Variability of Sea Ice Drift Through Nares Strait, Nunavut, Canada

Total Page:16

File Type:pdf, Size:1020Kb

Variability of Sea Ice Drift Through Nares Strait, Nunavut, Canada VARIABILITY OF SEA ICE DRIFT THROUGH NARES STRAIT, NUNAVUT, CANADA ASHLEY O’BRIEN A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN GEOGRAPHY YORK UNIVERSITY TORONTO, ONTARIO January 2019 ©Ashley O’Brien, 2019 Abstract One of the greatest indicators of climate change is the state of the Arctic sea ice cover, whose extent is declining at an unprecedented rate due to both melt of sea ice and advection out of the Arctic Ocean. Nares Strait is an important conduit for the export of sea ice from the Arctic Ocean to sub-Arctic seas. Buoy trajectories for 2009, 2010, 2011 and 2014 were analyzed to evaluate the drift of sea ice through Nares Strait. Wind and ice concentration data were correlated with drift speeds to evaluate their influence on sea ice drift in this region which showed generally weak to moderate correlation coefficients. Drift speeds were highly variable spatially, seasonally and interannually. Smith Sound had the most spatial variability and the fastest drift speed (45 km/d). Drift through late summer showed high variability. It is believed that internal ice stress and ocean stress must play an integral role in ice dynamics in the strait but could not be quantified here. Further observations are required to more comprehensively understand sea ice dynamics in Nares Strait. ii Dedication I dedicate this thesis work to my friends and family who have unconditionally supported me throughout this entire process. I love you. iii Acknowledgments I would like to thank my supervisor Dr. Christian Haas for his guidance, support and immense knowledge. It has been a pleasure to work and learn from you over the past years. I also want to thank my committee Dr. Kathy Young and Dr. Rick Bello. A special thank you goes to Dr. John Alec Casey and Dr. Anne Irvin for their invaluable guidance throughout this process. To the Arctic Antarctic Sea Ice Lab, which includes Marzena Marosz-Wantuch and Mojtaba Daneshvar for support. A sincere thank you to my friends and family who have unconditionally loved and supported me through this rollercoaster ride. I would not have stuck through it all without your words of tough love and support. The biggest thank you to my Mom and Dad for allowing me to peruse graduate studies and for sticking by my side through it all as well as all of your endless support throughout whatever endeavor I embark on. Finally, to Ernon for your endless love, support and patience with me. iv Table of Contents Abstract .......................................................................................................................................... ii Dedication ..................................................................................................................................... iii Acknowledgments ........................................................................................................................ iv List of Tables .............................................................................................................................. viii List of Figures ............................................................................................................................... ix List of Abbreviations ................................................................................................................. xiii Chapter 1 Introduction................................................................................................................. 1 1.0 Study Context ...................................................................................................................... 1 1.1 Research Questions and Objectives ................................................................................... 3 1.2 Structure of Thesis .............................................................................................................. 4 Chapter 2 Background and Literature Review ......................................................................... 5 2.0 Introduction ......................................................................................................................... 5 2.1 The Changing Arctic Sea Ice Regime ................................................................................ 5 2.2 Dynamics of Sea Ice............................................................................................................. 9 2.2.1 Sea Ice Drifting Buoys ............................................................................................................................... 11 2.2.2 Wind Driven Sea Ice Drift ......................................................................................................................... 13 2.2.3 Ocean Driven Sea Ice Drift ........................................................................................................................ 16 2.2.4 Other Components of Sea Ice Drift ............................................................................................................ 19 2.2.5 The Case of Compact Ice Drift .................................................................................................................. 21 2.2.5.1 Sea Ice Concentration Data through Ice Charts .................................................................................. 23 2.3 Sea Ice Export from the Arctic Ocean ............................................................................ 24 2.4 Sea Ice Drift through Nares Strait ................................................................................... 28 2.5 Summary ............................................................................................................................ 32 Chapter 3 Study Site, Data and Methods ................................................................................. 34 3.0 Introduction ....................................................................................................................... 34 3.1 Study Site ........................................................................................................................... 34 3.1.1 Geographic Sub-Regions of Nares Strait ................................................................................................... 37 3.1.2 Climatology of Nares Strait ....................................................................................................................... 38 3.2 Data ..................................................................................................................................... 40 3.2.1 Buoy Data .................................................................................................................................................. 41 3.2.2 Meteorological Data ................................................................................................................................... 43 3.2.3 Sea Ice Concentration Data ........................................................................................................................ 45 3.3 Methodology ...................................................................................................................... 45 3.3.1 Buoy Analysis ............................................................................................................................................ 46 3.3.2 Meteorological Analysis ............................................................................................................................ 49 3.3.3 Analysis of Sea Ice Charts ......................................................................................................................... 50 3.3.4 Correlation Analysis .................................................................................................................................. 52 v Chapter 4 Results ........................................................................................................................ 53 4.0 Introduction ....................................................................................................................... 53 4.1 Drift Direction ................................................................................................................... 53 4.1.1 Turning Angles .......................................................................................................................................... 59 4.2 Drift Speed ......................................................................................................................... 60 4.2.1 Robeson Channel ....................................................................................................................................... 64 4.2.2 Kennedy Channel ....................................................................................................................................... 65 4.2.3 Kane Basin ................................................................................................................................................. 66 4.2.4 Smith Sound ............................................................................................................................................... 67 4.3 Wind Speed and Direction ................................................................................................ 68 4.4 Sea Ice Concentration ....................................................................................................... 72 4.5 Regression Analysis ..........................................................................................................
Recommended publications
  • Of Penguins and Polar Bears Shapero Rare Books 93
    OF PENGUINS AND POLAR BEARS Shapero Rare Books 93 OF PENGUINS AND POLAR BEARS EXPLORATION AT THE ENDS OF THE EARTH 32 Saint George Street London W1S 2EA +44 20 7493 0876 [email protected] shapero.com CONTENTS Antarctica 03 The Arctic 43 2 Shapero Rare Books ANTARCTIca Shapero Rare Books 3 1. AMUNDSEN, ROALD. The South Pole. An account of “Amundsen’s legendary dash to the Pole, which he reached the Norwegian Antarctic Expedition in the “Fram”, 1910-1912. before Scott’s ill-fated expedition by over a month. His John Murray, London, 1912. success over Scott was due to his highly disciplined dogsled teams, more accomplished skiers, a shorter distance to the A CORNERSTONE OF ANTARCTIC EXPLORATION; THE ACCOUNT OF THE Pole, better clothing and equipment, well planned supply FIRST EXPEDITION TO REACH THE SOUTH POLE. depots on the way, fortunate weather, and a modicum of luck”(Books on Ice). A handsomely produced book containing ten full-page photographic images not found in the Norwegian original, First English edition. 2 volumes, 8vo., xxxv, [i], 392; x, 449pp., 3 folding maps, folding plan, 138 photographic illustrations on 103 plates, original maroon and all full-page images being reproduced to a higher cloth gilt, vignettes to upper covers, top edges gilt, others uncut, usual fading standard. to spine flags, an excellent fresh example. Taurus 71; Rosove 9.A1; Books on Ice 7.1. £3,750 [ref: 96754] 4 Shapero Rare Books 2. [BELGIAN ANTARCTIC EXPEDITION]. Grande 3. BELLINGSHAUSEN, FABIAN G. VON. The Voyage of Fete Venitienne au Parc de 6 a 11 heurs du soir en faveur de Captain Bellingshausen to the Antarctic Seas 1819-1821.
    [Show full text]
  • Paleocene Alkaline Volcanism in the Nares Strait Region Related to Strike-Slip Tectonics
    Paleocene Alkaline Volcanism in the Nares Strait Region Related to Strike-slip Tectonics Solveig Estrada & Detlef Damaske Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany ([email protected]) The tectonic development of the North Atlantic, the Labrador Sea/Baffin Bay and the Eurasian Basin of Arctic Ocean led to relative movements between the Greenland Plate and the North American Plate. There has been a debate for many years, whether the Nares Strait between northwest Greenland and Ellesmere Island marks an ancient plate boundary in terms of a left-lateral transform fault (Wegener Fault) or whether there was no movement between Greenland and Ellesmere Island at all. New data were acquired during joint German-Canadian geological field work on northeast Ellesmere Island 1998-2000 (Mayr 2008), followed in 2001 by a geoscience cruise in Nares Strait (Tessensohn et al. 2006). Indications for sinistral strike-slip movements followed by compressive tectonics were found at the western margin of northern Nares Strait (Saalmann et al. 2005). Paleogene basins on Judge Daly Promontory, northeast Ellesmere Island, are bounded by a complex pattern of strike-slip and thrust faults. The clastic sediments in the basins are rich in volcanogenic material. Volcanic pebbles within the Cape Back basin near Nares Strait are derived from lava flows and ignimbrites of a continental rift-related, strongly differentiated, highly incompatible element enriched, alkaline volcanic suite (Estrada et al. 2009). 40Ar/39Ar amphibole and alkali feldspar ages indicate that volcanism was active around 61–58 Ma and was probably contemporaneous with sedimentation within the Paleogene pull-apart basins on Judge Daly Promontory formed by sinistral strike-slip tectonics parallel to the present-day Nares Strait.
    [Show full text]
  • Chapter 8 Polar Bear Harvesting in Baffin Bay and Kane Basin: a Summary of Historical Harvest and Harvest Reporting, 1993 to 2014
    Chapter 8 SWG Final Report CHAPTER 8 POLAR BEAR HARVESTING IN BAFFIN BAY AND KANE BASIN: A SUMMARY OF HISTORICAL HARVEST AND HARVEST REPORTING, 1993 TO 2014 KEY FINDINGS Both Canada (Nunavut) and Greenland harvest from the shared subpopulations of polar • bears in Baffin Bay and Kane Basin. During 1993-2005 (i.e., before quotas were introduced in Greenland) the combined • annual harvest averaged 165 polar bears (range: 120-268) from the Baffin Bay subpopulation and 12 polar bears (range: 6-26) from Kane Basin (for several of the years, harvest reported from Kane Basin was based on an estimate). During 2006-2014 the combined annual harvest averaged 161 (range: 138-176) from • Baffin Bay and 6 (range: 3-9) polar bears from Kane Basin. Total harvest peaked between 2002 and 2005 coinciding with several events in harvest • reporting and harvest management in both Canada and Greenland. In Baffin Bay the sex ratio of the combined harvest has remained around 2:1 (male: • females) with an annual mean of 35% females amongst independent bears. In Kane Basin the sex composition of the combined harvest was 33% females overall for • the period 1993-2014. The estimated composition of the harvest since the introduction of a quota in Greenland is 44% female but the factual basis for estimation of the sex ratio in the harvest is weak. In Greenland the vast majority of bears are harvested between January and June in Baffin • Bay and Kane Basin whereas in Nunavut ca. 40% of the harvest in Baffin Bay is in the summer to fall (August – November) while bears are on or near shore.
    [Show full text]
  • Re-Evaluation of Strike-Slip Displacements Along and Bordering Nares Strait
    Polarforschung 74 (1-3), 129 – 160, 2004 (erschienen 2006) In Search of the Wegener Fault: Re-Evaluation of Strike-Slip Displacements Along and Bordering Nares Strait by J. Christopher Harrison1 Abstract: A total of 28 geological-geophysical markers are identified that lich der Bache Peninsula und Linksseitenverschiebungen am Judge-Daly- relate to the question of strike slip motions along and bordering Nares Strait. Störungssystem (70 km) und schließlich die S-, später SW-gerichtete Eight of the twelve markers, located within the Phanerozoic orogen of Kompression des Sverdrup-Beckens (100 + 35 km). Die spätere Deformation Kennedy Channel – Robeson Channel region, permit between 65 and 75 km wird auf die Rotation (entgegen dem Uhrzeigersinn) und ausweichende West- of sinistral offset on the Judge Daly Fault System (JDFS). In contrast, eight of drift eines semi-rigiden nördlichen Ellesmere-Blocks während der Kollision nine markers located in Kane Basin, Smith Sound and northern Baffin Bay mit der Grönlandplatte zurückgeführt. indicate no lateral displacement at all. Especially convincing is evidence, presented by DAMASKE & OAKEY (2006), that at least one basic dyke of Neoproterozoic age extends across Smith Sound from Inglefield Land to inshore eastern Ellesmere Island without any recognizable strike slip offset. INTRODUCTION These results confirm that no major sinistral fault exists in southern Nares Strait. It is apparent to both earth scientists and the general public To account for the absence of a Wegener Fault in most parts of Nares Strait, that the shape of both coastlines and continental margins of the present paper would locate the late Paleocene-Eocene Greenland plate boundary on an interconnected system of faults that are 1) traced through western Greenland and eastern Arctic Canada provide for a Jones Sound in the south, 2) lie between the Eurekan Orogen and the Precam- satisfactory restoration of the opposing lands.
    [Show full text]
  • Recent Changes in the Freshwater Composition East of Greenland
    GeophysicalResearchLetters RESEARCH LETTER Recent changes in the freshwater composition 10.1002/2014GL062759 east of Greenland 1,2 3 3 4 Key Points: L. de Steur ,R.S.Pickart ,D.J.Torres , and H. Valdimarsson • Large amounts of Pacific freshwater 1 2 3 were found in the EGC between 2011 Royal Netherlands Institute for Sea Research, Texel, Netherlands, Norwegian Polar Institute, Tromsø, Norway, Woods and 2013 Hole Oceanographic Institution, Woods Hole, Massachusetts, USA, 4Marine Research Institute, Reykjavik, Iceland • The maximum of Pacific water in 2013 was as large as last seen in 1998 • Thirty percent of the freshwater Abstract Results from three hydrographic surveys across the East Greenland Current between 2011 and flux in the EGC in 2013 consisted of 18 Pacific freshwater 2013 are presented with focus on the freshwater sources. End-member analysis using salinity, O, and nutrient data shows that while meteoric water dominated the freshwater content, a significant amount of Pacific freshwater was present near Denmark Strait with a maximum in August 2013. While in 2011 and Correspondence to: L. de Steur, 2012 the net sea ice melt was dominated by brine, in 2013 it became close to zero. The amount of Pacific [email protected] freshwater observed near Denmark Strait in 2013 is as large as the previous maximum in 1998. This, together with the decrease in meteoric water and brine, suggests a larger contribution from the Canadian Basin. We Citation: hypothesize that the increase of Pacific freshwater is the result of enhanced flux through Bering Strait and a deSteur,L.,R.S.Pickart,D.J.Torres, shorter pathway of Pacific water through the interior Arctic to Fram Strait.
    [Show full text]
  • Thermodynamic and Dynamic Ice Thickness Contributions in the Canadian Arctic Archipelago in NEMO-LIM2 Numerical Simulations
    The Cryosphere, 12, 1233–1247, 2018 https://doi.org/10.5194/tc-12-1233-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Thermodynamic and dynamic ice thickness contributions in the Canadian Arctic Archipelago in NEMO-LIM2 numerical simulations Xianmin Hu1,a, Jingfan Sun1,b, Ting On Chan1,c, and Paul G. Myers1 1Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2E3, Canada anow at: Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada bnow at: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA cnow at: Skytech Solutions Ltd., Canada Correspondence: Xianmin Hu ([email protected]) Received: 6 September 2017 – Discussion started: 10 October 2017 Revised: 16 March 2018 – Accepted: 19 March 2018 – Published: 10 April 2018 Abstract. Sea ice thickness evolution within the Canadian is found in the northern CAA and Baffin Bay while a de- Arctic Archipelago (CAA) is of great interest to science, as cline (r2 ≈ 0:6, p < 0:01) is simulated in Parry Channel re- well as local communities and their economy. In this study, gion. The two main contributors (thermodynamic growth and based on the NEMO numerical framework including the lateral transport) have high interannual variabilities which LIM2 sea ice module, simulations at both 1=4 and 1=12◦ hor- largely balance each other, so that maximum ice volume can izontal resolution were conducted from 2002 to 2016. The vary interannually by ±12 % in the northern CAA, ±15 % in model captures well the general spatial distribution of ice Parry Channel, and ±9 % in Baffin Bay.
    [Show full text]
  • ARCTIC Exploration the SEARCH for FRANKLIN
    CATALOGUE THREE HUNDRED TWENTY-EIGHT ARCTIC EXPLORATION & THE SeaRCH FOR FRANKLIN WILLIAM REESE COMPANY 409 Temple Street New Haven, CT 06511 (203) 789-8081 A Note This catalogue is devoted to Arctic exploration, the search for the Northwest Passage, and the later search for Sir John Franklin. It features many volumes from a distinguished private collection recently purchased by us, and only a few of the items here have appeared in previous catalogues. Notable works are the famous Drage account of 1749, many of the works of naturalist/explorer Sir John Richardson, many of the accounts of Franklin search expeditions from the 1850s, a lovely set of Parry’s voyages, a large number of the Admiralty “Blue Books” related to the search for Franklin, and many other classic narratives. This is one of 75 copies of this catalogue specially printed in color. Available on request or via our website are our recent catalogues: 320 Manuscripts & Archives, 322 Forty Years a Bookseller, 323 For Readers of All Ages: Recent Acquisitions in Americana, 324 American Military History, 326 Travellers & the American Scene, and 327 World Travel & Voyages; Bulletins 36 American Views & Cartography, 37 Flat: Single Sig- nificant Sheets, 38 Images of the American West, and 39 Manuscripts; e-lists (only available on our website) The Annex Flat Files: An Illustrated Americana Miscellany, Here a Map, There a Map, Everywhere a Map..., and Original Works of Art, and many more topical lists. Some of our catalogues, as well as some recent topical lists, are now posted on the internet at www.reeseco.com.
    [Show full text]
  • The Arctic Observing Network: Sustained Observations at the Davis Strait Gateway
    The Arctic Observing Network: Sustained Observations at the Davis Strait Gateway PIs: C. M. Lee, J. I. Gobat, and K. M. Stafford University of Washington, Seattle, WA International Collaborators: B. Petrie and K. Azetsu-Scott Bedford Institute of Oceanography, Nova Scotia The Davis Strait observing program (Figure 1) has supported 22 published papers, with three more currently under review, three doctoral dissertations and several reports. Highlights from some of these results serve to illustrate the scientific role of long-term observations at the Davis Strait gateway. Six-year (2004-2010) monthly-mean sections of cross-strait velocity, temperature, and salinity from moorings and gliders (Curry et al. 2014) illustrate persistent features and a seasonal cycle (Figure 2). A sharp, persistent front separates the south-going Baffin Island Current from north-flowing waters composed of the upper- ocean West Greenland Current and the deeper West Greenland Slope Current. The cross-strait position of this important front varies seasonally and interannually, which strongly impacts flux calculations (Curry et al. 2011; Curry et al. 2014). Glider-based sections provide a well-resolved measure of frontal position and structure, and quantify seasonal changes in the upper ocean, addressing two large sources of uncertainty and resolving seasonal to interannual changes in important flow structures that were previously impractical to sample. The 2004-2013 monthly-mean net volume and freshwater flux through Davis Strait (Curry et al. 2014) has significant interannual variability, with only weak seasonality (due to phase cancellations in the water mass components that make up the mean) and no statistically significant trends. The 2004-2013 mean net volume and freshwater fluxes are -1.6±0.2 Sv and -94±7 mSv, respectively, with sea ice contributing -10±1 mSv of freshwater flux.
    [Show full text]
  • Canadian Arctic Tide Measurement Techniques and Results
    International Hydrographie Review, Monaco, LXIII (2), July 1986 CANADIAN ARCTIC TIDE MEASUREMENT TECHNIQUES AND RESULTS by B.J. TAIT, S.T. GRANT, D. St.-JACQUES and F. STEPHENSON (*) ABSTRACT About 10 years ago the Canadian Hydrographic Service recognized the need for a planned approach to completing tide and current surveys of the Canadian Arctic Archipelago in order to meet the requirements of marine shipping and construction industries as well as the needs of environmental studies related to resource development. Therefore, a program of tidal surveys was begun which has resulted in a data base of tidal records covering most of the Archipelago. In this paper the problems faced by tidal surveyors and others working in the harsh Arctic environment are described and the variety of equipment and techniques developed for short, medium and long-term deployments are reported. The tidal characteris­ tics throughout the Archipelago, determined primarily from these surveys, are briefly summarized. It was also recognized that there would be a need for real time tidal data by engineers, surveyors and mariners. Since the existing permanent tide gauges in the Arctic do not have this capability, a project was started in the early 1980’s to develop and construct a new permanent gauging system. The first of these gauges was constructed during the summer of 1985 and is described. INTRODUCTION The Canadian Arctic Archipelago shown in Figure 1 is a large group of islands north of the mainland of Canada bounded on the west by the Beaufort Sea, on the north by the Arctic Ocean and on the east by Davis Strait, Baffin Bay and Greenland and split through the middle by Parry Channel which constitutes most of the famous North West Passage.
    [Show full text]
  • Greenland Last Ice Area
    kn Greenland Last Ice Area Potentials for hydrocarbon and mineral resources activities Mette Frost, WWF-DK Copenhagen, September 2014 Report Greenland Last Ice Area. Potentials for hydrocarbon and mineral resources activities. The report is written by Mette Frost, WWF Verdensnaturfonden. Published by WWF Verdensnaturfonden, Svanevej 12, 2400 København NV. Denmark. Phone +45 3536 3635 – E-mail: [email protected] WWF Global Arctic Programme, 275 Slater Street, Ottawa, Ontario, K1P 5L4. Canada. Phone: +1 613 232 2535 Project The report has been developed under the Last Ice Area project, a joint project between WWF Canada, WWF Denmark and WWF Global Arctic Programme. Other WWF reports on Greenland – Last Ice Area Greenland Last Ice Area. Scoping study: socioeconomic and socio-cultural use of the Greenland LIA. By Pelle Tejsner, consultant and PhD. and Mette Frost, WWF-DK. November 2012. Seals in Greenland – an important component of culture and economy. By Eva Garde, WWF-DK. November 2013. Front page photo: Yellow house in Kullorsuaq, Qaasuitsup Kommunia, Greenland. July 2012. Mette Frost, WWF Verdensnaturfonden. The report can be downloaded from www.wwf.dk [1] CONTENTS Last Ice Area Introduction 4 Last Ice Area / Sikuusarfiit Nunngutaat 5 Last Ice Area/ Den Sidste Is 6 Summary 7 Eqikkaaneq 12 Sammenfatning 18 1. Introduction – scenarios for resources development within the Greenland LIA 23 1.1 Last Ice Area 23 1.2 Geology of the Greenland LIA 25 1.3 Climate change 30 2. Mining in a historical setting 32 2.1 Experiences with mining in Greenland 32 2.2 Resources development to the benefit of society 48 3.
    [Show full text]
  • Fall Ice Drift in Nares Strait, As Observed by Sideways-Looking
    ARCTIC VOL. 32. NO. 4 (DEC. 1979). P. 283-307 Fall Ice Drift in Nares Strait, as Observedby Sideways-Looking Airborne Radar MOIRA DUNBAR’ ABSTRACT. From Sideways-Looking Airborne Radar (SLAR) imagery of sea ice obtained on three flights during the week of 19 to 26 Oct. 1976 it is possible to track floes throughout Nares Strait over periods of days and, on one occasion, hours. The dataare interpreted in the lightof available information on ice drift, winds, and currents. The results are believed to give a fairly typical picture of ice drift characteristics in periods of northerly air flow, which is the dominant pattern in this area. The suitability of the method for acquiring drift information in other areas is also demonstrated. RfiSUMk Des clichés SLAR de glace de mer, pris lors de trois vols, pendant la semaine du 19 au 26 octobre 1976, permettaient de suivre de près des glaces flottantes dans la détroit de Nares pendant des jours et des heures à une occasion. Certainement les résultats donnent une image typique correcte des proprietts de la dérive des glaces pendant les périodes où le vent du Nord souffle, ce qui est le cas génèralement dans cette région. C’était un bon exemple de crtdibilité de la mbthode à appliquer dans l’autres régions pour acquérir de l’information sur la dèrive des glaces. Traduit par Alain de Vendegies, Aquitaine Co. of Canada Ltd. INTRODUCTION The imagery on which this study is based was obtained by a Canadian Forces Argus aircraft as part of a joint CanadianlUK exercise designed primarily to provide top and bottom profiles of ice in the Arctic Ocean.
    [Show full text]
  • Ice Regime and Ice Transport in Nares Strait
    Ice Regime and Ice Transport in Nares Strait MOIRA DUNBAR1 ABSTRACT. In order to assess the part played by ice export through the Canadian Arctic Archipelago in the heat budget of the Arctic Ocean, one of the factors that must be known is the length of time per year that the channels are sealed by fast ice. To establish this for Nares Strait a series of flights was undertaken through the winters of 1970-71 and 1971-72. The resulting observations, combined with a search of historical records, suggest that the dateof consolidation of ice in this channel tends to be late. A tentative calculation of annual export leads to the conclusion that the contribution of the Canadian channels may be greater than has been supposed. RfiSUMe. Rdgime et transport des glacesdans le ddtroit de Nares.Pour Bvaluer la part que jouel’exportation des glaces51 travers les chenaux arctiques dans lebilan thermique de l’océan Arctique, l‘un des facteurs qu’il faut connaître est la longueur de la pBriode annuelle pendantlaquelle les chenaux sont bloquBs par la glace fixBe. Pour le constater dans le d6troit de Nares, nous avons entrepris une sBrie d‘envolks pendant les hivers de 1970-1971 et 1971-1972. Nos observations, jointes à une recherche de données historiques, nous suggèrent que la datede consolidation de la glace dans ce chenal tend B être tardive. Un essai de calcul de l’exportation annuelle nous amène 51 conclure que la contribution des chenaux canadienspourrait êtreplus grande qu’on ne l’avait supposé. INTRODUCTION Estimates of ice transport out of the Arctic Ocean are quite varied, which is not surprising in view of the fact that they are based on a number of other factors, all of which are imperfectly known.
    [Show full text]