1 66 ∗1016 Nm

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 45

Table21:TheresultsoftheOverallSiteandTimemethods(Africa) Method OverallSiteMethod OverallTimeMethod WindForce 0.025N/m² 0.007N/m² WindDirection 176.2º 152.8º WindTorque 1.66 .10 16 Nm The first method was used to calculate the torque of the wind force which depend on the assumptionofaspecificlocationasacentreofgravitationandbymeasuringthedistanceof eachlocationfromthiscentreandaccordingtothefirstrelationthatmentionedpreviously,we cancalculatetheoveralltorque,thelocationofthecentreofgravitationshownin Figure (19) below.

Figure22:TheAfricanplate,AfricaandthelocationofYangambicitytheareacenterofthe continent,andthesuggestedlocationofthecenteroftheplate[18]. Basedontheresultofthesecondmethodofcalculation–theOverallTimeMethod–Figure 23illustratesthedifferentwindforcevalueofeachmonth.Fromthegraphitcanbeseenthat thegreatestwindforceovertheAfricanplateoccursduringJuly–0.0180N/m²whilethe lowestwindforceoccursinOctoberwhereitreach0.001N/m².

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 46

WindForce

0.0180 0.0160 0.0140 0.0120 WindForce 0.0100 (N/m2) 0.0080 0.0060 0.0040 0.0020 0.0000 Jan Mar May Jul Sep Nov Months Figure23:CalculatedmonthlywindforceinAfrica.

ThecorrespondingwindforcedirectionsthroughtheyearareshowninFigure5.

Windforcedirection

300

250

200

150

100

Angleofdirection 50

0 0 2 4 6 8 10 12 14 Months

Figure24:CalculatingwindforcedirectioninAfricaovertheyear. So from the calculated wind force direction that mentioned above in table (21), one can observeabigdifferentvaluesoftheangleofdirection,it’s152.8fortheOveralltimemethod, whiletheangleofdirectionis176.2fortheOverallsitemethod–thelatestwillbeillustrated bythemapinthefigure(25)below,andifitcomparedwiththeactualmovementofthe African plate that shown inthe map from After Christopherson (1997), figure(8),we will find the direction of actual movement of this plate is not the same to the predominant movementdirection.

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 47

Figure25:ActualandcalculateddirectionoftheAfricanplatemovement[18].

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 48

D: Eurasia For the analytical study of the Eurasian plate, the wind data were investigated at eighteen locations,allaroundEurasia,asshowninfigure18.Ekibastuzcitywhichlocatedatthecenter oftheEurasianplate,assumedastheareacenterofcontinent. 1. MalyeKarmakuly 2. Dickson 3. Preodrasheniyai 4. BolsojSantar 5. Poronajs 6. Shanghai 7. BacLieu 8. Miri 9. Jambi 10. Sittwe 11. Faizabad 12. Erzincan 13. Roma/Ciampino 14. Porto 15. Belmullet 16. Orland 17. Tromso 18 . Makkaur Figure26:Locationoftheselected18sitesontheEurasiancontinent[19] OverallSiteMethod: Basedontheaboveequationsandassumptions,foreachofthe25sites,thewindforceand directionwascalculated,toshowthecalculationprocessherebelowisthesite BolsojSantar mentionedasexample.

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 49

Table22:CalculatedwindforceatBolsojSantar.

Month WindSpeed Winddirection F(N/m2) Fy(N/m2) Fx(N/m2) Jan 3.4 217 0.04 0.04 0.03 Feb 3.2 208 0.04 0.03 0.02 Mar 3.4 201 0.04 0.04 0.02 Apr 3.3 171 0.04 0.04 0.01 May 3.1 168 0.04 0.04 0.01 Jun 2.4 183 0.02 0.02 0.00 Jul 2.1 191 0.02 0.02 0.00 Aug 2.2 185 0.02 0.02 0.00 Sep 2.9 195 0.03 0.03 0.01 Oct 4 200 0.06 0.06 0.02 Nov 4.5 207 0.08 0.07 0.04 Dec 3.6 200 0.05 0.05 0.02 Yearlymean 3.2 194 0.04 0.04 0.01 Direction 196.6 Force 0.040 Bycalculatingthewindforceanddirectionresultsofthedifferentlocations,wecaneasilygetthe overallwindforce,directionandtorque,asshowninthefollowingtable. Table23:Theoverallwindforcebasedonmonthlyresultantforcecalculation.

Location WindForce WindDirectionFy=F*COS(Θ180) Fx=F*SIN(Θ180) BolsojSantar 0.0395 196.6 0.04 0.01 Poronajs 0.0380 180.1 0.04 0.00 Shanghai 0.0160 99.6 0.00 0.02 BacLieu 0.0100 185 0.01 0.00 Miri 0.0090 114.6 0.00 0.01 Jambi 0.0030 267.3 0.00 0.00 Sittwe 0.0360 146.8 0.03 0.02 Faizabad 0.0058 111.9 0.00 0.01 Erzincan 0.0120 24.9 0.01 0.01 Roma/Ciampino 0.0280 170.6 0.03 0.00 Porto 0.0550 250.6 0.02 0.05 Belmullet 0.1330 260.8 0.02 0.13 Orland 0.1313 0.1 0.13 0.00 Tromso 0.0400 171 0.04 0.01 Makkaur 0.1010 172.8 0.10 0.01 MalyeKarmakul 0.1150 182.6 0.11 0.01 Dickson 0.1020 173.2 0.10 0.01 Preodrasheniyai 0.0080 186.2 0.01 0.00 0.023 0.006 WindForce 0.024 WinddirectionΘ 375.5

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 50

OverallTimeMethod: Sincethewindvariesinvelocityanddirectionovertheyeartheeffectofthewindforceon thedifferentsiteswasstudiedduringeachmonth,asthecalculationsprocedureandtheresults shownforthefirstmonthoftheyearinthetablebelow: Table24:Showthecalculationofthewindforceinaspecificmonth(January).

Location WindForce WindDirectionFy=F*COS(Θ180) Fx=F*SIN(Θ180) BolsojSantar 0.0447 217 0.04 0.03 Poronajs 0.0474 0 0.05 0.00 Shanghai 0.03 293 0.01 0.03 BacLieu 0.0089 135 0.01 0.01 Miri 0.0081 106 0.00 0.01 Jambi 0.0155 23 0.01 0.01 Sittwe 0.0171 45 0.01 0.01 Faizabad 0.0039 270 0.00 0.00 Erzincan 0.004 24 0.00 0.00 Roma/Ciampino 0.0373 45 0.03 0.03 Porto 0.1257 90 0.00 0.13 Belmullet 0.2235 270 0.00 0.22 Orland 0.2235 0 0.22 0.00 Tromso 0.1087 180 0.11 0.00 Makkaur 0.2477 180 0.25 0.00 MalyeKarmakuly 0.1393 209 0.12 0.07 Dickson 0.1896 180 0.19 0.00 Preodrasheniyai 0.0437 248 0.02 0.04 0.022 0.011 WindForce 0.024 WinddirectionΘ 207.7 BasedontheaboveresultsofJanuaryandtheresultsoftherestmonthsoftheyear,onecan observe the overall effect of the wind force from the different locations around Eurasia, throughtheyearasshownbelow:

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 51

Table25:TheresultoftheoverallSiteandTimemethods(Eurasia).

Month WindForce WindDirection Fy=F*COS(Θ180) Fx=F*SIN(Θ180) Jan 0.0240 207.7 0.02 0.01 Feb 0.0420 159.6 0.04 0.01 Mar 0.0270 183.4 0.03 0.00 Apr 0.0310 159.2 0.03 0.01 May 0.016 259.9 0.00 0.02 Jun 0.0150 127 0.01 0.01 Jul 0.0130 93.4 0.00 0.01 Aug 0.0140 118.6 0.01 0.01 Sep 0.026 207.5 0.02 0.01 Oct 0.024 166.3 0.02 0.01 Nov 0.0250 161 0.02 0.01 Dec 0.026 196.1 0.02 0.01 0.019 0.002 WindForce 0.019 WinddirectionΘ 352.8

SincethetotallandareaofEurasiacontinent,ArabianpeninsulaandthesubcontinentofIndia is54,000,000,2,600,000and3,287,590km 2respectively,SothetotallandoftheEurasian platewillbearound48,113,410km 2i.e.48.11*10 12 m 2,withameanwindforceof0.019 N/m 2. Consequently,thetotalforceaffectingthecontinentisaffectedbyatotalwindforceof: 12 10 = .0 019N / m2 ∗ 48.11∗10 m2 = .9 14 ∗10 N Thisresultingwindforceisattackingthecontinentinitsareacentre.Sincethecentreofthe Euroasianplateisnotthesameasthecentreofthecontinentthisforceresultsinaclockwise torque. The perpendicular distance between the force and the area centre of the plate was estimated803km. Thetotaltorqueinanticlockwisedirectionisaccordingtoeq.(2)givenby; Torque T = F ∗ r = .9 14 ∗1010 ∗ .8 03∗105 = .7 34 ∗1016 Nm Thewindforceresultof bothisidentical,whilethereisasmalldifferenceintheangleof direction (less than 6 o), and comparing results of both methods will be shown in the table below: Table26:TheresultsoftheOverallSiteandTimemethods(Eurasia) Method OverallSiteMethod OverallTimeMethod WindForce 0.024N/m² 0.019N/m² WindDirection 375.5º 352.8º WindTorque 7.34 .10 16 Nm The first method was used to calculate the torque of the wind force which depend on the assumptionofaspecificlocationasacentreofgravitationandbymeasuringthedistanceof Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 52

eachlocationfromthiscentreandaccordingtothefirstrelationthatmentionedpreviously,we cancalculatetheoveralltorque,thelocationofthecentreofgravitationshownin Figure (2) below.

Figure27:TheEurasianplateanditscenteratEkibastuzcity,theareacenterofthe continent,andthesuggestedlocationofthecenteroftheplate[19]

Basedontheresultofthesecondmethodofcalculation–theOverallTimeMethod–Figure (28)illustratesthedifferentwindforcevalueofeachmonth.Fromthegraphitcanbeseen thatthegreatestwindforceovertheEurasianplateoccursduringFebruary–0.0420N/m² whilethelowestwindforceoccursinJulywhereitreach0.013N/m².

WindForce

0.0450 0.0400 0.0350 0.0300 0.0250 0.0200

WindForce(N/m2) 0.0150 0.0100 0.0050 0.0000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Months Figure28:Calculatedmonthlywindforceovertheyear. ThecorrespondingwindforcedirectionsthroughtheyearareshowninFigure29.

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 53

Windforcedirection

300

250

200

150

100

Angleofdirection 50

0 0 2 4 6 8 10 12 14 Months Figure29:CalculatedwindforcedirectionoverEurasiaduringtheyear. Sofromthecalculatedwindforcedirectionthatmentionedaboveintable26,wheretheangle ofdirectionisbetween352.8and375.5thatcanbeillustratedinthemapasinthefigure (30)below,ifwecomparethatwiththeactualmovementoftheEurasianplateasshownin themapfromAfterChristopherson(1997),figure(8),wewillfindthedirectionofmovement oftheiscloser.

Figure30:ActualandcalculateddirectionoftheEurasianplatemovement[19]. Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics 54

REFERENCES: 1MacKenzie,Keith, Evidence for a plate tectonics debate ,EarthScienceReviews552001 235–336. 2 W.R.Dickinson, Plate tectonics through geological time ,Phil.Trans.R.SOG.LOIUI.A 301,207215(1981). 3Tanimoto,ToshiroandThorneLay(2000)Mantledynamicsandseismictomography,Proc. Natl.Acad.Sci.USA,Vol.97,No.23(Jan.1,1916),pp.1240912410. 4ThewebsiteofUniversidaddePuertoRicoMayagüez, http://geology.uprm.edu/Morelock/1_image/plate.jpg 5GenxuWanga,c,YiboWangb,YuanshouLic,HuiyanCheng,Influencesofalpine ecosystemresponsestoclimaticchangeonsoilpropertiesontheQinghai–TibetPlateau, China.Catena70(2007)506–514. 6J.AlanPoundsandRobertPuschendorf,Cloudedfutures,NATURE,2004. http://www.nature.com/nature/journal/v427/n6970/pdf/427107a.pdfetal,2004 7 Christensen,T.R.,Johansson,Torbjom,Akerman,JonasH.,Masterpanov,Mihail,2004. Thawingsubarcticpermafrost:effectsonvegetationandmethaneemissions.Geophysical ResearchLetters31,L04501. 8G.I.Taylor(1916)SkinFrictionoftheWindontheEarth'sSurface,Proceedingsofthe RoyalSocietyofLondon.SeriesA,ContainingPapersofaMathematicalandPhysical Character,Vol.92,No.637(Jan.1,1916),pp.196199. 9Meteonorm,2007.TheMeteonormModel. http://software.cstb.fr/soft/present.asp?page_id=us!meteonorm 10 ESUMThewebsiteoftheSchoolofEarthSciencesUniversityofMelbourneAustralia http://web.earthsci.unimelb.edu.au/antarctica/plateTectonics.html 11Christopherson.R.W.,1997. Geosystems ,3 rd Ed.PrenticeHallcorp.UpperSaddleRiver, NJ.656pp. 12 NASA, Planetary Geodynamics Laboratory at the National Aeronautics and Space AdministrationNASA. http://denali.gsfc.nasa.gov/dtam/data/ftp/dtam.jpg 13 USGS,ThewebsiteoftheU.S.GeologicalSurvey, http://pubs.usgs.gov/publications/text/slabs.html 14 ThepopulareducationalwebsiteofInformationTechnologyAssociates(ITA). http://www.theodora.com/maps/new3/north_america_color.gif 15 TheZetatalkwebsite http://www.zetatalk.com/info/tinfo05t.htm 16Geology, http://geology.com/articles/images/san-andreas-fault-map.jpg 17 ABC,TheABCteachwebsite. http://www.abcteach.com/Savannah/map.htm 18 TheZetatalkwebsite http://www.zetatalk.com/info/tinfo05r.htm 19 TheZetatalkwebsite http://www.zetatalk.com/info/tinfo05s.htm

Widatalla Asim, LTU, 2007 Wind Driven Plate Tectonics