(12) Patent Application Publication (10) Pub. No.: US 2005/0101927 A1 Joseph Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2005/0101927 A1 Joseph Et Al US 2005O101927A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0101927 A1 JOSeph et al. (43) Pub. Date: May 12, 2005 (54) ABSORBENT PRODUCTS COMPRISINGA (73) Assignee: Kimberly-Clark Worldwide, Inc. MOISTURIZING AND LUBRICATING COMPOSITION (21) Appl. No.: 10/659,969 (22) Filed: Sep. 11, 2003 (75) Inventors: Wael R. Joseph, Appleton, WI (US); Publication Classification Keisha Clarke, Appleton, WI (US); Duane G. Krzysik, Appleton, WI (US); (51) Int. Cl." ............................ A61F 13/15; A61F 13/20 Bernard J. Minerath III, Oshkosh, WI (52) U.S. Cl. .............................................................. 604/367 (US) (57) ABSTRACT The present invention is generally directed to absorbent Correspondence Address: products comprising a moisturizing and lubricating compo SENNIGER POWERS LEAVITT AND Sition. The moisturizing and lubricating composition com ROEDEL prises an emollient, a humectant, and immobilizing agent ONE METROPOLITAN SQUARE and a compatibilizing agent. Optionally, the moisturizing 16TH FLOOR and lubricating compositions can comprise a dispersing ST LOUIS, MO 63102 (US) agent, or other components. 40 38 Patent Application Publication May 12, 2005 Sheet 1 of 4 US 2005/0101927 A1 40 i. 44 30 50 L - - - - - - - - - - - - - - - - - - - - - - - - - - - | V 24 52 (^, | / 28 28 \\ / / \ , | f | \\ || | ||| 1 26 | I | | 2 | \ \ 46 //i? | \\ A./ | V WyV 42 N N 22 32 - 1 36 -1 - - - - - - - - - - - - - - 1. -- Patent Application Publication May 12, 2005 Sheet 2 of 4 US 2005/0101927 A1 FIG. 2 52 34 >N NYXNNNN 36 32 46 Patent Application Publication May 12, 2005 Sheet 3 of 4 US 2005/0101927 A1 FIG. 3 120 to --- —- - - 2 S 80 - D ?y 60 ls s 40 2O --- -L-- -- - - - O AL AK AB AC AG Formulation Patent Application Publication May 12, 2005 Sheet 4 of 4 US 2005/0101927 A1 FIG. 4 1809/o 1609/o 1409/6 1209/6 100% --- 80% 60% 40% ----- 209/6 O9/6 AK AL AG AC AB Control Formulation US 2005/0101927 A1 May 12, 2005 ABSORBENT PRODUCTS COMPRISINGA lations to date have proven to be unstable, even at slightly MOISTURIZING AND LUBRICATING elevated temperatures and have tended to migrate into the COMPOSITION product matrix prior to use where the formulation is only of minimal, if any benefit. Additionally, many formulations BACKGROUND OF THE INVENTION used to date have had very poor transfer rates from the product to the skin where it can be of use. AS Such, it is 0001. This invention is directed to moisturizing and lubri apparent that there is a commercial need for hydrophilic cating compositions which may be used on absorbent prod lubricating formulations Suitable for use in combination with ucts Such as disposable diapers, feminine napkins, tampons, absorbent products Such as disposable diaperS and inconti interlabial pads and/or interlabial devices. More particularly, nence products. It would be advantageous if the lubricating this invention is directed towards moisturizing and lubricat formulation could provide a moisturization benefit to alle ing compositions for use on the bodyfacing Surface of an Viate skin dryneSS, as well as present a Soft, aesthetically absorbent product, Such as an interlabial pad, which improve pleasing feel to reduce friction between the product and skin. the level of comfort to the wearer and may provide a skin Also, it would be advantageous if the lubricating formula health benefit. tions were formulated to be fluid during processing and 0002 The stratum corneum is the outer-most layer of the rapidly Solidify after application to the products. skin and is responsible for regulating skin water levels and functioning as a barrier against chemicals and other Stressors SUMMARY OF THE INVENTION found in the environment. The complex arrangement of 0007. The present invention is generally directed to mois lipids in the intercellular space of the Stratum corneum is turizing and lubricating compositions for use in combination responsible for the establishment of normal barrier function. with absorbent products Such as disposable diapers, incon Multi-layered Structures of cholesterol, ceramides, and fatty tinence garments, training pants, feminine pads, tampons, acids, as well as Some other minor lipids, provide the major and interlabial pads. The moisturizing and lubricating com barrier to the transport of hydrophilic Substances into or positions, which are hydrophilic, are introduced onto the through the skin. The link between the barrier function and body facing Surface of the disposable article. Upon use, the skin health is apparent from the skin inflammation caused by lubricating composition contacts the Skin and is at least lipid extraction from the skin. partially transferred onto the skin to improve skin health. 0.003 Skin barrier can be damaged due to a number of 0008. In one embodiment described herein, at least a mechanisms. One mechanism for damage is physical abra portion of the body facing Surface of a disposable absorbent Sion, which may be caused by repeated rubbing of dispos article comprises a hydrophilic composition which is Solid able absorbent articles on the skin. With physical abrasion, or semisolid at a temperature of about 30° C. to about 80 layers of the skin are Stripped away causing damage to the C. and comprises a humectant, an immobilizing agent, a Stratum corneum. Also, biological fluids, Such as urine, compatibilizing agent, and an emollient. Optionally, the feces, nasal and vaginal Secretions, may contain a variety of moisturizing and lubricating compositions of the present components that can damage the Stratum corneum. Some invention may comprise a skin barrier enhancing agent, Such Specific examples include proteases, lipases, bile acids, and as Sunflower oil or borage oil, and an antioxidant to Stabilize fatty acids. Once the Stratum corneum barrier is compro the Skin barrier enhancing agent. Additionally, a Sterol or mised, skin inflammation can occur. sterol derivative may be added to improve skin health. 0004 Excessive hydration of the skin can also have a 0009. The moisturizing and lubricating compositions of negative impact on Skin barrier. The hydration level of the present invention provide a reduction in the frictional diapered skin, for example, may reach between five and ten discomfort and dryneSS associated with the use of absorbent times that of undiapered skin. Frequent contact of diapered articles. skin with fluids Such as urine and feces may also contribute to increased hydration. Increased skin hydration disrupts 0010 Briefly, therefore, the present invention is directed skin lipid organization in the Stratum corneum, and may to an absorbent product comprising an absorbent Substrate increase the Skin permeability of irritants, thus increasing and a moisturizing and lubrication composition. The mois the risk of Skin inflammation. turizing and lubricating composition comprises from about 1% (by weight) to about 40% (by weight) of an emollient, 0005 Disposable absorbent articles such as diaper and from about 1% (by weight) to about 20% (by weight) of a incontinence garments are commonly used to absorb body humectant, from about 30% (by weight) to about 90% (by fluids and leave the Skin dry. These products, in addition to weight) an immobilizing agent, and from about 1% (by absorbing and wiping fluids, however, also abrade the skin weight) to about 40% (by weight) of a compatibilizing during use and frequently do not leave the skin completely agent. No more than about 50% (by weight) of the compo dry and free of the body fluid after use. During frequent use nents of the moisturizing and lubricating composition are of these products, the skin can become So dry and/or abraded liquid at room temperature and no less than about 50% of the as to appear red and be Sore to the touch. To reduce this components are Solid at room temperature. Also, at least problem, additive formulations have been applied to absor 85% (by weight) of the components of the moisturizing and bent articles to provide lubricity and moisture. Once depos lubricating composition form a single phase at a temperature ited on the skin, these products may provide a skin benefit of from about 45° C. to about 80° C. by occluding the skin and protecting the Stratum corneum until the damage is repaired. 0011. The present invention is further directed to an absorbent product comprising an absorbent Substrate and a 0006 To date, the formulations applied to absorbent moisturizing and lubrication composition. The moisturizing articles have not been completely Satisfactory. Many formu and lubricating composition comprises from about 1% (by US 2005/0101927 A1 May 12, 2005 weight) to about 40% (by weight) of a silicone, from about crotch region between the legs. The opposed side edges 28 1% (by weight) to about 20% (by weight) of a humectant, define leg openings for the diaper and generally are curvi from about 30% (by weight) to about 90% (by weight) an linear or contoured to more closely fit the legs of the wearer. immobilizing agent, from about 1% (by weight) to about The opposed end edges 30 define a waist opening for the 40% (by weight) of a compatibilizing agent and a dispersing diaper 20 and typically are Straight but may also be curvi agent. No more than about 50% (by weight) of the compo linear. nents of the moisturizing and lubricating composition are liquid at room temperature and no less than about 50% of the 0019 FIG. 1 is a representative plan view of the diaper components are Solid at room temperature. Also, at least 20 in a flat, non-contracted State. Portions of the structure are 85% (by weight) of the components of the moisturizing and partially cut away to more clearly show the interior con lubricating composition form a single phase at a temperature struction of the diaper 20, and the surface of the diaper of from about 45° C. to about 80° C. which contacts the wearer is facing the viewer. The diaper 20 includes a Substantially liquid impermeable outer cover 32, BRIEF DESCRIPTION OF THE DRAWINGS a porous, liquid permeable bodyside liner 34 positioned in facing relation with the Outer cover 32, and an absorbent 0012 FIG.
Recommended publications
  • • Our Bodies Make All the Cholesterol We Need. • 85 % of Our Blood
    • Our bodies make all the cholesterol we need. • 85 % of our blood cholesterol level is endogenous • 15 % = dietary from meat, poultry, fish, seafood and dairy products. • It's possible for some people to eat foods high in cholesterol and still have low blood cholesterol levels. • Likewise, it's possible to eat foods low in cholesterol and have a high blood cholesterol level SYNTHESIS OF CHOLESTEROL • LOCATION • All tissues • Liver • Cortex of adrenal gland • Gonads • Smooth endoplasmic reticulum Cholesterol biosynthesis and degradation • Diet: only found in animal fat • Biosynthesis: primarily synthesized in the liver from acetyl-coA; biosynthesis is inhibited by LDL uptake • Degradation: only occurs in the liver • Cholesterol is only synthesized by animals • Although de novo synthesis of cholesterol occurs in/ by almost all tissues in humans, the capacity is greatest in liver, intestine, adrenal cortex, and reproductive tissues, including ovaries, testes, and placenta. • Most de novo synthesis occurs in the liver, where cholesterol is synthesized from acetyl-CoA in the cytoplasm. • Biosynthesis in the liver accounts for approximately 10%, and in the intestines approximately 15%, of the amount produced each day. • Since cholesterol is not synthesized in plants; vegetables & fruits play a major role in low cholesterol diets. • As previously mentioned, cholesterol biosynthesis is necessary for membrane synthesis, and as a precursor for steroid synthesis including steroid hormone and vitamin D production, and bile acid synthesis, in the liver. • Slightly less than half of the cholesterol in the body derives from biosynthesis de novo. • Most cells derive their cholesterol from LDL or HDL, but some cholesterol may be synthesize: de novo.
    [Show full text]
  • 01 Excipients Prelims 1..9
    Triolein 757 and tablets). Included in the Canadian List of Acceptable Non- 3 Steurnagel CR. Latex emulsions for controlled drug delivery. McGinity medicinal Ingredients. JW, ed. Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms. New York: Marcel Dekker, 1989; 1–61. 4 Gutierrez-Rocca JC, McGinity JW. Influence of aging on the physical– 17 Related Substances mechanical properties of acrylic resin films cast from aqueous Acetyltributyl citrate; acetyltriethyl citrate; tributyl citrate. dispersions and organic solutions. Drug Dev Ind Pharm 1993; 19(3): 315–332. 5 Liu J, Williams R. Properties of heat-humidity cured cellulose acetate 18 Comments phthalate free films. Eur J Pharm Sci 2002; 17(1–2): 31–41. 6 Lewis RJ, ed. Sax’s Dangerous Properties of Industrial Materials, 11th A specification for triethyl citrate is contained in the Food (7) edn. New York: Wiley, 2004; 3546. Chemicals Codex (FCC). 7 Food Chemicals Codex, 6th edn. Bethesda, MD: United States The EINECS number for triethyl citrate is 201-070-7. The Pharmacopeia, 2008; 988. PubChem Compound ID (CID) for triethyl citrate is 6506. 20 General References 19 Specific References Vertellus Specialties Inc. Technical data sheet: Citroflex 2, 2007. 1 Gutierrez-Rocca JC, McGinity JW. Influence of water soluble and insoluble plasticizers on the physical and mechanical properties of 21 Author acrylic resin copolymers. Int J Pharm 1994; 103: 293–301. J Teckoe. 2 Lehmann K. Chemistry and application properties of polymethacrylate coating systems. McGinity JW, ed. Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms. New York: Marcel Dekker, 1989; 153– 22 Date of Revision 245. 24 February 2009. Triolein 1 Nonproprietary Names 6 Functional Category None adopted.
    [Show full text]
  • Intravenous Treatment with a Long-Chain Omega-3 Lipid Emulsion Provides Neuroprotection in a Murine Model of Ischemic Stroke – a Pilot Study
    RESEARCH ARTICLE Intravenous Treatment with a Long-Chain Omega-3 Lipid Emulsion Provides Neuroprotection in a Murine Model of Ischemic Stroke ± A Pilot Study Dirk Berressem1*, Konrad Koch1, Nicole Franke1, Jochen Klein1, Gunter P. Eckert1,2 1 Goethe-University of Frankfurt, Department of Pharmacology, Germany, 2 Justus-Liebig-University Giessen, Institute of Nutritional Sciences, Germany * [email protected] a11111 Abstract Single long-chain omega-3 fatty acids (e.g. docosahexaenoic acid (DHA) or eicosapentae- noic acid (EPA)) are known for their neuroprotective properties associated with ischemic stroke. This pilot study aimed to test the effectiveness of an acute treatment with a long- OPEN ACCESS chain omega-3 lipid emulsion (Omegaven 10%®, OGV) that contains fish oil (DHA 18 mg/ Citation: Berressem D, Koch K, Franke N, Klein J, Eckert GP (2016) Intravenous Treatment with a ml; EPA 21 mg/ml) and α-tocopherol (0.2 mg/ml) in a transient middle cerebral artery occlu- Long-Chain Omega-3 Lipid Emulsion Provides sion (MCAO) model of ischemic stroke in mice. For this purpose, female CD-1 mice were Neuroprotection in a Murine Model of Ischemic anesthetized and subjected to 90 minutes of MCAO. To reflect a clinically relevant situation Stroke ± A Pilot Study. PLoS ONE 11(11): for an acute treatment, either after induction of stroke or after reperfusion, a single dose of e0167329. doi:10.1371/journal.pone.0167329 OGV was injected intravenously into the tail vein (5 ml/kg b.w.). A neurological severity Editor: Muzamil Ahmad, Indian Institute of score was used to assess motor function and neurological outcome.
    [Show full text]
  • 33 34 35 Lipid Synthesis Laptop
    BI/CH 422/622 Liver cytosol ANABOLISM OUTLINE: Photosynthesis Carbohydrate Biosynthesis in Animals Biosynthesis of Fatty Acids and Lipids Fatty Acids Triacylglycerides contrasts Membrane lipids location & transport Glycerophospholipids Synthesis Sphingolipids acetyl-CoA carboxylase Isoprene lipids: fatty acid synthase Ketone Bodies ACP priming 4 steps Cholesterol Control of fatty acid metabolism isoprene synth. ACC Joining Reciprocal control of b-ox Cholesterol Synth. Diversification of fatty acids Fates Eicosanoids Cholesterol esters Bile acids Prostaglandins,Thromboxanes, Steroid Hormones and Leukotrienes Metabolism & transport Control ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Synthesis Degradation Ketone body Utilization Isoprene Biosynthesis 1 Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates are transferred stepwise from ATP to mevalonate. • A third phosphate from ATP is added at the hydroxyl, followed by decarboxylation and elimination catalyzed by pyrophospho- mevalonate decarboxylase creates a pyrophosphorylated 5-C product: D3-isopentyl pyrophosphate (IPP) (isoprene). • Isomerization to a second isoprene dimethylallylpyrophosphate (DMAPP) gives two activated isoprene IPP compounds that act as precursors for D3-isopentyl pyrophosphate Isopentyl-D-pyrophosphate all of the other lipids in this class isomerase DMAPP Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates
    [Show full text]
  • Steroid Interference with Antifungal Activity of Polyene Antibiotics
    APPLIED MICROBIOLOGY, Nov., 1966 Vol. 14, No. 6 Copyright © 1966 American Society for Microbiology Printed in U.S.A. Steroid Interference with Antifungal Activity of Polyene Antibiotics WALTER A. ZYGMUNT AND PETER A. TAVORMINA Department of Microbiology and Natural Products Research, Mead Johnson & Company, Evansville, Indiana Received for publication 21 April 1966 ABSTRACT ZYGMUNT, WALTER A. (Mead Johnson & Co., Evansville, Ind.), AND PETER A. TAVORMINA. Steroid interference with antifungal activity of polyene antibiotics. Appl. Microbiol. 14:865-869. 1966.-Wide differences exist among the polyene antibiotics, nystatin, rimocidin, filipin, pimaricin, and amphotericin B, with ref- erence to steroid interference with their antifungal activities against Candida albicans. Of the numerous steroids tested, ergosterol was the only one which ef- fectively antagonized the antifungal activity of all five polyene antibiotics. The antifungal activities of nystatin and amphotericin B were the least subject to vitia- tion by the addition of steroids other than ergosterol, and those of filipin, rimo- cidin, and pimaricin were the most sensitive to interference. Attempts to delineate the structural requirements of steroids possessing polyene-neutralizing activity in growing cultures of C. albicans are discussed. The ultraviolet absorbance of certain antibiotic steroid combinations was also studied. It has been suggested (1, 9, 13) that the polyene While studying the effects of various steroids antibiotics become bound to the fungal cell mem- on the antimonilial activity of pimaricin, we brane and cause permeability changes with observed that ergostenol was almost as effective attendant depletion of essential cellular con- as the above A5-3/3-hydroxy steroids in antag- stituents. Loss of potassium and ammonium onizing pimaricin.
    [Show full text]
  • Triheptanoin for Glucose Transporter Type I Deficiency (G1D) Modulation of Human Ictogenesis, Cerebral Metabolic Rate, and Cognitive Indices by a Food Supplement
    Research Original Investigation Triheptanoin for Glucose Transporter Type I Deficiency (G1D) Modulation of Human Ictogenesis, Cerebral Metabolic Rate, and Cognitive Indices by a Food Supplement Juan M. Pascual, MD, PhD; Peiying Liu, PhD; Deng Mao, BS; Dorothy I. Kelly, MA; Ana Hernandez, MS; Min Sheng, PhD; Levi B. Good, PhD; Qian Ma, MD, PhD; Isaac Marin-Valencia, MD, MS; Xuchen Zhang, MD; Jason Y. Park, MD, PhD; Linda S. Hynan, PhD; Peter Stavinoha, PhD; Charles R. Roe, MD; Hanzhang Lu, PhD Supplemental content at IMPORTANCE Disorders of brain metabolism are multiform in their mechanisms and jamaneurology.com manifestations, many of which remain insufficiently understood and are thus similarly treated. Glucose transporter type I deficiency (G1D) is commonly associated with seizures and with electrographic spike-waves. The G1D syndrome has long been attributed to energy (ie, adenosine triphosphate synthetic) failure such as that consequent to tricarboxylic acid (TCA) cycle intermediate depletion. Indeed, glucose and other substrates generate TCAs via anaplerosis. However, TCAs are preserved in murine G1D, rendering energy-failure inferences premature and suggesting a different hypothesis, also grounded on our work, that consumption of alternate TCA precursors is stimulated and may be detrimental. Second, common ketogenic diets lead to a therapeutically counterintuitive reduction in blood glucose available to the G1D brain and prove ineffective in one-third of patients. OBJECTIVE To identify the most helpful outcomes for treatment evaluation and to uphold (rather than diminish) blood glucose concentration and stimulate the TCA cycle, including anaplerosis, in G1D using the medium-chain, food-grade triglyceride triheptanoin. DESIGN, SETTING, AND PARTICIPANTS Unsponsored, open-label cases series conducted in an academic setting.
    [Show full text]
  • BB 451/551 Lecture 35 Highlights
    Kevin Ahern's Biochemistry (BB 451/551) at Oregon State University http://oregonstate.edu/instruct/bb451/summer13/lectures/highlightsglycer... Glycerolipid and Sphingolipid Metabolism 1. Phosphatidic acid is an immediate precursor of CDP-diacylglycerol, which is a precursor of the various glycerophospholipids . CTP combines with phosphatidic acid to yield a pyrophosphate and CDP-Diacylglycerol. Activation by CDP yields a high energy activated intermediate that can be readily converted to phosphatidyl glycerophospholipids. 2. From CDP-diacylglycerol, phosphatidyl serine can be made, as canphosphatidyl ethanolamine and phosphatidyl choline. Synthesis of phosphatidyl choline from phosphatidyl ethanolamine requires methyl groups donated by S-Adenoysyl-Methionine (SAM). Loss of the methyl groups by SAM yields S-Adenosyl-Homocysteine (I incorrectly said S-adenosyl-homoserine in the lecture). 3. Phosphatidyl ethanolamine (and phosphatidyl choline - derived from phosphatidyl ethanolamine) can both be made independently of phosphatidic acid biosynthesis. For this pathway, CDP-ethanolamine is the activated intermediate and the phosphoethanolamine of it is added to diacylglycerol to form phosphatidylethanolamine. Phosphatidyl choline can be made by the same methylation scheme in point 4. 4. Sphingolipids are synthesized beginning with palmitoyl-CoA and serine. Addition of a fatty acid to the amine group yields a ceramide. Addition of sugars to a ceramide yields either a cerebroside (single sugar added) or a ganglioside (complex sugar added). 5. Deficiencies in enzymes that degrade sphingolipids (particularly cerebrosides and gangliosides) are linked to neural disorders. One such disorder is Tay-Sachs disease. 6. Cholesterol is an important component of membranes, particularly in the brain. Cholesterol can be synthesized totally from acetyl-CoA. 7. Steroids include all compounds synthesized from cholesterol.
    [Show full text]
  • Steroidal Triterpenes of Cholesterol Synthesis
    Molecules 2013, 18, 4002-4017; doi:10.3390/molecules18044002 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Steroidal Triterpenes of Cholesterol Synthesis Jure Ačimovič and Damjana Rozman * Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Zaloška 4, Ljubljana SI-1000, Slovenia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +386-1-543-7591; Fax: +386-1-543-7588. Received: 18 February 2013; in revised form: 19 March 2013 / Accepted: 27 March 2013 / Published: 4 April 2013 Abstract: Cholesterol synthesis is a ubiquitous and housekeeping metabolic pathway that leads to cholesterol, an essential structural component of mammalian cell membranes, required for proper membrane permeability and fluidity. The last part of the pathway involves steroidal triterpenes with cholestane ring structures. It starts by conversion of acyclic squalene into lanosterol, the first sterol intermediate of the pathway, followed by production of 20 structurally very similar steroidal triterpene molecules in over 11 complex enzyme reactions. Due to the structural similarities of sterol intermediates and the broad substrate specificity of the enzymes involved (especially sterol-Δ24-reductase; DHCR24) the exact sequence of the reactions between lanosterol and cholesterol remains undefined. This article reviews all hitherto known structures of post-squalene steroidal triterpenes of cholesterol synthesis, their biological roles and the enzymes responsible for their synthesis. Furthermore, it summarises kinetic parameters of enzymes (Vmax and Km) and sterol intermediate concentrations from various tissues. Due to the complexity of the post-squalene cholesterol synthesis pathway, future studies will require a comprehensive meta-analysis of the pathway to elucidate the exact reaction sequence in different tissues, physiological or disease conditions.
    [Show full text]
  • 6 Minute Walk Results
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date r i 1 /1 i 22 December 2011 (22.12.2011) » 2U1 1/159634ft Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/23 (2006.01) A61P 3/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US201 1/040234 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, JL, IN, IS, JP, KE, KG, KM, KN, KP, 13 June 201 1 (13.06.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/354,472 14 June 2010 (14.06.2010) US (84) Designated States (unless otherwise indicated, for every 13/159,329 13 June 201 1 (13.06.201 1) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): BAY¬ ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, LOR RESEARCH INSTITUTE [US/US]; 33 10 Live TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Oak Street, Suite 501, Dallas, TX 75204 (US).
    [Show full text]
  • Chemoprevention in Kidney Cancer by Madhur Nayan
    Chemoprevention in Kidney Cancer by Madhur Nayan A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy in Clinical Epidemiology, Graduate Department of Health Policy, Management, and Evaluation, in the University of Toronto © Copyright by Madhur Nayan, 2017 THESIS ABSTRACT Thesis Title: Chemoprevention in kidney cancer Degree: Doctor of Philosophy (PhD) in Clinical Epidemiology Year of Convocation: 2017 Student: Madhur Nayan Graduate Department: Health Policy, Management and Evaluation University: University of Toronto Background: This thesis is a composition of three studies that explore the role of statins in kidney cancer. Furthermore, I evaluate the potential for different interpretations from the same data depending on the method of classifying medication use. Methods: The first study was a population-based case-control study evaluating the association of statin use with risk of incident kidney cancer. The second study was a systematic review and meta-analysis reviewing the current evidence relating statins with kidney cancer survival outcomes. The final study was a population-based cohort study evaluating the association of statin use with survival. In the observational studies, I used fractional polynomials for the primary analysis to allow for a non-linear relationship between cumulative exposure and the risk of the outcome. I also compared risk estimates obtained by different methods of classifying medication exposure. Results: The population-based case-control study included 10,377 incident cases of kidney cancer and 35,939 matched controls. Increasing cumulative use of statins was not associated with kidney cancer risk. I identified 12 studies for inclusion in the systematic review and meta- analysis and found that statin use was significantly associated with markedly improved cancer- specific and overall survival.
    [Show full text]
  • Larodan - Product Register Date: 200528 Author: FLN Product Number Product Name Product Information CAS Purity Supplied As Solution Concentration Number
    Larodan - Product Register Date: 200528 Author: FLN Product number Product name Product information CAS Purity Supplied as Solution Concentration number 10-0300 Trianoic acid, g 79-09-4 >99% Neat 10-0300-13 Trianoic acid, 1 g 79-09-4 >99% Neat 10-0300-17 Trianoic acid, 10 g 79-09-4 >99% Neat 10-0300-9 Trianoic acid, 100 mg 79-09-4 >99% Neat 10-0400 Tetranoic acid, g 107-92-6 >99% Neat 10-0400-13 Tetranoic acid, 1 g 107-92-6 >99% Neat 10-0400-17 Tetranoic acid, 10 g 107-92-6 >99% Neat 10-0400-9 Tetranoic acid, 100 mg 107-92-6 >99% Neat 10-0500 Pentanoic acid, g 109-52-4 >99% Neat 10-0500-13 Pentanoic acid, 1 g 109-52-4 >99% Neat 10-0500-17 Pentanoic acid, 10 g 109-52-4 >99% Neat 10-0500-9 Pentanoic acid, 100 mg 109-52-4 >99% Neat 10-0600 Hexanoic acid, g 142-62-1 >99% Neat 10-0600-13 Hexanoic acid, 1 g 142-62-1 >99% Neat 10-0600-17 Hexanoic acid, 10 g 142-62-1 >99% Neat 10-0600-9 Hexanoic acid, 100 mg 142-62-1 >99% Neat 10-0700 Heptanoic acid, g 111-14-8 >99% Neat 10-0700-13 Heptanoic acid, 1 g 111-14-8 >99% Neat 10-0700-16 Heptanoic acid, 5 g 111-14-8 >99% Neat 10-0700-9 Heptanoic acid, 100 mg 111-14-8 >99% Neat 10-0800 Octanoic acid, g 124-07-2 >99% Neat 10-0800-13 Octanoic acid, 1 g 124-07-2 >99% Neat 10-0800-17 Octanoic acid, 10 g 124-07-2 >99% Neat 10-0800-9 Octanoic acid, 100 mg 124-07-2 >99% Neat 10-0900 Nonanoic acid, g 112-05-0 >99% Neat 10-0900-13 Nonanoic acid, 1 g 112-05-0 >99% Neat 10-0900-16 Nonanoic acid, 5 g 112-05-0 >99% Neat 10-0900-9 Nonanoic acid, 100 mg 112-05-0 >99% Neat 10-1000 Decanoic acid, g 334-48-5 >99% Neat
    [Show full text]
  • Fatty Acids & Derivatives
    Conditions of Sale Validity The Conditions of Sale apply to the written text in this Catalogue superseding earlier texts related to such conditions. Intention of Use Our products are intended for research purposes only. Prices See under Order Information. All prices in this catalogue are net prices in Euro, ex works. Taxes, shipping costs or other external costs demanded by the buyer are invoiced. Delivery See under Order Information – shipping terms. Payment terms Payment terms are normally net 30 days. Deductions are not accepted unless we have issued a credit note. We accept payment by credit card (Visa/ Mastercard), bank transfer (wiring) or by cheque. If payment by cheque we will add a bank fee to our invoice. Complaints Complaints about a product or products must be made inside 30 days from the invoice date. All claims must specify batch (lot) and invoice numbers. Return of goods will not be accepted unless authorized by us. Insurance Insurance will not be made unless otherwise instructed. Delays We cannot accept compensation claims due to delays or non-deliveries. We reserve us the right to withdraw from delivery due to long term shortage of starting materials, production breakdown or other circumstances beyond our control. Warranty and All products in this catalogue are warranted to be free of defects and in Compensation Claims accordance with given specifications. If this warranty does not comply with specifications, any indemnities will be limited to not exceed the price paid for the goods. Acceptance Placing of an order implies acceptance of our conditions of sale. We accept credit cards (Visa/ Mastercard) www.larodan.se [email protected] +46 40 16 41 55 1 Ordering Information You can easily order from Larodan – please contact our local distributor or us by phone, e-mail, fax or letter.
    [Show full text]