MARTIAN and SNC METEORITES I 1:30 P.M

Total Page:16

File Type:pdf, Size:1020Kb

MARTIAN and SNC METEORITES I 1:30 P.M Monday, July 27, 1998 MARTIAN AND SNC METEORITES I 1:30 p.m. Walton Theatre Chairs: M. M. Grady G. A. McKay Jakeš P.* Martian Volatiles: Could They be Still at the Surface? Stephan T.* Rost D. Jessberger E. K. Greshake A. Polycyclic Aromatic Hydrocarbons are Everywhere in Allan Hills 84001 Sephton M. A. Gilmour I.* A “Unique” Distribution of Polycyclic Aromatic Hydrocarbons in Allan Hills 84001, or a Selective Attack in Meteorites from Mars? Steele A.* Goddard D. T. Toporski J. K. W. Stapleton D. Wynn-Williams D. D. McKay D. S. Terrestrial Contamination of an Antarctic Chondrite Greenwood J. P.* Riciputi L. R. Taylor L. A. McSween H. Y. Jr. Hydrothermal Modification of Sulfides in Nakhla, Lafayette, and Chassigny Baker L.* Franchi I. A. Wright I. P. Pillinger C. T. Oxygen Isotopes in Water from Martian Meteorites Vicenzi E. P.* Eiler J. Oxygen-Isotopic Composition and High-Resolution Secondary Ion Mass Spectrometry Imaging of Martian Carbonate in Lafayette Meteorite Saxton J. M.* Lyon I. C. Turner G. Oxygen-Isotopic Composition of Nakhla Siderite: Implications for Martian Volatiles Bridges J. C.* Grady M. M. Traces of Martian Sediment in Nakhla and Other SNC Meteorites McSween H. Y. Jr.* Harvey R. P. Brine Evaporation: An Alternative Model for the Formation of Carbonates in Allan Hills 84001 Warren P. H.* Petrologic Evidence for Low-Temperature, Possible Flood-Evaporitic Origin of Carbonates in the Allan Hills 84001 Meteorite Schwandt C. S.* Hörz F. Haynes G. Lofgren G. E. Shock Experiments Using Homestake Formation as an Analog for the Carbonate in Meteorite Allan Hills 84001 Scott E. R. D.* Krot A. N. Formation of Preimpact, Interstitial Carbonates in the Allan Hills 84001 Martian Meteorite Eiler J. M.* Valley J. W. Graham C. M. Fournelle J. Geochemistry of Carbonates and Glass in Allan Hills 84001 * Denotes Speaker Boctor N. Z.* Wang J. Alexander C. M. O’D. Hauri E. Bertka C. M. Fei Y. Hydrogen-Isotopic Studies of Carbonate and Phosphate in Martian Meteorite Allan Hills 84001 Pillinger C. T. Sims M. R.* Beagle 2: A Lander for Mars * Denotes Speaker MARTIAN VOLATILES. COULD THEY BE STILL AT THE SURFACE? P. Jakeš, Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, Praha 2, Czech Republic. The presence of volcanic rocks and the presence of 2NaAlSi3O8 + 2CO2 + 11H2O—> + – water at the martian surface seem to be firmly estab- Al2Si2O5(OH)4 + 2Na + 2HCO3 + 4H4SiO4 lished .The fate of martian volatiles remains mystery (albite) (kaolinite) however. Loss to space and formation of cryosphere (formation of subsurface frozen layer) were advocated. Ocean formed through such weathering has alkaline Beforehand however vigorous isotopic exchange be- character because of high solubility of Na+ and K+ car- ++ tween volatiles and surface rocks have taken place [1]. bonates whereas Ca precipitates in CaCO3. Soda Volcanos in Tharsis region, mineral and chemical ocean (on the Earth) is in equilibrium with the atmos- composition of martian meteorites, composition of Vi- phere that lacks atmospheric molecular O and is com- king and Mars Pathfinder sites [2], leave no doubt that positionally similar to alkaline lakes in volcanic areas volcanism has played an important role in evolution of (Turkey, East African rift zone) and soda lakes in ter- Mars. Also the plains and old cratered terrains are in- restrial non-drained environments (Basin and Range terpreted to be volcanic. The total volume of volcanic province). material produced through martian history was esti- The reaction of soda ocean and infalling pyroclastic mated [3] to be 68.80 × 106km3. This is rather conser- rocks of basaltic composition results in the formation of vative value comparing to other authors and the esti- zeolites[7,8]. mates of total volume of magmatic products are compa- rable to the size of the martian crust. NaAlSi3O8 + H2O —> NaAlSi2O6.H2O + SiO2 The amount of water that was released varies[4,5]. albite + water zeolite (analcime) + quartz Clifford [5] estimates that the northern hemisphere ocean was 102–103 m deep and the amount of water was Because of their properties zeolites could influence 6.5 × 107 km3. Model of martian hydrosphere [5] sug- the behavior of volatiles in early Mars and early Earth. gests that the amount of outgassed water exceeds vol- Rather sudden decrease of volatiles contents in the ume of cryosphere calling thus for subpermafrost Mars atmosphere may have been caused by the intense ground water system. volcanism and formation of zeolites that have a re- It is highly likely that substantial part of volcanic markable adsorption features. activity has taken place in form of pyroclastic erup- A natural zeolite is a framework alumo-silicate whose tions. In terrestrial environment pyroclastic deposits are structure contains channels filled with water and ex- associated with the presence of water in magma and changeable cations. Ion exchange is possible at low with “bubble bursting” when pyroclastic deposits are temperature (100°C at the most) and water is lost usu- formed. The similarity of volatile element composition ally in steps in a large range of temperatures (150° to in martian atmosphere and SNC meteorites suggests 400°C) mostly at about 250°C and reversibly re- and numerous authors have argued that loss of the adsorbed at room temperature. The general formula for volatiles occurred in the early history of Mars. natural zeolites is The history of early outgassing is apparently similar for the Earth and Mars though later evolution has taken (Li,Na,K)a(Mg,Ca,Sr,Ba)d[Al(a+2d)Sin-(a+2d)O2n] mH2O different paths. The idea of origin of the atmosphere and hydrosphere [6] via analogy with the recent vol- where the part in square brackets represents the canic gasses (H2O, CO2, H2S) suggests that Earth’s O- framework atoms and the part outside the square bearing atmosphere is secondary and its chemistry re- brackets represents the extra framework atoms, cations sults from the evolution of life. In order to compensate plus water molecules and allows enormous mineralogi- for the faint Sun in the early history of Earth as well as cal variability within the zeolite family and also within Mars greenhouse gasses CO2, methane, ammonia a single zeolitic species [7]. In place of water the gases served as temperature regulators. And warmer and can be adsorbed, up to 10 wt% in case of CO2 or O2. wetter climate has been proposed for Mars. This feature is employed during the separation of gases The presence of water, high CO2 in the atmosphere in landfills. Thus zeolites could be responsible for the and warm climate lead to intense weathering of sili- vigorous exchange (isotopic exchange) between the cates, consumption of CO2 and formation of protoocean crust and atmosphere. which is “soda ocean” rather than modern “halite Scenario for Mars (and idea of zeolite presence in ocean”[6]. martian surface is not new [9]) involves intense weath- ering, formation of alkaline “soda ocean”, very intense Martian Volatiles: P. Jakeš basaltic volcanism followed by formation of zeolites and exchange cations with the change of temperature and the absence of plate tectonics that allows among conditions (e.g., diurnal adsorption of water and gas- other processes the circulation of water between litho- ses). sphere and hydrosphere reservoirs. Jakosky and Jones [1] have noted that “the isotopic evidence requires sub- stantial exchange of volatiles between the atmosphere References: [1] Jakosky B., and Jones J., (1997) and the crust of Mars. This exchange must have post- Rev. Geophys., 35, 1–16. [2] Rieder R. et al. (1997) dated the early periods that included the hydrodynamic Science, 278, 1771. [3] Greeley R. and Schneid R. outflow epochs as well as the earliest epochs recorded (1991) Science, 254, 996–998. [4] Clifford S. M. in the geologic history”. These processes have taken (1993) JGR Planets, 98, 10973–11016. [5] Rubey W. place during occasional warmer and wetter environ- W. (1951) Geol. Soc. Amer. Bull., 62, 1111–1148. [6] ments, probably in soda ocean in the presence of zeo- Kempe S. and Degens E. T.(1985) Chem. Geol, 53, 95– lites. In the search for the non-atmospheric reservoir of 108. [7] Gottardi G. and Galli E. (1985) Natural zeo- volatiles. Zeolites are excellent candidates. In the lites, Springer-Verlag. [8] Basu A., Schmitt J., and search for extremophile (martian) organism zeolites Crossey L. J., (1998) LPSC XXIX, CD. [9] Golden D. should be looked closely since catalytic features in di- C., Morris R. V., and Ming D. W. (1993) JGR, 98, rect toward and their ability to act as molecular sieves 3401–3411. POLYCYCLIC AROMATIC HYDROCARBONS ARE EVERYWHERE IN ALLAN HILLS 84001. T. Stephan1, D. Rost1, E. K. Jessberger1, and A. Greshake2, 1Institut für Planetologie/Interdisciplinary Center for Electron Microscopy and Microanalysis, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster, Germany ([email protected]) 2Museum für Naturkunde, Institut für Mineralogie, Humboldt-Universität zu Berlin, Invalidenstrasse 43, D-10115 Berlin, Germany. Introduction: Polycyclic aromatic hydrocarbons three different chips of ALH84001 and were prepared (PAHs) observed on fracture surfaces of the Martian at different times in two different laboratories. This meteorite ALH 84001 were suggested as a major evi- should minimize the probability of a common con- dence for possible relic biogenic activity on our neigh- tamination with external PAHs during processing. A boring planet [1]. In general, the origin of PAHs is not section of Chassigny [4] that was treated exactly like restricted to biological processes, but the proposed one of our ALH 84001 sections and measured directly spatial association of PAHs with carbonates that in before and after ALH 84001 contained no PAHs. In an turn contain internal structures resembling terrestrial attempt to further investigate the (possible) contami- microfossils was taken as evidence for a genetic link nation problem we employed various sputtering tech- between both observations [1].
Recommended publications
  • Accretion of Water in Carbonaceous Chondrites: Current Evidence and Implications for the Delivery of Water to Early Earth
    ACCRETION OF WATER IN CARBONACEOUS CHONDRITES: CURRENT EVIDENCE AND IMPLICATIONS FOR THE DELIVERY OF WATER TO EARLY EARTH Josep M. Trigo-Rodríguez1,2, Albert Rimola3, Safoura Tanbakouei1,3, Victoria Cabedo Soto1,3, and Martin Lee4 1 Institute of Space Sciences (CSIC), Campus UAB, Facultat de Ciències, Torre C5-parell-2ª, 08193 Bellaterra, Barcelona, Catalonia, Spain. E-mail: [email protected] 2 Institut d’Estudis Espacials de Catalunya (IEEC), Edif.. Nexus, c/Gran Capità, 2-4, 08034 Barcelona, Catalonia, Spain 3 Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain. E-mail: [email protected] 4 School of Geographical and Earth Sciences, University of Glasgow, Gregory Building, Lilybank Gardens, Glasgow G12 8QQ, UK. Manuscript Pages: 37 Tables: 2 Figures: 10 Keywords: comet; asteroid; meteoroid; meteorite; minor bodies; primitive; tensile strength Accepted in Space Science Reviews (SPAC-D-18-00036R3, Vol. Ices in the Solar System) DOI: 10.1007/s11214-019-0583-0 Abstract: Protoplanetary disks are dust-rich structures around young stars. The crystalline and amorphous materials contained within these disks are variably thermally processed and accreted to make bodies of a wide range of sizes and compositions, depending on the heliocentric distance of formation. The chondritic meteorites are fragments of relatively small and undifferentiated bodies, and the minerals that they contain carry chemical signatures providing information about the early environment available for planetesimal formation. A current hot topic of debate is the delivery of volatiles to terrestrial planets, understanding that they were built from planetesimals formed under far more reducing conditions than the primordial carbonaceous chondritic bodies.
    [Show full text]
  • MACKINAWITE from SOUTH AFRICA W. C J. Van RDNSBU*.O, Geological Surtey Oj Soulh Africa, Preloria, Soulh A.[Ri Co, L. Lrbnunsbyc
    TI.IE AMERICAN MINERALOGIST, VOL 52, JULY AUGUST, 1967 MACKINAWITE FROM SOUTH AFRICA W. C J. vAN RDNSBU*.o,Geological Surtey oJ Soulh Africa, Preloria,Soulh A.[rico, AND L. LrBnuNsByc, Deparlment of Geology,Llnit:ersity of Pretoria, Pre!oria,Soul h Africa. ABSTRAcT Mackinawite has been identified in mafic and ultramafic rocks of the Bushveld igneous complex and Insizwa and also in the carbonatite and pegmatoid of Loolekop, Phalaborrva complex in South Africa. The mineral occurs predominantly as somewhat irregular to oriented intergrowths in pentlandite in all these occurrences and less commonly as regular oriented lamellae in chalcopyrite and rarely in cubanite. The textural evidence suggests that mackinawite may represent an exsolution product of pentlandite, chalcopyrite and cubanite. INrnonucrroN The iron sulphide, mackinawite was recently named in a paper by Evans, et al, (1964). Natural occurrencesof this mineral f rom Finland were describedby- Kouvo et al (1963)and from the Muskox intrusion in Canada by Chamberlain and Delabio (1965). During the presentinvestigation mackinawite was distinguishedfrom valleriite in the carbonatite and pegmatoid of Loolekop, Phalaborwa complex, in the Bushveld igneous complex, and from Insizwa, Cape Province.The mode of occurrenceof the mackinawite in the carbonatite difiers somewhatfrom that in the mafic rocks of Insizwa and the Bush- veld complex. MrNnn.q.rocv The physicaland optical propertiesof mackinawitefrom the Bushveid complex,Insizwa and Loolekop are very similar and are in closeagree- ment with the propertiesgiven for the same mineral from the Muskox intrusion by Chamberlain and Delabio (1965). The mineral takes a fairly good polish,particularly after buffing with a chromic oxide slurry.
    [Show full text]
  • Minerals and Mineral Products in Our Bedroom Bed Hematite
    Minerals and Mineral Products in our Bedroom Make-Up Kit Muscovite Bed Talc Hematite: hinges, handles, Mica mattress springs Hematite: for color Chromite: chrome plating Bismuth Radio Barite Copper: wiring Plastic Pail Quartz: clock Mica Gold: connections Cassiterite: solder Toilet Bowl / Tub Closet Feldspar: porcelain Chromite: chrome plating Pyrolusite: coloring Hematite: hinges, handles (steel) Chromite: plumbing fixtures Quartz : mirror on door Copper: tubing Desk Toothpaste Hematite: hinges, handles (steel) Apatite: teeth Chromite: chrome plating Fluorite: toothpaste Mirror Rutile: to color false Hematite: handle, frame teeth yellow Chromite: plating Gold: fillings Gold: plating Cinnabar: fillings Quartz: mirror Towels Table Lamp Sphalerite: dyes Brass (an alloy of copper and Chromite: dyes zinc): base Quartz: bulb Water Pipe/Faucet/Shower bulb Wolframite: lamp filament Brass Copper: wiring Iron Nickel Minerals and Mineral Products in our Bedroom Chrome: stainless steel Bathroom Cleaner Department of Environment and Natural Resources Borax: abrasive, cleaner, and antiseptic MINES AND GEOSCIENCES BUREAU Deodorant Spray Can Cassiterite Chromite Copper Carpet Quartz Sphalerite: dyes Telephone Chromite: dyes Drinking Glasses Copper: wiring Sulfur: foam padding Quartz Chromite: plating Gold: red color Clock Silver: electronics Pentlandite: spring Graphite: batteries Refrigerator Quartz: glass, time keeper Hematite Television Chromite: stainless steel Chromite: plating Computer Galena Wolframite: monitor Wolframite: monitor Copper Copper:
    [Show full text]
  • Pyrrhotite and Pentlandite in Ll3 to Ll6 Chondrites: Determining Compositional and Microstructural Indicators of Formation Conditions
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 2621.pdf PYRRHOTITE AND PENTLANDITE IN LL3 TO LL6 CHONDRITES: DETERMINING COMPOSITIONAL AND MICROSTRUCTURAL INDICATORS OF FORMATION CONDITIONS. D. L. Schrader1 and T. J. Zega2, 1Center for Meteorite Studies, School of Earth and Space Exploration, Arizona State Uni- versity, Tempe, AZ 85287-1404, USA ([email protected]), 2Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA ([email protected]). Introduction: The compositions, textures, and electron microscope (FIB-SEM) at UAz and the JEOL crystal structures of sulfides can be used to constrain JXA-8530F Hyperprobe EPMA at Arizona State Uni- oxygen fugacity, aqueous, thermal, and cooling history versity (ASU). The FIB-SEM was also used to extract [e.g., 1–5]. The most abundant sulfides in extraterres- ~10 × 5 µm sections transecting the pyrrhotite- trial samples are the pyrrhotite group [(Fe,Ni,Co,Cr)1– pentlandite interfaces within sulfide grains from each xS], which can occur with pentlandite [(Fe,Ni,Co,Cr)9– meteorite, which were thinned to electron transparency xS8]. The pyrrhotite group sulfides are largely non- (<100 nm) using methods of [14]. FIB sections were stoichiometric and have a range of compositions then analyzed using the 200 keV aberration-corrected (0<x<0.125) and distinct crystal structures (polytypes). Hitachi HF5000 scanning transmission electron micro- The stoichiometric end members are 2C (troilite; FeS, scope (TEM) at UAz. hexagonal) and 4C (Fe7S8, monoclinic) pyrrhotite. There are also non-integral NC-pyrrhotites with inter- mediate compositions with 0<x<0.125 (all hexagonal); which includes the integral 5C (Fe9S10), 6C (Fe11S12), and 11C (Fe10S11) pyrrhotites [e.g., 6–8].
    [Show full text]
  • Determination of Metallic Iron, Nickel and Cobalt in Meteorites
    Rl:NDICONTI Soci<!ta Itll itana dl Minerlliogta e Petrologia, 35 (1), In9: pp.355-36O P ASQ UALE M. NUCCIO·, MARIANO V ALENZA· DETERMINATION OF METALLIC IRON, NICKEL AND COBALT IN METEORITES RIASSUNTO. - £ state svil uppato un metoda elettrochimico per la detcrminarione del ferro, nichd e oobalto metallici nelle meteoriti. Lc fasi Jnetallichc: SOIlO It:lte sc:Iettivamcnu: disciolte e gli elementi metallici in esse presc:mi sono stati quindi determinati nella soluzione me:­ diante assorbimento atomico. Questo metodo e state utilizzato per analizzare miscde di una lega . di Fe·Ni con polveri del meteorite di Allende per simulare i1 contenutO metallico delle condriti tipo H, L eLL. £ stata altrcsl anaiizz8ta una condrite naturale LL. ABSTRACT. - An electrcx:hemical method has been developed for the determination of metallic iron, nickel and cobalt in meteorites. The metallic phases are efficiently dissolvccl away from other mineral phases, and the elemenUi of the metal phases arc then determined by Atomic Absorption SpectfOS(QPY. This method was used to analyze mixtures of an iron-nickel alloy with Allende meteorite powders to simulate the metallic content of H, Land LL chondrites; funhennorc an LL chondrite was also anal)'«d. Introduction The analysis of chondritic meteorites poses a special problem not associated with normal silicate analysis, due to the presence of metallic and sul fide phases usi ng the classical chemical methods. It is difficult to determine acc urately the distribution of iro n, nickel and cobalt in each of the phases present in meteorites. The distribution of these dements is of great interest in the classification of the chondrites by the metallic iron/total iron ratio and because of genetic implications.
    [Show full text]
  • Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana
    Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana By NORMAN J PAGE GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 The relationship of the amount, relative abundance, and size of grains of selected sulfide minerals to the crystallization of a basaltic magma UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of CongresR catalog-card No. 70-610589 For sale by the Superintendent of Documents, U.S. Government Printin&' Otrice Washin&'ton, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Page Abstract------------------------------------------------------------------------------------------------------------ 1 Introduction________________________________________________________________________________________________________ 1 Acknowledgments--------------------------------------------------------------------------------------------------- 4 Sulfide occurrences-------------------------------------------------------------------------------------------------- 4 Sulfide inclusions in cumulus minerals_____________________________________________________________________________ 4 Fabrtc______________________________________________________________________________________________________ 5 Phase assemblages__________________________________________________________________________________________
    [Show full text]
  • Platinum-Group Minerals in Chromitites of the Niquelândia
    Minerals 2012, 2, 365-384; doi:10.3390/min2040365 OPEN ACCESS minerals ISSN 2075-163X www.mdpi.com/journal/minerals Article Platinum-Group Minerals in Chromitites of the Niquelândia Layered Intrusion (Central Goias, Brazil): Their Magmatic Origin and Low-Temperature Reworking during Serpentinization and Lateritic Weathering Giorgio Garuti 1,*, Federica Zaccarini 1, Joaquin A. Proenza 2, Oskar A. R. Thalhammer 1 and Nelson Angeli 3 1 Department of Applied Geosciences and Geophysics, Montan Universität Leoben, Leoben 8700, Austria; E-Mails: [email protected] (F.Z.); [email protected] (O.A.R.T.) 2 Departament of Crystallography, Mineralogy and Ore Deposits, Faculty of Geology, Universitat de Barcelona, Barcelona 08028, Spain; E-Mail: [email protected] 3 Departament of Petrology and Metallogeny, Universidade Estadual Paulista, Rio Claro 13500, SP, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +43-3842-402-6218; Fax: +43-3842-402-6202. Received: 3 September 2012; in revised form: 19 October 2012 / Accepted: 19 October 2012 / Published: 30 October 2012 Abstract: A variety of platinum-group-minerals (PGM) have been found to occur associated with the chromitite and dunite layers in the Niquelândia igneous complex. Two genetically distinct populations of PGM have been identified corresponding to phases crystallized at high temperatures (primary), and others formed or modified during post-magmatic serpentinization and lateritic
    [Show full text]
  • Orientation of Exsolved Pentlandite in Natural and Synthetic Nickeliferous
    AmericanMineralogist, Volume61, pages913-920, 1976 Orientationof exsolvedpentlandite in naturaland synthetic nickeliferous pyrrhotite Cenr A. FRANCISI,MtcHesl E. FLestz, KuL,q MlsnA.8,AND JenrEs R. Cnntcl rDepartment of Geological Sciences, Virginia Polytechnic Institute and State Uniuersity, Blacksburg, Virginia 24061 2Department of Geology, The Uniuersity of Western Ontario, London, Ontario N6A3K7 sDepartment of Geological Sciences, The Uniuersity of Tennessee,Knoxuille, Tennessee37916 Abstract Pentlandite(pn), (Fe, Ni)rSB,exsolves from nickeliferouspyrrhotite (po), (Fe, Ni)r-,S, in the form of flamesexhibiting weak reflectionanisotropism and preferredorientation. X-ray precessionstudies on both natural and syntheticcrystals have establishedthe orientation relation:(111)pnll (00.1)po; (0Tl )pn ll (l 1.0)po;(TT2)pn ll (10.0)po.In synthesisexperiments, rapidlyquenched samples of (Fe,Ni)r-,Ssolid solutions contain randomly oriented blebs of pentlandite,whereas slowly cooled charges contain coherent lamellae of pentlanditeparallel to (00.1)of pyrrhotite. Introduction typical Sudbury-typeFe-Ni sulfideassemblages lie within the monosulfidesolid-solution field at higher Threetextural varieties of pentlandite,(Fe,Ni)156, temperatures(Naldrett and Kullerud, 1967;Craig are common in the pyrrhotite-bearing(Sudbury- and Kullerud, 1969) further supportsthis inter- type) naturalnickel sulfide assemblages: (l) massive pretation.Thus the subsolidusexsolution origin of (blocky) pentlandite,often containingislands of pentlanditein nickel-sulfideassemblages
    [Show full text]
  • Handbook of Iron Meteorites, Volume 1
    CHAPTER SEVEN Classzfication Numerous schemes for classification have been pro­ Also, the ratio between the number of finds and the posed since Partsch (1843) and Shepard (1846) presented num ber of falls has been calculated. This ratio mainly serves the first serious attempts, at that time on the basis of only to indicate how easily meteorites will be recognized by about 65 stones and 25 irons. The system which has layman: the higher the ratio, the easier the meteorite type basically proved most efficient was suggested by Rose will be distinguished from terrestrial rocks and reported. To (1863). It has been revised and improved by Tschermak a minor degree the ratio also reflects the resistance of (1872a), Brezina (1896), Prior (1920), Yavnel (1968b) and meteorites to terrestrial weathering: the higher the ratio, Mason (1971). Basically different classifications have also the more stable the meteorite type. been proposed. Daubree (1867b) and Meunier (1884; Within the iron division, it was deemed necessary to 1893a) thus introduced a system which won wide support exclude certain meteorites from those which were class­ in France, Italy, Spain and most of the Latin-American ified. Those excluded are insufficiently known, be it due to countries. It has, however, been rightly criticized as rich in inaccessibility, state of corrosion or for other reasons; see inconsistencies and superficial analogies (see e.g. , Cohen page 37 and Appendix 2. By comparison, it is surprising to 1905: 19); it has nevertheless persisted to our day as the observe how homogeneous the chondritic classes apparently basis for classification of some of the less important are, and how neatly all chondrites apparently can be collections.
    [Show full text]
  • Low Temperature Sulfides in CI Chondrites and Stardust
    40th Lunar and Planetary Science Conference (2009) 1892.pdf LOW TEMPERATURE SULFIDES IN CI CHONDRITES & STARDUST. E. L. Berger1, L. P. Keller2, D. J. Joswiak3, and D. S. Lauretta1. 1Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721, USA. 2Robert M. Walker Laboratory for Space Science, ARES, NASA Johnson Space Center, Houston TX 77573, USA. 3Department of Astronomy, University of Washington, Seattle WA 98195, USA. ([email protected]). Introduction: The strongest evidence from Comet Stardust: Track 26 (C2054, 5, 26, 1, 16) contains a Wild 2 for preservation of grains that experienced cubanite grain located near the exterior of a terminal aqueous alteration at some point in their history may particle. Initial TEM analysis of the grain was done at be low-temperature sulfide minerals similar to those in the University of Washington. Further analysis was the CI chondrites such as cubanite, pentlandite, and done on the JEOL 2000FX STEM, and the JEOL pyrrhotite [1, 2]. Unraveling the mechanisms and con- 2500SE 200keV FE-STEM at JSC. EDX of the parti- ditions of sulfide formation – through detailed charac- cle and aerogel host yields the following composition: terization of cometary and meteoritic samples, thermo- 46.2 at.% O, 17.2 at.% Si, 18.2 at.% S, 12.8 at.% Fe, dynamic modeling, and experimentation – has implica- and 5.6 at.% Cu (Figures 2, 3), consistent with tions about large-scale mixing of low-temperature as- stoichiometric CuFe2S3 embedded in aerogel. SAED semblages in the early Solar System. Here we present patterns in three orientations are consistent with low- preliminary results of our investigation of such sulfides temperature orthorhombic cubanite [4] (e.g., Figure 4).
    [Show full text]
  • Detailed Mineralogy and Trace Element Chemistry of Donino Iron Meteorite: a Pentlandite and Heazlewoodite Issue
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1445.pdf DETAILED MINERALOGY AND TRACE ELEMENT CHEMISTRY OF DONINO IRON METEORITE: A PENTLANDITE AND HEAZLEWOODITE ISSUE. K. D. Litasov1,2, A. Ishikawa3, and K. E. Kuper4, 1Fersman Mineralogical Museum RAS, Moscow, 119071, Russia, 2Vereshchagin Institute for High Pressure Physics RAS, Troitsk, Moscow, 108840, Russia ([email protected]), 3Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8550, Japan ([email protected]), 4Budker Institute of Nuclear Physics SB RAS, Novosibirsk, 630090, Russia ([email protected]). Introduction: Dronino is one of the famous iron tentatively described it as a glass. It is clear that SiO2 is meteorites found in Russia. The total weight of shower not a foreign phase or contamination. The SiO2 glass is fragments exceeds 3 tons. It was classified as an pure and contains only 0.5 wt.% FeO. ungrouped meteorite close to IVA irons. It contains about 10 wt.% of rounded sulfide inclusions up to a few mm in size, rare chromite, and Fe-bearing phosphate. Sulfide inclusions are often surrounded by Fe-oxide and hydroxide rims [1]. Previous investigations were related to the study of the fine structure and composition of metallic matrix [2- 4] and trace element and crystallography of sulfide inclusions [5-6]. Specific crystallographic works on Dronino iron revealed new secondary hydroxide minerals chukanovite and droninoite [7-8]. Here, we present new mineralogical and trace element data, which allows us to confirm unusual nature of Dronino meteorite and provide new evidence for its origin and cooling history.
    [Show full text]
  • Characterization of Potential Micrometeorites by Synchrotron Analysis
    geosciences Article Characterization of Potential Micrometeorites by Synchrotron Analysis Madison Esposito 1,2 , Kevin Souhrada 3,4 , Erin Garland 3,*, Mary Kroll 1,* , Robert Bolen 5, Victoria Hernandez 6, Janet Kaczmarek 7, David Meisel 8, Anya Swiss 6, Paul Northrup 9,* , Vivian Stojanoff 10, Juergen Thieme 10 and Aleida Perez 10,* 1 Science Department, West Islip High School, West Islip, NY 11795, USA; [email protected] 2 Department of Chemistry, Princeton University, Princeton, NJ 08544, USA 3 Science Department, Bay Shore High School, Bay Shore, NY 11706, USA; [email protected] 4 Department of Physics, Cornell University, Ithaca, NY 14853, USA 5 Science Department, Eastport South Manor High School, Manorville, NY 11949, USA; [email protected] 6 Science Department, William Floyd High School, Mastic Beach, NY 11951, USA; [email protected] (V.H.); [email protected] (A.S.) 7 Science Department, Sayville High School, Sayville, NY 11782, USA; [email protected] 8 Department of Physics and Astronomy, Geneseo University, Geneseo, NY 14454, USA; [email protected] 9 Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA 10 Brookhaven National Laboratory, Upton, NY 11973, USA; [email protected] (V.S.); [email protected] (J.T.) * Correspondence: [email protected] (E.G.); [email protected] (M.K.); [email protected] (P.N.); [email protected] (A.P.) Received: 29 May 2020; Accepted: 14 July 2020; Published: 16 July 2020 Abstract: Micrometeorites (MMs) are small particles that account for most of the extraterrestrial material deposited on Earth. Synchrotron X-ray fluorescence and diffraction allowed for chemical and mineral characterization to distinguish MM from atmospheric particulate.
    [Show full text]