microorganisms Article Drug-Induced Lipid Remodeling in Leishmania Parasites Sneider Alexander Gutierrez Guarnizo 1,2 , Elena B. Tikhonova 1, Masoud Zabet-Moghaddam 3, Kai Zhang 4, Carlos Muskus 2, Andrey L. Karamyshev 1,* and Zemfira N. Karamysheva 4,* 1 Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
[email protected] (S.A.G.G.);
[email protected] (E.B.T.) 2 Programa de Estudio y Control de Enfermedades Tropicales, Facultad de medicina, Universidad de Antioquia, Medellín 050010, Colombia;
[email protected] 3 Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA;
[email protected] 4 Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
[email protected] * Correspondence:
[email protected] (A.L.K.); zemfi
[email protected] (Z.N.K.); Tel.: +1-806-743-4102 (A.L.K.); +1-806-834-5075 (Z.N.K.) Abstract: Leishmania parasites efficiently develop resistance against several types of drugs includ- ing antimonials, the primary antileishmanial drug historically implemented. The resistance to antimonials is considered to be a major risk factor for effective leishmaniasis treatment. To detect biomarkers/biopatterns for the differentiation of antimony-resistant Leishmania strains, we employed untargeted global mass spectrometry to identify intracellular lipids present in antimony sensitive and resistant parasites before and after antimony exposure. The lipidomic profiles effectively dif- ferentiated the sensitive and resistant phenotypes growing with and without antimony pressure. Citation: Gutierrez Guarnizo, S.A.; Resistant phenotypes were characterized by significant downregulation of phosphatidylcholines, Tikhonova, E.B.; Zabet-Moghaddam, M.; Zhang, K.; Muskus, C.; sphingolipid decrease, and lysophosphatidylcholine increase, while sensitive phenotypes were char- Karamyshev, A.L.; Karamysheva, acterized by the upregulation of triglycerides with long-chain fatty acids and a tendency toward the Z.N.