<<

БЪЛГАРСКААКАДЕМИЯНАНАУКИТЕ•BULGARIANACADEMYOFSCIENCES

ГЕОХИМИЯ,МИНЕРАЛОГИЯИПЕТРОЛОГИЯ•38•СОФИЯ•2001 GEOCHEMISTRY,ANDPETROLOGY•38•SOFIA•2001

Complexargentopentlanditeinclusionsin :Asolidstateexsolutionmechanism ThomasN.Kerestedjian,IvanK.Bonev Abstract . According to almost all the existing reports, the scarce argentopentlandite is typically found as fine inclusions in chalcopyrite, very often associated with mackinawite. The last finding in the BulgarianRhodopeMountains,revealedwelldevelopedregularities,thatcouldexplaintheinsistenceofthis assemblagetoappear.Argentopentlanditeisrepresentedbyfineoctahedralcrystals,allparalleltoeachother within one and the same chalcopyrite grain and with their crystallographic axes parallel to these of chalcopyrite. Almostinevitablyitformscomplexregulartwins withmackinawite,afterthetwinlaw: Agp (001)[100]//Mcw(001)[110].Theassemblageiseasilyproducedduringasolidstateatomrearangementin thecommoncubicclosestpackingofSatoms. Theslightlyreducedvolumeof mackinawite(accordingto chalcopyrite)produceslocalcontractionzone,facilitatingthemovementoflargerAgatoms,thusproviding bestnucleationpointsforargentopentlandite,thatwithitsslightvolumeexcessinitsturncompensatesthe overall volume discrepancy. This “symbiosis” forms the complex argentopentlanditemackinawite oriented inclusion. Thus the existence of mackinawite is considered determinative for the argentopentlandite nucleation.Probablysomeothercoherentexsolutionswithsmallervolume(e.g.or)can playsimilarrole. Keywords: argentopentlandite,mackinawite,chalcopyrite,topotaxy,exsolution Address: GeologicalInstitute,BulgarianAcademyofSciences,1113Sofia,Bulgaria;Email: [email protected] Керестеджиян,Т.,И.K.Бонев.2001.Сложниаргентопентландитмакиноуитовивключенияв халкопиритмеханизъмнатвърдофазноотсмесване.–Геохим.минерал.ипетрол., 38 ,2333. Резюме. Според почти всички досегашни публикации, типичната форма на проявление на редкия минераларгентопентландитекатофинивключениявхалкопирит,почтивинагизаедносмакиноуит. Последнатанаходка вРодопитеразкридобреизразенизакономерностивсрастваниятамеждудвата минерала, които биха могли да обяснят постоянството в тяхното съвместно проявление. Аргентопентландитътепредставенотдребниоктаедричникристали,ориентиранивзаимнопаралелно в едно и също халкопиритово зърно. Техните кристалографски оси са разположени успоредно на съответните оси при халкопирита. Почти винаги той образува сложни закономерни страствания с макиноуитпозаконнасрастване:Agp(001)[100]// Mcw(001)[110].Асоциациятабимоглалеснодасе образува при пренарежданае на металните атоми в една обща кубична опаковка от S атоми. Известниятобемендефицитнамакиноуитаспрямохалкопиритоватаструктурасъздавалокалназона на свиване, облегчаваща придвижването на относително големия Ag атом към нея и по този начин предоставяподходящомястозаобразуваненааргентопентландитовизародиши,коитосъссвоямалко поголямобем,насвойредкомпенсиратобемнитенесъответствия.Тази“симбиоза”водидообразу ването на ориентираните сложни включения. Така наличието на макиноуит играе определена улесняващаролявобразуванетонааргентопентландита.Вероятноидругиориентираниотсмесванияс 23 помалъкобем(катогрейгитипентландит)могатдаиграяттакавароля. Ключовидуми :аргентопентландит,макиноуит,халкопирит,топотаксия,отсмесване Адрес: Геологическиинститут,Българскаакадемиянанауките,1113София

Introduction The scarce mineral argentopentlandite, first chalcopyrite.Theserelationshipsprovideaclue found in Sudbury, (Michener, 1940) to the understanding of a common genetic andrecognizedasadistinctmineralspeciesin mechanism, producing the whole observed 1977, is currently known from only a few assemblageduringasolidstate transformation occurrences. Further developments, ofanISS.Itisthescopeofthispaper. establishingthemineralformula,structureand phase relations of argentopentlandite are due Observed mineralogical and crystallo to: Scott and Gasparrini (1973); Hall and graphicrelationships Stewart(1973);Rudashevskiietal.(1977)and Groves and Hall (1978). Additional The assemblage found in the Rhodope argentopentlandite descriptions for the Mountains comprises chalcopyrite, Canadian deposits Sudbury, Falkonbridge and and unevenly distributed in the Bird River give Scott and Gasparrini (1973), amphibolites of the Chepelare suit of the Karpenkovetal.(1973),CabriandLaflamme Rhodopean metamorphic complex. The sulphides are sometimes accumulated in fine (1976) and Imai et al. (1975). The few other cracksorveinlets,butmostlytheyarefoundas reports are as follows: Shishkin et al. (1971) small nests or single grains in the host rock. from Talnach, Octiabrskoe and HovuAksi in Argentopentlandite, mackinawite and rarely Russia and Kazachstan; Vuorelainen et al. BiTe sulphides are only represented as tiny (1972) in seven Finnish deposits; Mariko et inclusions in chalcopyrite. Sphalerite also is al.(1973)fromKamaishimine,Japan;Groves found in chalcopyrite as typical stars. In very and Hall (1978) from Mount Windarra, fewinstancestinylamellaeofalsoare Australia; Mposkos (1983) from Koronuda, observedinthechalcopyrite. Greece; Yakovlev and Pachomovskiy (1982), Argentopentlandite isrepresentedbyisotropic, Balabanin(1984)andAbzalovaandPolejaeva palereddishbrown, like, euhedral to (1987) from the Kola peninsula; Benvenuti subhedral grains, few micrometers in size. Its (1991) from Bottino, Italy; Kojonen (1993) chemical composition, determined by electron fromKelokorpi,Finland;Kontnyetal.(1994) microprobe analyses (Kerestedjian, 1997) is: from Oberpfalz,GermanyandMoralesRuano Fe 36.12, Ni 20.69, Ag 11.90, S 31.36, Σ and Fenoll HachAli (1996) from El Harcon, 100.07 (wt.%, mean of three analyses), with Spain. Synthetic analogues of calculated formula Fe 5.29 Ni 2.88 Ag 0.90 S8.00 . The argentopentlanditeareknownfromtheworkof slight Ag deficit suggests some Ag insuffi Knopetal.(1965). ciencyintheenvironment. Most of the available descriptions are Mackinawite occurs as abundant tiny inclu unanimousononepoint:argentopentlanditeis sionsofthinlamellarorirregularshapeinthe invariably found as fine inclusions in chalcopyrite.AhighNicontent,upto8wt.% chalcopyrite. Although other possibilities are (Fe/Niatomicratioabout7)wasdeterminedby microprobe analyses. As previously reported also considered in some cases, most authors (Vaughan, 1969; Borishanskaya et al., 1981), accept the solidstate exsolution from Ni is a common component of mackinawite chalcopyrite or ISS as the most probable way and the limits of its substitution reach 1822 offormingargentopentlandite.Thelastfindin wt.%. the Rhodope Mts., Bulgaria, (Kerestedjian, Chalcopyrite occursasanhedralhomogeneous 1997)revealsalsoregularrelationshipsamong grains, few millimeters in size, with nearly argentopentlandite, mackinawite and stoichiometric composition. Trace amounts of 24 Ni (0.10 wt.%) and Ag (0.26 wt.%) were strictcrystallographicrulesintheirorientation detected. Orientationrelationships Most grains of argentopentlandite are withrespecttochalcopyritehost(Bonev,1974; represented by square or acuteangled cross Bonev, Radulova, 1994), as well as sections parallel to each other within certain polysynthetic twin lamellae (112) of chalcopyrite grain. The same pattern was also chalcopyrite, were used to identify the mutual reported in previous works (Karpenkov et al., orientation of argentopentlandite and 1973; Scott, Gasparrini, 1973; Groves, Hall, chalcopyrite.Itwasfoundthatthedirectionsof 1978).Althoughalltheobservationsaremade allthreecrystallographicaxesforboth in twodimensional polished sections, the coincide. Schematic representation of the comparison between large number of observed mineral relations is given on the differentlyoriented sections allowed usto use followingFig.1. threedimensional terms for description. In Argentopentlandite was almost exclu theseterms,mostargentopentlanditeinclusions sivelyfoundintergrownwithmackinawite aresimpleoctahedra,insomecaseswithvery small cubic faces. This observation is also consistent with its Fm 3 m or P 4 3m space group, strong [110] PBC directions and the weak bond [111] directions in its crystal structure,producingthewellknownoctahedral of pentlandite. This cleavage can be observedparalleltothesectionedges(seee.g. Fig.1ofScottandGasparini,1973). Theextremelybireflectantandanisotropic inclusions of mackinawite clearly belong to three distinct groups of optical and crystallographicorientations.Its(001)lamellae takethreemutuallyperpendicularorientations, which are perpendicular to the three crystallographic axes of chalcopyrite, respectively. Two of these orientations (perpendicular to the chalcopyrite twofold axes) are crystallographicaly identical. In polished sections perpendicular to these axes, the two orientations of mackinawite show maximumanisotropiceffects,whereasthethird group is in quasiisotropic position. These relationswerefirstexplainedbyBonev(1975, 1976)andwerealsoobservedbyKouvoetal. (1963, Fig. 1), where square “tetragonal sulphide” (mackinawite) crystals grow in an uniform orientation on chalcopyrite surface, alongwithaneighboringsphaleritestar. Because the chalcopyrite does not have Fig.1.Mutualorientationofmineralinclusionsand crystal faces developed, sphalerite stars and chalcopyritetwinlamellaeinchalcopyritematrix alsomackinawitelamellae,whichalwaysobey Фиг. 1. Взаимна ориентация на минералните 25 включения и халкопиритовите двойникови ламеливхалкопиритоваматрица

Fig. 2. Argentopentlanditemackinawite (AgpMcw) regular intergrowths in chalcopyrite (Cpy) matrix. Polarizingmicroscope,3differentpolarizingdirections(subfiguresa,bandc)ofoneandthesamearea Фиг.2.Закономерниаргентопентландитмакиноуитови(AgpMcw)срастваниявхалкопиритова(Cpy) матрица. Поляризирана светлина, 3 различни посоки на поляризация (подфигури a, b и c) в една и същаобластнаобразеца lamellaeformingdiagonal(accordingtosquare to look for some specific features in the argentopentlandite crosscuts) “mustaches” structuresandcrystalchemistryoftheminerals (Figs.2,3). involved. Summarized topotaxic (endotaxic) Topologicalsimilarityofthestructures relations of the inclusions in chalcopyrite Allthreemineralscanberepresentedwiththe matrixare: same cubic closestpacking of S atoms. Only Argentopentlandite (100)[001] // chalcopyrite thenatureandpositionofmetallicatomsdiffer (100)[001]; among these minerals (Fig. 4). In the case of Mackinawite (001)[110] // chalcopyrite mackinawite Fe atoms form completely filled (001)[010](thecaseontheleftinFig.1); andcompletelyemptyalternating(001)layers Mackinawite (001)[110] // chalcopyrite of FeS 4 tetrahedra. In the case of (100)[001] and (010)[001] (next two on the argentopentlandite FeandNidistributiongives rightinFig.1). riseto8memberclustersofMeS 4 tetrahedra, Attempting to explain the unusual alternating in all translational directions with “mustache” intergrowth and the reasons AgS 6octahedra. producingitalmostwithoutexception,wehad 26 Forbettercomparisonwithargentopentlandite and in order to leave the array of S atoms placed on the unitcell edges (as in the two other structures), chalcopyrite is shown translated1/4,1/4,1/8fromtheconventional representation. The cubic argentopentlandite cell was divided into subcell elements with tetragonal symmetry, so as to be directly comparable to chalcopyrite.Theseelementscanfilltheentire argentopentlandite space by shifting each secondsubcellinboth aand bdirectionsby1/2 c (Fig.5). Mackinawite was assigned an unconventional facecentered cell, ° corresponding to a rotation of 45 around c Fig.3.Typical“mustache”intergrowth.SEM,35kV axis. Some authors (Kostov, Minčeva Фиг. 3. Типични сраствания "с мустаци". SEM, Stefanova, 1981) accept this cell choice, with 35kV respectivecellparameters a5.2, c10.04.Thus, twomackinawitecellscould

Fig.4.Comparisonbetweenthethreefocusedstructures.Argentopentlanditeisshownwithjustatetragonal subcellelement.The wayitrelatestothecompletestructureisshownonFig.5.Lowerpartofthefigure showstheprincipal(001)layerfillingforallthreestructures Фиг.4.Сравнениемеждутритеразглежданиструктури.Аргентопентландитътепоказансамоседин тетрагонален субклетъчен елемент. Начинът по който този елемент се отнася към цялостната му структура е показан на фиг. 5. Долната част на фигурата показва запълването на слоевете (001) за всекиоттритеминерала

27 Dimensionalrelationships The following structure data were used to evaluatethedimensionalrelationshipsbetween theminerals(in Å andatambientT ): • Chalcopyrite,I 4 2d, a5.289, c10.423,Z= 4, V291.568 Å3 (Hall,Stewart,1973a); • Argentopentlandite, Fm 3 m or P 4 3m, a 10.52 (determined for our material from the diagram of Mandziuk & Scott 1977, for the measuredFe/Ni=1.837,andAg=0.9at.%),Z =4, V1164.253 Å3; • Mackinawite,P4/nmm, a3.676, c5.032,Z = 2, V 67.997 Å3 (Kouvo et al., 1963, for material with several % Ni; Taylor, Finger, 1970),[110]=5.199. The estimations for the linear and volume discrepanciesofthethreeconsideredstructures aregiveninthefollowingTable1.

Discussion ExsolutionsfromISS According to the classical papers of Cabri (1973) and Sugaki et al. (1975), an IntermediateSolidSolution(ISS)isformedat high temperature conditions instead of chalcopyrite. It can remain stable down to Fig.5.Argentopentlanditestructure,representedasa 300 °C (or lower) even in equilibrium with construction of the tetragonal subcell elements on Fig.4.Justafrontsliceofthestructureisshownto chalcopyrite. This ISS has a sphaleritelike avoidfigureoverwhleming.Theregularcubiccellis cubic structure with a cell parameter slightly showndashed greaterthanthatofchalcopyrite, a5.4 Åandis Фиг. 5. Аргентопентландиова структура, пред metalrich,comparedtochalcopyrite.Itsmetal ставена като конструкция от тетрагоналните content can often comprise also metals other субклетъчниелементи,показанинафиг.4.Зада thenCuandFe(Niisatypicalexample).On се избегне претрупване на фигурата е показана slowcooling,aprocessofcoherentexsolution само предната част на структурата. Цялостната of one or more phases takes place. The кубичнаструктураеоконтуренаспунктир formation of stable metalexcess phases (like pentlandite)andmonosulphides(likepyrrhotite fit in one chalcopyrite unit cell, or one and mackinawite) the rest of the solid tetragonalargentopentlanditesubcellelement. solution to the chemical composition of We must stress, that unconventional chalcopyrite,thuspermittingitstransformation representations do not apply to the general to chalcopyrite by ordering Cu and Fe in the crystallographic features of the minerals respectivetetrahedralpositions. concerned and are only introduced for Keeping in mind the growth of metal comparisonpurposes. excessphases,inthecaseofbearingISS 28 Table 1. Dimensional discrepancies between the whenthetemperaturedropsdown,whichturns chalcopyrite matrix and the oriented inclusions of the excess crystal energy into a driving force argentopentlanditeandmackinawiteforthecoincing fortransformation,but keep goingonly while directions thetemperatureisstillhighenoughtoprovide Таблица 1. Метрично несъответсвие между kineticenergyforoverridingenergeticbarriers халкопиритовата матрица и ориентираните включенияотаргентопентландитимакиноуит foratomrepositioning.Clark(1966)showsthat засъответнитесъвпадащипосоки thelowstabilitylimitofpuremackinawite(~ о 135 С) increases markedly with the substitution of Fe by Ni (and Co). For such Cpy [100],[010] [001] V nickeloan mackinawite this temperature [100],[010] [001] reaches 200250 оС (Vaughan, 1969; Agp 0.54% 0.94 0.17% Borishanskaya et al., 1981). The estimations [110] [001] about the stability range of argentopentlandite Mcw1 1.70% 3.44% 6.71% (Mandziuk,Scott,1977)aresimilar.Thus,we [001] [110] consider that the studied complex Mcw2 4.86% 0.24% 6.71% mackinawiteargentopentlandite intergrowths are exsolved from highT Ag and Ni argentopentlanditeis mostlikelytoform.The containingISSattemperaturesofabout200 oC. processisconsideredtoevolveasfollows: Inducedgrowth An Ag atom takes the octahedral 4b positioninthecenterofthecubicISSunitcell. ThepresenceofAgandNiintheinitialISSis Thisfacthasthefollowingconsequences: notanobligatorypartofthehypothesis.These 1. It prevents the occupancy of the imme elements may probably be also provided by diately neighboring tetrahedral positions. The external (later) hydrothermal fluids, over the Fe,NiandCufromtheseplacesareshiftedto interval 300200 oC, while chalcopyrite still nextclosestpossibletetrahedralpositions(32f). allows some metal rearangement, thus being 2. Itpreventsalsotheoccupancyoftheim “transparent” for external metal ions, causing mediately neighboring octahedral positions, argentopentlandite nucleation. Hence, exter thusallowingnextAgatomtotakepositionnot nally induced growth of argentopentlandite is closer than the second next octahedral one. possible,butthenucleationandgrowthmecha ThisgivesrisetotheFm 3 msymmetryofthe nismfurtheron,shouldbethesameasabove. mineral. Volumediscrepancies 3. Both these phenomena are due to the relativelyhigheffectivecovalentradiusofthe AsseenonTable1,lineardiscrepanciesinthe Ag in octahedral coordination (1.15 Å, com unitcelldimensionsofallthreestructuresare paredtothatofFe–0.63,Cu–0.57andNi– small (below 5%). Nevertheless, volume 0.55 in tetrahedral coordination). Also the discrepanciesneeddueconsideration. strong antibonding t 2g orbitals of octahedrally Compared to the chalcopyrite matrix, coordinatedAgplayarole. mackinawite inclusions have notably smaller 4. Ni 10 atoms are preferably captured in 32f unitcellvolume:6.7%.Sincevolumediscre sites (instead of Cu 11 ), following the pancies are prominently anisotropic, this dis electroneutralityrule: crepancybecomesevenmoresignificantalong Ag 11 +1/2 Fe 8= 3/2 Ni 10 ,assumingthatAg=1 [001](perpendiculartothedense(001)layers). apfu (Mandziuk, Scott, 1977). Superscripts Argentopentlandite inclusions are almost representthenumberofoutershellelectrons. identical to chalcopyrite in cell volume Mackinawite exsolution as well as the (discrepancy –0.17%) at normal temperature. transformationoftheISSintochalcopyritetake Considering the extreme thermal expansion placeatthesametime.Allthesechangesstart values of pentlanditelike structures, however,

29 Fig.6.Threedimensionalandcrosssectionmodelsoftheregularintergrowthbetweenargentopentlanditeand mackinawite:Agp(001)[110] // Mcw(001)[100] Фиг. 6. Закономерен аргентопентландитмакиноуитов срастък: Agp (001)[110] // Mcw (001)[100], представентриизмерноивпререз significantly higher volume discrepancy may lows with structurally controlled shaping for be expected for the time of formation of eachmineral–isometric,octahedralforargen argentopentlandite. topentlanditeandthinplatyformackinawite. As shown by Rajamani and Prewitt Mackinawiteinitsturnmaybenefitfrom (1975)forthepentlanditefromFroodMine,its the coupled growth with argentopentlandite, linear thermal expansion at 200 оС is 1.2%, because the overall discrepancy in volume in while forchalcopyriteitis0.195along a and respect to the chalcopyrite matrix is thus 0.136% along c (Raduluova, Bonev – unpub diminished. Perhaps this is why mackinawite lisheddata).Althoughnodirectdataexistfor lamellae intergrown with argentopentlandite argentopentlandite,consideringitssimilarityto arelargerthantheothers. normal pentlandite, enhanced volume discrep If the “symbiotic” relations of the two ancy,causinglatticestrain(thusenergeticdif mineralsstartasearlyasthenucleationstage, ficulties) should be expected for its formation inductionboundariesareformedtogiveriseto inchalcopyriteathighertemperatures. thetypicalregularintergrowthasshowninFig. 6, explaining the photographs above (Figs. 2 Thespecialroleofmackinawite and3). Described relations can explain the observed specific coupled growth of argentopentlandite Significanceofthedescribedrelations andmackinawite.Duetotheirsmallerunitcell An important question is to what extent the volume,thegrowthofmackinawiteinclusions described exsolution mechanism is of general creates a contraction zone in their immediate significance.Accordingtoliteraturereferences, surrounding, thus facilitating the diffusion of the argentopentlanditechalcopyrite connection larger Ag atoms. Structurally similar macki is permanent, unlike the argentopentlandite nawitesurfacebecomesthe bestplaceforthe mackinawite relation, for which the heterogeneous and heterotaxic nucleation of informationisinsufficient. argentopentlandite, thus overriding the higher Twopapers withdetaileddescriptionsof energetic barrier for standalone nucleation. theinclusionsareofinterestinthisrespect: Furthergrowthofthetwophaseinclusionfol 30 1. In the quartzsulphide of Lega Dembi thatitdealswithistoosmallfortheconsidered gold deposit in Ethiopia, Cook and Ciobanu setofminerals.Theoverallnetatomicweight (2001, and personal comm.) have observed forthethreemineralsisasfollows:chalcopy uniformly oriented, composite inclusions of rite–21.75;mackinawite–21.00;argentopent argentopentlandite + NiCorich greigite. landite – 22.88. This very small difference Greigite forms a system of thin, regularly makes the minerals almost indistinguishable, oriented lamellae in argentopentlandite. unlessveryhighacceleratingvoltage(35kVor Greigite (FeFe 2S4) as a denselypacked cubic more)isappliedincombinationwiththehigh thiospinel (Fd3m) has a cell edge of 9.88 Å, estcontrastvalues. dimensionally close to that of chalcopyrite. However, in a parallelaxial orientation the Conclusions discrepancies are 6.6% along acp , and 5.2% 1. Argentopentlanditeistypically formedon along ccp .Evidently,greigitecancompensate the volume excess of argentopentlandite coolingofanISS,producingchalcopyritewith (according to chalcopyrite matrix) even better regularlyexsolvedinclusions. thanmackinawite.Moreovergreigiteitselfcan 2. If Ag and Ni exist in the ISS, the high be a product of topotaxic transformation of structuralandmetricsimilarityisverylikelyto mackinawite,asshownbyLennieetal.(1997). produceargentopentlandite. 2. Another similar case is described by 3. Theformationofargentopentlanditebene Yakovlevetal.(1981)intheCuNidepositsof fits from earlier or simmultaneous deposition theColaPeninsula,Russia.Argentopentlandite ofmackinawite,andappearsintypicalregular inclusions in a chalcopyrite matrix contain a intergrowthswithit. regular network of thin lamellae of normal 4. Oriented inclusions of other phases, like pentlandite.Inthiscasethepentlanditewith a greigiteandpentlanditecanplayasimilarrole, 10.03Åhasagainalowervolumeaccordingto aswell. argentopentlandite (linear discrepancy is The proposed model is applicable for a 4.7%). According to chalcopyrite the linear case of ISS deposition, starting at relatively hightemperatures(wellover300˚C)ascanbe discrepanciesare:5.18%along acp and3.77% expected in contact metasomatic, high meta along ccp . It seems obvious, that in both cases morphicorprettyhightemperaturehydrother above, as well as in the case of mackinawite malenvironments.Itdoesnotexcludethepos describedhere,thelocalstrain,createdbythe sibility for other argentopentlandite forming negative linear dimensional discrepancies of mechanisms. coexistingphasesaccordingtothechalcopyrite Acknowledgements: We are grateful to Dr. A. Shpachenko for providing copies of some hardly matrix, play a significant role, facilitating the obtainable Russian publications. We also acknowl argentopentlandite growth. Thus, argento edgethecriticalreviewofProfessorsR.Martinand pentlandite tends to grow preferably together K.Bente.WearegratefultoProf.N.Cookforthe with other phases (iron sulphides), having usefuldiscussion. smaller cell volume and mackinawite is just onepossiblecase. References Visualizationoftheobservedphenomena Abzalova,M.,L.Polejaeva.1987.Argentopentland ite from the endogenetic aureoles of the Represented mineral relations are hard to ob Pechenegi CuNi deposit. In: Apatiti, Kola serve.Theopticalpropertiesofthethreemin branch,RussianAcad.Sci., 6871 , (inRussian). erals are pretty different, but the very small Balabanin, N. 1984. Mineralogy and geochemistry size of the grains forces the observer to the of the porphyry mineralization, NW of technical limits of quality imaging. The elec the Kola peninsula. In: Apatiti, Kola branch, tronmicroscope,onthecontrary,providesthe RussianAcad.Sci., 9397,(inRussian). requiredmagnification,buttheatomiccontrast Benvenuti,M. 1991.NisulphidesfromBottinomine 31 (Tuscany,Italy).Eur.J.Mineral., 3,7984. Sudbury ores. Zap. Vses. Mineral. Obshst., Bonev, I. 1974. Skeletal inclusions of sphalerite in 102 ,339349,(inRussian) chalcopyrite and their genesis. – In: Mineral Kerestedjian, T. 1997. Argentopentlandite (Fe, Genesis, Sofia,Bulg.Acad.Sci.199209. Ni) 8+x Ag 1x S 8 from Kamilski Dol a new Bonev, I. 1975. Cubanite and mackinawite exsolu mineralspeciesforBulgaria.Rev.Bulg.Geol. tions in chalcopyrite and some considerations Soc ., 58 ,1518. concerning the origin of mackinawite. Knop, O., M. Ibrahim, A. Sutarno. 1965. Geochem.Mineral.Petrol ., 2,1531. Chalcogenides of the transition elements IV. Bonev, I. 1976. On the hypogenic alterations of Pentlandite, a natural π phase. Canad. chalcopyritefromsomepolymetallicandcopper Mineral., 8,291316. deposits. Problems of Deposition. 4 th Kojonen,K.,B.Johanson,H.O’Brien,L.Pakkanen. IAGOD Symp. Varna, 2. Sofia, Bulg. Acad. 1993.Mineralogyofgoldoccurencesinthelate Sci.261268. Archean Hattu schist belt, Ilomantsi, eastern Bonev, I. K., A. Radulova. 1994. Chalcopyrite and Finland.Geol.Surv.Finland,Spec.Paper, 17 , sphalerite “diseases”: Crystal growth by solid 233271. statediffusion. IMA16 th GeneralMeeting ,Pisa, Kontny, A., G. Friedrich, P. Herzig, S. Keyssner. Italy.Abstracts(Extended),50. 1994. Argentianpentlanditebearing Borishanskaya, S. S., R. A. Vinogradova, G. A. assemblages in metamorphic rocks of the KTB Krutov. 1981. TheMinerals of and Co pilot hole, Oberpfalz, Germany. Canad. balt. Moscow, Ed. Moscow Univ. 222 p. (in Mineral . 32 ,803814. Russian). Kostov, I., J. MinčevaStefanova. 1982. Sulphide Cabri,L.1973.Newdataonphaserelationsinthe Minerals: Crystal Chemistry, Parageneses and CuFeSsystem.Econ.Geol ., 68 ,443454. Systematics ,Bulg.Acad.Sci.,Sofia,212p. Cabri,L.J.,J.H.G.Laflamme.1976.Themineral Kouvo,O.,Y.Vuorelainen,J.V.P.Long.1963.A ogyofthegroupelementsfromsome tetragonal iron . Amer. Mineral., 48 , coppernickel deposits of the Sudbury area. 511524. Econ.Geol., 71 ,11591195. Lennie,A.R.,S.A.T.Redfern,P.E.Champness,C. Clark,A.H.1966.Somecommentsonthecomposi P. Stoddart, P. F. Schofield, D. J. Vaughan. tionandstabilityrelationsofmackinawite.N. 1997. Transformation of mackinawite to Jb.Mineral.,Mh., 10 ,300304. greigite:AninsituXraypowderdiffractionand Cook, N. J., C. L. Ciobanu. 2001. Gold sulphosalt transmissionelectronmicroscopestudy.–Amer. and telluride mineralogy of the Lega Dembi Mineral., 82 ,302309 . zone hosted gold deposit, Ethiopia. – In: Mandziuk, Z. L., S. D. Scott. 1977. Synthesis, Piestrzynski, Ad (ed.). Mineral Deposits of the stability and phase relations of argentian Beginning of the 21 st Century . Balkema, Liss. pentlanditeinthesystemAgFeNiS.Canad. 719722. Mineral., 15 ,349364. Groves,D.I.,S.R.Hall.1978.Argentianpentland Mariko, T., N. Imai, Y. Shiga. 1973. A new itewithparkerite,joseiteAandtheprobableBi occurence of argentian pentlandite from the analogue of ullmanite from Mount Windarra, Kamaishi Mine, Iwate prefecture, Japan. WesternAustralia.Canad.Mineral., 16 ,17. MiningGeol., 24 ,355358. Hall,S.R.,J.M.Stewart.1973a.Thecrystalstruc Michener, C. E. 1940. Minerals associated with ture refinement of chalcopyrite, CuFeS 2. Acta largersulphidebodiesoftheSudburytype. Ph. Cryst., 29 ,579585. D.Thesis,Univ.Toronto . Hall,S.R.,J.M.Stewart.1973b.Thecrystalstruc MoralesRuano, S., P. Fenoll HachAli. 1996. tureofargentianpentlandite(FeNi) 8AgS 8,com HydrothermalargentopentlanditeatElCharcon, pared with the refined structure of pentlandite SE Spain: Mineral chemistry and conditions of (Fe,Ni) 9S8Canad.Mineral., 12 ,169177. formation.Canad.Mineral ., 34,939947. Imai,N.,T.Mariko,Y.Shiga.1975.Argentianpent Mposkos, E. 1983. A new occurrence of argentian landitefromtheFalkonbridgemineintheSud pentlandite from the Koronuda ore bury area of Ontario, Canada. Mining Geol., mineralization, Macedonia, Greece. N. Jb. 25 ,225233. Mineral.,Mh., 193200. Karpenkov, A., G. Mitenkov, V. Michailova, N. Rajamani,V.,C.Prewitt.1973.Crystalchemistryof Rudashevskii,A.Sidorov,N.Shishkin.1973.On naturalpentlandites.Canad.Mineral., 12,178 the finding of silver bearing pentlandite in 187. 32 Rajamani, V., C. T.Prewitt. 1975. Thermal expan sion of the pentlandite structure. Amer. Min Taylor,L.A.,L.W.Finger.1970.Structuralrefine eral., 60 ,3948. ment and composition of mackinawite. – Geo Rudashevskii, N., G. Mitenkov, A. Karpenkov, N. phys.Labor.Ann.Rept. 1969/1970,318322. Shishkin. 1977. Silverbearing pentlandite Vaughan, D. J. 1969. Nickelian mackinawite from Ag(Fe, Ni) 8S8 a separate mineral species – Vlakfontein, Transvaal. Amer. Mineral., 54 , argentopentlandite. Zap. Vses. Mineral. 11901193. Obshst., 106 ,688691. Vuorelainen, Y., T. A. Hakli, H. Papunen. 1972. Scott, S. D., E. Gasparrini. 1973. Argentian Argentian pentlandite from some Finnish sul pentlandite (Fe,Ni) 8AgS 8, from Bird River, phidedeposits.Amer.Mineral., 57 ,137145. Manitoba.Canad.Mineral., 12 ,165168. Yakovlev, Yu., A. Yakovleva, Yu. Neradovskiy. Shishkin, N., G. Mitenkov, B. Michailova, N. Ru 1981. MineralogyoftheSulphideCuNiDepos dashevskii, A. Sidorov, A. Karpenkov, A. its,KolaPeninsula .,Leningrad,Nauka,352p. Kondratiev, Budko. 1971. Agrich variety of Yakovlev, Yu., Ya. Pachomovskiy. 1982. Minerals pentlandite. Zap.Vses.Mineral.Obshst., 100 , and mineral assemblages of the CuNi and 184191. copperporphyryoresoftheKolapeninsula.In: Sugaki,A.,H.Shima,A.Kitakaze,H.Harada.1975. Apatiti. Kolabranch,RussianAcad.Sci. ,6470, IsothermalphaserelationsinthesystemCuFeS (inRussian). under hydrothermal conditions at 350 °C and 300 °C.Econ.Geol ., 70 ,806823. AcceptedNovember16,2001 Приетана16.11.2001г.

33