Ergodic Theory, Geometry and Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Ergodic Theory, Geometry and Dynamics Ergodic theory, geometry and dynamics C. McMullen 24 December, 2020 1 Contents 1 Introduction . 3 2 Ergodic theory . 12 3 Measures and topological dynamics . 35 4 Geometry of the hyperbolic plane . 46 5 Hyperbolic surfaces . 63 6 Arithmetic hyperbolic manifolds . 73 7 Dynamics on hyperbolic surfaces . 82 8 Orbit counting and equidistribution . 87 9 Double cosets and geometric configurations . 93 10 Unitary representations of simple Lie groups . 101 11 Dynamics on moduli space . 107 12 Unique ergodicity of the horocycle flow . 110 13 Ratner's theorem and the Oppenheim conjecture . 116 14 Geodesic planes in hyperbolic 3{manifolds . 120 15 Amenability . 126 16 Expanding graphs . 132 17 The Laplacian . 140 18 All unitary representations of PSL2(R) . 152 19 Expanding graphs and property T . 155 20 The circle at infinity and Mostow rigidity . 163 21 Ergodic theory at infinity of hyperbolic manifolds . 171 22 Lattices: Dimension 1 . 173 23 Dimension 2 . 176 24 Lattices, norms and totally real fields. 188 25 Dimension 3 . 191 26 Dimension 4, 5, 6 . 198 27 Higher rank dynamics on the circle . 199 28 The discriminant{regulator paradox . 202 29 Problems . 209 A Appendix: The spectral theorem . 231 1 Introduction These notes address topics in geometry and dynamics, and make contact with some related results in number theory and Lie groups as well. The basic setting for dynamics is a bijective map T : X ! X. One wishes to study the behavior of orbits x; T (x);T 2(x);::: from a topological or measurable perspective. In the former cases T is required to be at least a homeomorphism, and in the latter case one usually requires that T preserves a probability measure m on X. This means: m(T −1(E)) = m(E) (1.1) for any measurable set E, or equivalently Z Z f = f ◦ T for any f 2 L1(X; m). More generally one can consider a flow T : R × X ! X or the action of a topological group T : G × X ! X. In topological dynamics, one requires that T is a continuous map in the product topology; in measurable dynamics, that T is a measurable map. One can also consider the dynamics of an endomorphism T . Equation (1.1) defines the notion of measure preservation in this case as well. Ergodicity. A basic issue is whether or not a measurable dynamical system is `irreducible'. We say T is ergodic if whenever X is split into a disjoint union of measurable, T −1-invariant sets, X = A t B; either m(A) = 0 or m(B) = 0. Note: this definition makes sense for group actions too, and it makes sense even when m(X) is infinite, and when m is not preserved by T . Rotations. A simple and yet surprisingly rich family of examples of measure{ preserving maps is given by the rotations of the circle X = S1 = R=Z, define by T (x) = x + a mod 1: Theorem 1.1 The rotation T is ergodic if and only if a is irrational. 3 Proof. If a = p=q is rational then T has order q, Y = S1=hT i is a circle of length 1=q, and any measurable subset of Y pulls back to give a T {invariant measurable subset of S1. Otherwise, T has infinite order (and Y is the `tiny circle', inaccessible by traditional measure theory and topology, but amenable to the methods of non{commutative geometry). In this case, it is easy to see that every orbit [x] = (T ix : i 2 Z) is dense in S1. Otherwise, T would have to permute the intervals forming the complement of the orbit closure, preserving their length, which quickly implies that T is periodic. Now suppose A ⊂ S1 is T {invariant and m(A) > 0. Then, by the Lebesgue density theorem, for any > 0 we can find an interval I such that m(I \ A)=m(I) > 1 − . Since the orbit of I covers the circle, we con- clude that m(A) > 1 − . Hence m(A) = 1 and we have ergodicity. We will examine the irrational rotation from other perspectives in x2. Breadth of the topic. To indicate the range of topics related to ergodic theory, we now turn to some examples and applications. Examples of measure-preserving dynamical systems. 1. Endomorphism of S1. For S1 = R=Z, the group endomorphisms T (x) = dx, d 6= 0, are also measure preserving. 2. Blaschke products on the circle. A typical proper holomorphic map Q B : ∆ ! ∆ with B(0) = 0 has the form B(z) = z (z − ai)=(1 − aiz). This map preserves the linear measure m = jdzj=2π on the unit circle S1. For the proof, observe that the measure of a set E ⊂ S1 is given by uE(0), where uE(z) is the harmonic extension of the indicator function of E to the disk. Since B(0) = 0, we have −1 m(B )(E) = uB−1E(0) = uE ◦ B(0) = uE(0) = m(E): Sn 3. Interval exchange transformations. Let I = [0; 1] = 1 Ii be a tiling of the unit interval, and let f : I ! I be the map obtained by reordering these intervals. On each interval we have f(x) = x + ti for some i, and so linear measure is preserved. The case n = 2 is essentially the same as a rotation of S1. 4 4. Dynamics on the torus. The torus X = Rn=Zn also admits many interesting measure{preserving maps. In addition to the translations T (x) = x + a, each T 2 GLn(Z) determines a measure{preserving automorphism of X. In fact any matrix T 2 Mn(Z) with nonzero determinant gives a measure{preserving endomorphism of the torus. 5. Continued fractions. The continued fraction map x 7! f1=xg on [0; 1] preserves the Gauss measure m = dx=(1 + x) (with total mass log 2). This (together with ergodicity) allows us to describe the behavior of the continued fraction of a typical real number. 6. Stationary stochastic processes. A typical example is a sequence of inde- pendent, equally distributed random variables X1;X2;:::. The model Z+ Q space is then X = R with the product measure m = mi, with all the factors mi the same probability measure on R. The relevant dynamics then comes from the shift map, σ(X1;X2;:::) = (X2;X3;:::); which is measure{preserving. In this setting the Kolmogorov 0=1 law states than any tail event E has probability zero or one. A tail event is one which is independent of Xi for each individual i; for example, the event \Xi > 0 for infinitely many i" is a tail event. The zero{one law is a manifestation of ergodicity of the system (X; σ). 7. The H´enonmap. The Jacobian determinant J(x; y) = det DT (x; y) of any polynomial automorphism T : C2 ! C2, is constant. Indeed, J(x; y) is itself a polynomial, which will vanish at some point unless it is constant, and vanishing would contradict invertibility. (The Jacobian conjecture asserts the converse: a polynomial map T : Cn ! Cn with constant Jacobian has a polynomial inverse. It is know for polynomials of degree 2 in n variables, and for polynomials of degree ≤ 100 in 2 variables.) If T is defined over R, and det DT = 1, then T gives an area{preserving map of the plane. In the H´enonfamily H(x; y) = (x2 + c − ay; x), measure is preserved when a = 1. 5 Z 8. The full shift Σd = (Z=d) . 9. The baker's transformation. This is the discontinuous map given in base two by f(0:x1x2 :::; 0:y1y2 :::) = (0:x2x3 :::; 0:x1y1y2 :::): This map acts on the unit square X = [0; 1] × [0; 1] by first cutting X into two vertical rectangles, A and B, then stacking them (with B on top) and finally flattening them to obtain a square again. It is measurably conjugate to the full 2-shift. 10. Hamiltonian flows. Let (M 2n;!) be a symplectic manifold. Then any smooth function H : M 2n ! R gives rise to a natural vector field X, characterized by dH = iX (!) or equivalently !(X; Y ) = YH for every vector field Y . In the case of classical mechanics, M 2n is the n P cotangent bundle to a manifold N and ! = dpi ^dqi is the canonical symplectic form in position { momentum coordinates. Then H gives the energy of the system at each point in phase space, and X = XH gives its time evolution. The flow generated by X preserves both H (energy is conserved) and !. To see this, note that LX (!) = diX ! + iX d! = d(dH) = 0 and XH = !(X; X) = 0: In particular, the volume form V = !n on M 2n is preserved by the flow. 2n When M is a K¨ahlermanifold, we can write XH = J(rH), where J 2 = −I. In particular, in the plane with ! = dx ^ dy, any function H determines an area{preserving flow along the level sets of H, by rotating rH by 90 degrees so it becomes parallel to the level sets. The flow accelerates when the level lines get closer together. 11. Area{preserving maps on surfaces. The dynamics of a Hamilton flow on a surface are very tame, since each level curve of H is invariant under the flow. (In particular, the flow is never ergodic with respect to area measure.) One says that such a system is completely integrable. General area{preserving maps on surfaces exhibit remarkable universal- ity, and many phenomena can be consistently observed (elliptic islands 6 and a stochastic sea), yet almost none of these phenomena has been mathematically justified.
Recommended publications
  • Fractal Growth on the Surface of a Planet and in Orbit Around It
    Wilfrid Laurier University Scholars Commons @ Laurier Physics and Computer Science Faculty Publications Physics and Computer Science 10-2014 Fractal Growth on the Surface of a Planet and in Orbit around It Ioannis Haranas Wilfrid Laurier University, [email protected] Ioannis Gkigkitzis East Carolina University, [email protected] Athanasios Alexiou Ionian University Follow this and additional works at: https://scholars.wlu.ca/phys_faculty Part of the Mathematics Commons, and the Physics Commons Recommended Citation Haranas, I., Gkigkitzis, I., Alexiou, A. Fractal Growth on the Surface of a Planet and in Orbit around it. Microgravity Sci. Technol. (2014) 26:313–325. DOI: 10.1007/s12217-014-9397-6 This Article is brought to you for free and open access by the Physics and Computer Science at Scholars Commons @ Laurier. It has been accepted for inclusion in Physics and Computer Science Faculty Publications by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. 1 Fractal Growth on the Surface of a Planet and in Orbit around it 1Ioannis Haranas, 2Ioannis Gkigkitzis, 3Athanasios Alexiou 1Dept. of Physics and Astronomy, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada 2Departments of Mathematics and Biomedical Physics, East Carolina University, 124 Austin Building, East Fifth Street, Greenville, NC 27858-4353, USA 3Department of Informatics, Ionian University, Plateia Tsirigoti 7, Corfu, 49100, Greece Abstract: Fractals are defined as geometric shapes that exhibit symmetry of scale. This simply implies that fractal is a shape that it would still look the same even if somebody could zoom in on one of its parts an infinite number of times.
    [Show full text]
  • Ergodicity, Decisions, and Partial Information
    Ergodicity, Decisions, and Partial Information Ramon van Handel Abstract In the simplest sequential decision problem for an ergodic stochastic pro- cess X, at each time n a decision un is made as a function of past observations X0,...,Xn 1, and a loss l(un,Xn) is incurred. In this setting, it is known that one may choose− (under a mild integrability assumption) a decision strategy whose path- wise time-average loss is asymptotically smaller than that of any other strategy. The corresponding problem in the case of partial information proves to be much more delicate, however: if the process X is not observable, but decisions must be based on the observation of a different process Y, the existence of pathwise optimal strategies is not guaranteed. The aim of this paper is to exhibit connections between pathwise optimal strategies and notions from ergodic theory. The sequential decision problem is developed in the general setting of an ergodic dynamical system (Ω,B,P,T) with partial information Y B. The existence of pathwise optimal strategies grounded in ⊆ two basic properties: the conditional ergodic theory of the dynamical system, and the complexity of the loss function. When the loss function is not too complex, a gen- eral sufficient condition for the existence of pathwise optimal strategies is that the dynamical system is a conditional K-automorphism relative to the past observations n n 0 T Y. If the conditional ergodicity assumption is strengthened, the complexity assumption≥ can be weakened. Several examples demonstrate the interplay between complexity and ergodicity, which does not arise in the case of full information.
    [Show full text]
  • On the Continuing Relevance of Mandelbrot's Non-Ergodic Fractional Renewal Models of 1963 to 1967
    Nicholas W. Watkins On the continuing relevance of Mandelbrot's non-ergodic fractional renewal models of 1963 to 1967 Article (Published version) (Refereed) Original citation: Watkins, Nicholas W. (2017) On the continuing relevance of Mandelbrot's non-ergodic fractional renewal models of 1963 to 1967.European Physical Journal B, 90 (241). ISSN 1434-6028 DOI: 10.1140/epjb/e2017-80357-3 Reuse of this item is permitted through licensing under the Creative Commons: © 2017 The Author CC BY 4.0 This version available at: http://eprints.lse.ac.uk/84858/ Available in LSE Research Online: February 2018 LSE has developed LSE Research Online so that users may access research output of the School. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research Online website. Eur. Phys. J. B (2017) 90: 241 DOI: 10.1140/epjb/e2017-80357-3 THE EUROPEAN PHYSICAL JOURNAL B Regular Article On the continuing relevance of Mandelbrot's non-ergodic fractional renewal models of 1963 to 1967? Nicholas W. Watkins1,2,3 ,a 1 Centre for the Analysis of Time Series, London School of Economics and Political Science, London, UK 2 Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry, UK 3 Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, UK Received 20 June 2017 / Received in final form 25 September 2017 Published online 11 December 2017 c The Author(s) 2017. This article is published with open access at Springerlink.com Abstract.
    [Show full text]
  • An Image Cryptography Using Henon Map and Arnold Cat Map
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072 An Image Cryptography using Henon Map and Arnold Cat Map. Pranjali Sankhe1, Shruti Pimple2, Surabhi Singh3, Anita Lahane4 1,2,3 UG Student VIII SEM, B.E., Computer Engg., RGIT, Mumbai, India 4Assistant Professor, Department of Computer Engg., RGIT, Mumbai, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - In this digital world i.e. the transmission of non- 2. METHODOLOGY physical data that has been encoded digitally for the purpose of storage Security is a continuous process via which data can 2.1 HENON MAP be secured from several active and passive attacks. Encryption technique protects the confidentiality of a message or 1. The Henon map is a discrete time dynamic system information which is in the form of multimedia (text, image, introduces by michel henon. and video).In this paper, a new symmetric image encryption 2. The map depends on two parameters, a and b, which algorithm is proposed based on Henon’s chaotic system with for the classical Henon map have values of a = 1.4 and byte sequences applied with a novel approach of pixel shuffling b = 0.3. For the classical values the Henon map is of an image which results in an effective and efficient chaotic. For other values of a and b the map may be encryption of images. The Arnold Cat Map is a discrete system chaotic, intermittent, or converge to a periodic orbit. that stretches and folds its trajectories in phase space. Cryptography is the process of encryption and decryption of 3.
    [Show full text]
  • WHAT IS a CHAOTIC ATTRACTOR? 1. Introduction J. Yorke Coined the Word 'Chaos' As Applied to Deterministic Systems. R. Devane
    WHAT IS A CHAOTIC ATTRACTOR? CLARK ROBINSON Abstract. Devaney gave a mathematical definition of the term chaos, which had earlier been introduced by Yorke. We discuss issues involved in choosing the properties that characterize chaos. We also discuss how this term can be combined with the definition of an attractor. 1. Introduction J. Yorke coined the word `chaos' as applied to deterministic systems. R. Devaney gave the first mathematical definition for a map to be chaotic on the whole space where a map is defined. Since that time, there have been several different definitions of chaos which emphasize different aspects of the map. Some of these are more computable and others are more mathematical. See [9] a comparison of many of these definitions. There is probably no one best or correct definition of chaos. In this paper, we discuss what we feel is one of better mathematical definition. (It may not be as computable as some of the other definitions, e.g., the one by Alligood, Sauer, and Yorke.) Our definition is very similar to the one given by Martelli in [8] and [9]. We also combine the concepts of chaos and attractors and discuss chaotic attractors. 2. Basic definitions We start by giving the basic definitions needed to define a chaotic attractor. We give the definitions for a diffeomorphism (or map), but those for a system of differential equations are similar. The orbit of a point x∗ by F is the set O(x∗; F) = f Fi(x∗) : i 2 Z g. An invariant set for a diffeomorphism F is an set A in the domain such that F(A) = A.
    [Show full text]
  • Ergodic Theory
    MATH41112/61112 Ergodic Theory Charles Walkden 4th January, 2018 MATH4/61112 Contents Contents 0 Preliminaries 2 1 An introduction to ergodic theory. Uniform distribution of real se- quences 4 2 More on uniform distribution mod 1. Measure spaces. 13 3 Lebesgue integration. Invariant measures 23 4 More examples of invariant measures 38 5 Ergodic measures: definition, criteria, and basic examples 43 6 Ergodic measures: Using the Hahn-Kolmogorov Extension Theorem to prove ergodicity 53 7 Continuous transformations on compact metric spaces 62 8 Ergodic measures for continuous transformations 72 9 Recurrence 83 10 Birkhoff’s Ergodic Theorem 89 11 Applications of Birkhoff’s Ergodic Theorem 99 12 Solutions to the Exercises 108 1 MATH4/61112 0. Preliminaries 0. Preliminaries 0.1 Contact details § The lecturer is Dr Charles Walkden, Room 2.241, Tel: 0161 275 5805, Email: [email protected]. My office hour is: Monday 2pm-3pm. If you want to see me at another time then please email me first to arrange a mutually convenient time. 0.2 Course structure § This is a reading course, supported by one lecture per week. I have split the notes into weekly sections. You are expected to have read through the material before the lecture, and then go over it again afterwards in your own time. In the lectures I will highlight the most important parts, explain the statements of the theorems and what they mean in practice, and point out common misunderstandings. As a general rule, I will not normally go through the proofs in great detail (but they are examinable unless indicated otherwise).
    [Show full text]
  • Arxiv:2008.00328V3 [Math.DS] 28 Apr 2021 Uniformly Hyperbolic and Topologically Mixing
    ERGODICITY AND EQUIDISTRIBUTION IN STRICTLY CONVEX HILBERT GEOMETRY FENG ZHU Abstract. We show that dynamical and counting results characteristic of negatively-curved Riemannian geometry, or more generally CAT(-1) or rank- one CAT(0) spaces, also hold for geometrically-finite strictly convex projective structures equipped with their Hilbert metric. More specifically, such structures admit a finite Sullivan measure; with respect to this measure, the Hilbert geodesic flow is strongly mixing, and orbits and primitive closed geodesics equidistribute, allowing us to asymptotically enumerate these objects. In [Mar69], Margulis established counting results for uniform lattices in constant negative curvature, or equivalently for closed hyperbolic manifolds, by means of ergodicity and equidistribution results for the geodesic flows on these manifolds with respect to suitable measures. Thomas Roblin, in [Rob03], obtained analogous ergodicity and equidistribution results in the more general setting of CAT(−1) spaces. These results include ergodicity of the horospherical foliations, mixing of the geodesic flow, orbital equidistribution of the group, equidistribution of primitive closed geodesics, and, in the geometrically finite case, asymptotic counting estimates. Gabriele Link later adapted similar techniques to prove similar results in the even more general setting of rank-one isometry groups of Hadamard spaces in [Lin20]. These results do not directly apply to manifolds endowed with strictly convex projective structures, considered with their Hilbert metrics and associated Bowen- Margulis measures, since strictly convex Hilbert geometries are in general not CAT(−1) or even CAT(0) (see e.g. [Egl97, App. B].) Nevertheless, these Hilbert geometries exhibit substantial similarities to Riemannian geometries of pinched negative curvature. In particular, there is a good theory of Busemann functions and of Patterson-Sullivan measures on these geometries.
    [Show full text]
  • Functor and Natural Operators on Symplectic Manifolds
    Mathematical Methods and Techniques in Engineering and Environmental Science Functor and natural operators on symplectic manifolds CONSTANTIN PĂTRĂŞCOIU Faculty of Engineering and Management of Technological Systems, Drobeta Turnu Severin University of Craiova Drobeta Turnu Severin, Str. Călugăreni, No.1 ROMANIA [email protected] http://www.imst.ro Abstract. Symplectic manifolds arise naturally in abstract formulations of classical Mechanics because the phase–spaces in Hamiltonian mechanics is the cotangent bundle of configuration manifolds equipped with a symplectic structure. The natural functors and operators described in this paper can be helpful both for a unified description of specific proprieties of symplectic manifolds and for finding links to various fields of geometric objects with applications in Hamiltonian mechanics. Key-words: Functors, Natural operators, Symplectic manifolds, Complex structure, Hamiltonian. 1. Introduction. diffeomorphism f : M → N , a vector bundle morphism The geometrics objects (like as vectors, covectors, T*f : T*M→ T*N , which covers f , where −1 tensors, metrics, e.t.c.) on a smooth manifold M, x = x :)*)(()*( x * → xf )( * NTMTfTfT are the elements of the total spaces of a vector So, the cotangent functor, )(:* → VBmManT and bundles with base M. The fields of such geometrics objects are the section in corresponding vector more general ΛkT * : Man(m) → VB , are the bundles. bundle functors from Man(m) to VB, where Man(m) By example, the vectors on a smooth manifold M (subcategory of Man) is the category of m- are the elements of total space of vector bundles dimensional smooth manifolds, the morphisms of this (TM ,π M , M); the covectors on M are the elements category are local diffeomorphisms between of total space of vector bundles (T*M , pM , M).
    [Show full text]
  • Ergodicity and Metric Transitivity
    Chapter 25 Ergodicity and Metric Transitivity Section 25.1 explains the ideas of ergodicity (roughly, there is only one invariant set of positive measure) and metric transivity (roughly, the system has a positive probability of going from any- where to anywhere), and why they are (almost) the same. Section 25.2 gives some examples of ergodic systems. Section 25.3 deduces some consequences of ergodicity, most im- portantly that time averages have deterministic limits ( 25.3.1), and an asymptotic approach to independence between even§ts at widely separated times ( 25.3.2), admittedly in a very weak sense. § 25.1 Metric Transitivity Definition 341 (Ergodic Systems, Processes, Measures and Transfor- mations) A dynamical system Ξ, , µ, T is ergodic, or an ergodic system or an ergodic process when µ(C) = 0 orXµ(C) = 1 for every T -invariant set C. µ is called a T -ergodic measure, and T is called a µ-ergodic transformation, or just an ergodic measure and ergodic transformation, respectively. Remark: Most authorities require a µ-ergodic transformation to also be measure-preserving for µ. But (Corollary 54) measure-preserving transforma- tions are necessarily stationary, and we want to minimize our stationarity as- sumptions. So what most books call “ergodic”, we have to qualify as “stationary and ergodic”. (Conversely, when other people talk about processes being “sta- tionary and ergodic”, they mean “stationary with only one ergodic component”; but of that, more later. Definition 342 (Metric Transitivity) A dynamical system is metrically tran- sitive, metrically indecomposable, or irreducible when, for any two sets A, B n ∈ , if µ(A), µ(B) > 0, there exists an n such that µ(T − A B) > 0.
    [Show full text]
  • [Math.GT] 9 Oct 2020 Symmetries of Hyperbolic 4-Manifolds
    Symmetries of hyperbolic 4-manifolds Alexander Kolpakov & Leone Slavich R´esum´e Pour chaque groupe G fini, nous construisons des premiers exemples explicites de 4- vari´et´es non-compactes compl`etes arithm´etiques hyperboliques M, `avolume fini, telles M G + M G que Isom ∼= , ou Isom ∼= . Pour y parvenir, nous utilisons essentiellement la g´eom´etrie de poly`edres de Coxeter dans l’espace hyperbolique en dimension quatre, et aussi la combinatoire de complexes simpliciaux. C¸a nous permet d’obtenir une borne sup´erieure universelle pour le volume minimal d’une 4-vari´et´ehyperbolique ayant le groupe G comme son groupe d’isom´etries, par rap- port de l’ordre du groupe. Nous obtenons aussi des bornes asymptotiques pour le taux de croissance, par rapport du volume, du nombre de 4-vari´et´es hyperboliques ayant G comme le groupe d’isom´etries. Abstract In this paper, for each finite group G, we construct the first explicit examples of non- M M compact complete finite-volume arithmetic hyperbolic 4-manifolds such that Isom ∼= G + M G , or Isom ∼= . In order to do so, we use essentially the geometry of Coxeter polytopes in the hyperbolic 4-space, on one hand, and the combinatorics of simplicial complexes, on the other. This allows us to obtain a universal upper bound on the minimal volume of a hyperbolic 4-manifold realising a given finite group G as its isometry group in terms of the order of the group. We also obtain asymptotic bounds for the growth rate, with respect to volume, of the number of hyperbolic 4-manifolds having a finite group G as their isometry group.
    [Show full text]
  • Chapter 5. Flow Maps and Dynamical Systems
    Chapter 5 Flow Maps and Dynamical Systems Main concepts: In this chapter we introduce the concepts of continuous and discrete dynamical systems on phase space. Keywords are: classical mechanics, phase space, vector field, linear systems, flow maps, dynamical systems Figure 5.1: A solar system is well modelled by classical mechanics. (source: Wikimedia Commons) In Chapter 1 we encountered a variety of ODEs in one or several variables. Only in a few cases could we write out the solution in a simple closed form. In most cases, the solutions will only be obtainable in some approximate sense, either from an asymptotic expansion or a numerical computation. Yet, as discussed in Chapter 3, many smooth systems of differential equations are known to have solutions, even globally defined ones, and so in principle we can suppose the existence of a trajectory through each point of phase space (or through “almost all” initial points). For such systems we will use the existence of such a solution to define a map called the flow map that takes points forward t units in time from their initial points. The concept of the flow map is very helpful in exploring the qualitative behavior of numerical methods, since it is often possible to think of numerical methods as approximations of the flow map and to evaluate methods by comparing the properties of the map associated to the numerical scheme to those of the flow map. 25 26 CHAPTER 5. FLOW MAPS AND DYNAMICAL SYSTEMS In this chapter we will address autonomous ODEs (recall 1.13) only: 0 d y = f(y), y, f ∈ R (5.1) 5.1 Classical mechanics In Chapter 1 we introduced models from population dynamics.
    [Show full text]
  • MA427 Ergodic Theory
    MA427 Ergodic Theory Course Notes (2012-13) 1 Introduction 1.1 Orbits Let X be a mathematical space. For example, X could be the unit interval [0; 1], a circle, a torus, or something far more complicated like a Cantor set. Let T : X ! X be a function that maps X into itself. Let x 2 X be a point. We can repeatedly apply the map T to the point x to obtain the sequence: fx; T (x);T (T (x));T (T (T (x))); : : : ; :::g: We will often write T n(x) = T (··· (T (T (x)))) (n times). The sequence of points x; T (x);T 2(x);::: is called the orbit of x. We think of applying the map T as the passage of time. Thus we think of T (x) as where the point x has moved to after time 1, T 2(x) is where the point x has moved to after time 2, etc. Some points x 2 X return to where they started. That is, T n(x) = x for some n > 1. We say that such a point x is periodic with period n. By way of contrast, points may move move densely around the space X. (A sequence is said to be dense if (loosely speaking) it comes arbitrarily close to every point of X.) If we take two points x; y of X that start very close then their orbits will initially be close. However, it often happens that in the long term their orbits move apart and indeed become dramatically different.
    [Show full text]