Novel Metal Complex Fire Retardants for Engineering Polymers

Total Page:16

File Type:pdf, Size:1020Kb

Novel Metal Complex Fire Retardants for Engineering Polymers NOVEL METAL COMPLEX FIRE RETARDANTS FOR ENGINEERING POLYMERS Submitted by: Alistair F. Holdsworth A thesis submitted to the University of Bolton in partial fulfilment of the requirements for the award of Doctor of Philosophy January 2015 i Declaration of Authorship I declare that the work described in this PhD thesis has not been previously presented in any form to the University or any other institutional body, whether for assessment or other purposes. Except for any references cited in this work, I confirm that the intellectual content of the work is the result of my own effort and no other person. Signed Date ii Acknowledgements I would like to thank my supervisors Professors Baljinder K. Kandola and A. Richard Horrocks, Doctor Gill Smart and the late Professor Dennis Price (R. I. P.) for their support, ideas and tolerance during the course of this project. I would further like to thank my industrial sponsors, William Blythe Ltd, Accrington, UK, for their funding, support and access to facilities, and to all the members of staff, past and present, who have contributed ideas and wisdom: Charles W. Milner, Dr. Greg DeRuiter, Dr. John Williams, Steve Barker, David Crossley, Jane Redmayne, Daniel Hilton, Arshad Ali, Danielle Hunter, Tracy Foulds and Sara Johnston-Hale. I thank my colleagues and support staff: Dr. John Milnes, Piyanuch Luangtriratana, Wiwat Pornwannachai, Latha Krishnan, Ahilan Sitpalan, Katie Williams, Akbar Zarei and Shahram Shafiee, and those at the University of Manchester Chemistry Department for their support, use of facilities and help with interpretation: Prof. David Collison and Joseph Sharples for EPR spectroscopy, Dr. Robin Pritchard for XRD analysis and Martin Jennings and his team for XRF analysis. Finally I would like to thank my family for the help and support provided to get through this endeavour. iii Novel Multifunctional Fire and Smoke Retardants for Engineering Polymers Abstract: The aims of this project were to develop non-halogenated, non-toxic and environmentally benign synthetic inorganic compounds capable of imparting flame retardant and/or synergistic activity with selected conventional flame retardants to selected engineering polymer systems. Following a comprehensive literature survey with specific focus centred upon the degradation and fire retardancy of polyamide 6,6 (PA66), an initial study of the effect of several metal oxalates on the burn rate of impregnated cotton in combination with sources of bromine and phosphorus was performed, with some promising synergistic activity detected with the former. Following this, a matrix of potential non-toxic inorganic flame retardant candidates (FRCs) was devised from a range of non-toxic, water-soluble precursors. And 180 FRCs were successfully synthesised and a cursory characterisation was conducted using X-Ray Fluorescence (XRF). These were screened for potential flame retardant properties with polyamide 6,6 (PA66) as a suitable engineering polymer. PA66 pellets were powdered and mixed with each FRC in 3:1 mass ratio, and subjected to simultaneous differential thermal analysis/thermogravimetric analysis (TGA/DTA), to which a range of selection parameters were applied, assessing their stability and char-forming potential. All FRCs which did not conform to these conditions were eliminated, reducing the number to 60. Differential mass analysis was performed on TGAs of the 60 FRCs to better define their char promotion potential in PA66, thereby narrowing these down to 16 samples: aluminium, zinc and tin (II) tungstates (AlW, ZnW and SnW respectively); zinc molybdate (ZnMo); iron aluminate (FeAl); iron (III) hypophosphite (FeHP); zinc oxalate (ZnOx); three stannic metal nitrite complexes (SnMNO where M = Mn, Cu or Zn), tin (II) oxide (SnO), hydrogenphosphite (SnH2PO3), triphosphate (SnTP) and phenylphosphonate (SnPhPO3); and tin (IV) silicate (SnSi). The 16 selected were synthesised on a larger scale and fully characterised, of which 6 were discounted due to difficulties in synthesis scaling, or characterisation. The final 10 FRCs were selected for small-scale fire testing in PA66 (at 5 wt%), using UL94, LOI and cone calorimetry with additional analysis provided by TGA/DTA. All samples were prepared by melt compounding, during which two of the samples (ZnMo and FeHP) displayed erroneous activity during processing and so were eliminated. The remaining 8 FRCs had little effect on PA66 LOI performance with only two samples (AlW and SnW) marginally improving UL94 performance. All samples reduced cone peak heat release rate (PHRR) to levels ranging from 70 % (ZnW) to 53 % (FeAl) compared to the PA66 control. Two FRCs (SnPhPO3 and SnH2PO3) incorporated at a higher level (10 wt%) showed improved performance iv although insufficient for achieving acceptable levels of flame retardancy. Further studies were undertaken to test potential synergism of the FRCs with several phosphorus- and bromine- containing flame retardants. Combinations of 3 phosphorus-containing flame retardants (PFRs) with each of the 4 FRCs, FeAl, AlW, SnW and ZnW were studied. A degree of synergy with AlW and SnW combined with aluminium phosphinate (AlPi) was observed and for SnW with a combination of AlPi with melamine polyphosphate (MPP) with respect to UL94 and LOI performance. A moderate reduction in cone PHRR was observed for all FRCs combined with AlPi, and a significant reduction for all with AlPi/MPP. AlW, SnW and ZnW combined with MPP showed moderate improvements in UL94 and LOI and slight reductions in PHRR relative to the MPP control. These results indicate a degree of synergism of several FRCs with PFRs, the greatest effect being observed with the combined vapour and condensed-phase active AlPi/MPP. Two polymeric brominated flame retardants (BrFRs) were selected: brominated polystyrene, (BrPS) and poly(pentabromopolybenzl acrylate (BrPBz), and were compounded with AlW, ZnW and SnW into PA66. AlW displayed significant antagonism with both BrFRs while SnW and ZnW both showed promising improvements in terms of UL94 and LOI performance and significant reductions in cone-derived PHRR values. These results were replicated at various differing Sn:Br and Zn: Br molar ratios. Mechanisms of action of AlW, SnW and ZnW were studied with both PFRs and BrFRs using TGA- FTIR and analysis of cone-derived chars. Based on the detailed analysis, the inherent action of these tungstates alone was proposed to be condensed phase, Lewis-acid catalysed cross-linking of PA66), thereby promoting the formation of char, whereas any vapour phase activity for the FRCs such as SnPhPO3 and SnH2PO3 could originate from volatilisation of either phosphorus or metal (Sn, Fe, Zn) acting as vapour-phase radical quenching agents. With regards to the specific mechanism of action of the tungstates with other flame retardant elements, in combination with BrFRs, formation of metal halides and oxyhalides are proposed to contribute to condensed-phase char promotion and vapour-phase radical quenching. In combination with PFRs, increased chain cross-linking promotes the formation of greater char, stabilised by the presence of phosphorus groups and metal oxide residues, coupled with vapour phase activity inherent to AlPi. In conclusion, of 180 FRCs synthesised and screened for potential FR behaviour in PA66, the tungstates in particular were observed to possess both some level of flame retardant behaviour as well as function as synergists with selected phosphorus- and bromine-containing flame retardants. A method for screening future FRCs was also developed. v Contents Section Title Page Declaration of Authorship i Acknowledgements ii Abstract iii Contents v List of Figures xi List of Tables xv 1 Overview, Aims and Objectives 1 1.1 Introduction and Aims 1 1.2 Objectives 1 1.3 Thesis Structure 2 2 Literature Review 4 2.1 Introduction, History and Overview 4 2.2 Fire and Combustion 5 2.3 Polymer Degradation 9 2.3.1 Environmental Degradation 10 2.3.2 Thermal Degradation Mechanisms 12 2.3.2.1 End-Chain Scission 13 2.3.2.2 Random-Chain Scission 14 2.3.2.3 Chain-Stripping Degradation 17 2.3.2.4 Cross-Linking and Char Formation 18 2.4 Polyamide 6,6 19 2.4.1 Structure and Properties 20 2.4.2 Thermal Degradation of PA66 21 2.4.3 Inert Atmosphere Degradation 23 2.4.4 More Detailed Degradation Studies of PA66 25 2.4.5 Oxidative and Environmental Degradation 27 2.5 Flame Retardants: Mechanisms of Action 29 2.5.1 Physically Acting Flame Retardants 29 2.5.2 Chemically Acting Flame Retardants 31 2.5.3 Synergy 37 2.6 Flame Retardancy of PA66: Systems and Synergy 41 2.6.1 Brominated Flame Retardant Systems 41 2.6.2 Phosphorus Flame Retardant Systems 42 vi 2.6.3 Other Flame Retardant Systems 43 2.6.4 Smoke Production 43 2.6.5 Conclusions and Relation to the Project 44 2.7 Determination of the Mechanisms of Action of Flame Retardant 44 Compounds and Fire Performance Testing of Flame-Retardant Polymer Composites 2.7.1 Vapour-Phase Analysis 45 2.7.2 Spectroscopic Flame Analysis 47 2.7.3 Residue Analysis 47 2.7.4 Small Scale Fire Testing 48 References 51 3 Experimental 56 3.0 Introduction 56 3.1 Thermal Analysis for Screening for Flame Retardant Candidates 56 and Thermal Stability Testing 3.1.1 Simultaneous Thermogravimetric Analysis/Differential Thermal 57 Analysis (TGA/DTA) 3.1.2 Thermogravimetric Analysis Coupled to Fourier-Transform 58 Infra-Red Spectroscopy (TGA-FTIR) 3.2 Compounding of PA66 Samples 59 3.3 Fire Performance Testing 61 3.3.1 UL94 61 3.3.2 Limiting Oxygen Index (LOI) 61 3.3.3 Cone Calorimetry 61 3.3.4 TGA/DTA Analysis
Recommended publications
  • Nylons: a Review of the Literature on Products of Combustion and Toxicity
    — |MH|||| I A111DS l&BTIO NBSIR 85-3280 Nylons: A Review of the Literature on Products of Combustion and Toxicity NBS Reference PUBLICATIONS Emil Braun Barbara C. Levin U S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899 February 1986 Sponsored in part by: U.S. Consumer Product Safety Commission — • q c — asda, MD 20207 100 • U56 85-3280 1986 NBS keseaech informattojt CENTER NBSIR 85-3280 NYLONS: A REVIEW OF THE LITERATURE ON PRODUCTS OF COMBUSTION AND TOXICITY Emil Braun Barbara C. Levin U S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899 February 1986 Sponsored in part by: U.S. Consumer Product Safety Commission Bethesda, MD 20207 U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS. Ernest Ambler. Director 21 TABLE OF CONTENTS Page LIST OF TABLES iv LIST OF FIGURES vii ABSTRACT 1 1.0 INTRODUCTION 2 2.0 CHEMICAL STRUCTURE AND THERMOPHYSICAL PROPERTIES 4 3.0 DECOMPOSITION 5 3.1 VACUUM PYROLYSIS 7 3.2 DECOMPOSITION IN INERT AND AIR ATMOSPHERES 8 3.2.1 GENERAL DECOMPOSITION PRODUCTS 8 3.2.2 SPECIFIC GAS SPECIES 11 3.2.2. PURE MATERIALS 11 3. 2. 2. COMPOSITE MATERIALS 14 4.0 TOXICITY 17 4.1 DIN 53 436 19 4.2 FAA TOXICITY PROTOCOL 20 4.3 NASA/USF TOXICITY PROTOCOL 22 4.5 MISCELLANEOUS 27 5.0 LARGE-SCALE TESTS 31 6.0 CONCLUSIONS 35 7.0 ACKNOWLEDGEMENTS 36 8.0 REFERENCES 37 iii LIST OF TABLES Page TABLE 1.
    [Show full text]
  • Table of Contents
    Safety Assessment of Nylon as Used in Cosmetics Status: Final Report Release Date: April 12, 2013 Panel Meeting Date: March 18-19, 2013 The 2013 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is F. Alan Andersen, Ph.D. This report was prepared by Christina Burnett, Scientific Analyst/Writer, and Bart Heldreth, Ph.D., Chemist CIR. Cosmetic Ingredient Review 1101 17th Street, NW, Suite 412 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] ABSTRACT The Cosmetic Ingredient Review Expert Panel (the Panel) reviewed the safety of nylon polymers, which function in cosmetics primarily as bulking and opacifying agents. The Panel reviewed relevant animal and human data related to these large polymers and determined that they are not likely to penetrate the skin. Whatever residual monomers may be present were not present at a sufficient level to cause any reactions in test subjects at the maximum ingredient use concentration. Accordingly, the Panel concluded that these ingredients are safe in the present practices of use and concentration. INTRODUCTION In the 1930’s, Carothers and co-workers pioneered the synthesis of the first commercially viable synthetic fibers, polyamides.1 The initial commercial application of these polyamides, specifically nylon 6/6, was women’s hosiery.
    [Show full text]
  • Modelling and Comparative Assessment of Polyamide-6 Manufacturing Towards a Sustainable Chemical Industry
    Modelling and Comparative Assessment of Polyamide-6 Manufacturing towards a Sustainable Chemical Industry Hendrikus Hubertus omas Herps ISBN: 978-94-6416-054-3 DOI: https://doi.org/10.33540/61 Print: Ridderprint | www.ridderprint.nl Layout: Publiss | www.publiss.nl Modelling and Comparative Assessment of Polyamide-6 Manufacturing towards a Sustainable Chemical Industry Modellering en comparatieve beoordeling van Polyamide-6 productie op weg naar een duurzame chemische industrie (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnicus, prof.dr. H.R.B.M. Kummeling, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op vrijdag 6 november 2020 des middags te 4.15 uur door Hendrikus Hubertus omas Herps geboren op 3 juni 1955 te Maastricht Promotor: Prof. dr. E. Worrell Copromotor: Dr. M. Gazzani veur mien kleinkinder vaan ampa Table of contents Table of contents 7 Units and abbreviations 11 1. Introduction 15 1.1. National and international environmental policies 16 1.2. Consequences for the chemical industry 16 1.3. Objectives of the dissertation research 19 Objective 1: methodology 19 Objective 2: polyamide-6 route designs 23 Objective 3: environmental assessment and comparison of PA-6 manufacturing routes 28 1.4. Outline of the thesis 29 2. Methodological characterization of PA-6 manufacturing routes 31 2.1. General outline of pathways to PA-6 32 2.2. System boundaries 33 Use of system boundaries 35 Detailed scoping and assumptions 37 2.3. Material- and energy ows 37 2.4.
    [Show full text]
  • Outlining the Mechanism of Flame Retardancy in Polyamide 66
    Fire Safety Journal 70 (2014) 46–60 Contents lists available at ScienceDirect Fire Safety Journal journal homepage: www.elsevier.com/locate/firesaf Outlining the mechanism of flame retardancy in polyamide 66 blended with melamine-poly(zinc phosphate) Anil D. Naik a, Gaëlle Fontaine a, Fabienne Samyn a, Xavier Delva b, Jérémie Louisy b, Séverine Bellayer a, Yann Bourgeois b, Serge Bourbigot a,n a ISP/UMET—UMR/CNRS 8207, Ecole Nationale Supérieure de Chimie de Lille (ENSCL), Avenue Dimitri Mendeleïev—Bât. C7a, BP 90108, 59652 Villeneuve d’Ascq Cedex, France b Floridienne Chimie, 12 Quai des Usines, 7800 Ath, Belgium article info abstract Article history: Glass-fiber reinforced polyamide 66 is flame retarded with a mixture of melamine-poly(zinc phosphate), Received 16 May 2014 (Safires400) and diethyl aluminium phosphinate. The performance of this synergistic combination of Received in revised form additives is multi-modal and a comprehensive investigation is undertaken to elucidate the underlying 27 August 2014 flame retardancy mechanism. The strategy was to characterize the different chemical species responsible Accepted 31 August 2014 for flame retardancy that are generated in gas and condensed phases under different fire scenarios. Available online 10 October 2014 Following heat release rate (HRR) curve of flame retarded polyamide formulations obtained by mass loss Keywords: calorimeter, samples in different stages of degradation are collected and investigated. Further flame Flame retardancy retardants and formulations were degraded in tubular
    [Show full text]
  • An Industrial Process for the Production of Nylon 6 6 Through the Step-Growth Reaction of Adipic Acid and Hexamethylenediamine
    University of Arkansas, Fayetteville ScholarWorks@UARK Chemical Engineering Undergraduate Honors Chemical Engineering Theses 5-2017 An industrial process for the production of nylon 6 6 through the step-growth reaction of adipic acid and hexamethylenediamine David Wallace Jacobson University of Arkansas Follow this and additional works at: http://scholarworks.uark.edu/cheguht Part of the Polymer Science Commons Recommended Citation Jacobson, David Wallace, "An industrial process for the production of nylon 6 6 through the step-growth reaction of adipic acid and hexamethylenediamine" (2017). Chemical Engineering Undergraduate Honors Theses. 104. http://scholarworks.uark.edu/cheguht/104 This Thesis is brought to you for free and open access by the Chemical Engineering at ScholarWorks@UARK. It has been accepted for inclusion in Chemical Engineering Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. An industrial process for the production of nylon 6 6 through the step-growth reaction of adipic acid and hexamethylenediamine Authors: David Jacobson, University of Arkansas Department of Chemical Engineering Date of Submittal: 3/3/2017 1 Section 3: Table of Contents Contents Section 1: Letter of Transmittal ................................................................................................................ * Section 2: Title Page ...................................................................................................................................
    [Show full text]
  • Lifting the Lid on Nylon 6 and Nylon 66
    0845 34 54 560 Lifting the lid on Nylon 6 and Nylon 66 @plastribution www.plastribution.co.uk Supply & Demand Supply Supply Differences PA6 – Manufacture Demand The protracted tight supply Demand Whilst Nylon 6 and 66 often Nylon 6 is produced by a splitting a single feedstock, situation for all engineering get talked about together, Caprolactam. The ring structure is opened and then polymers continues along with PA6 PA66 they are quite different. Their polymerised to form the long chain structure. the inevitable consequence chemical structure and supply of price increases. There appears to be some There has been some positive chains are very distinct and small improvements in the news with the upstream this has led to the very specific The problems in the supply supply of base feedstocks, production of ADN; however issues seen in the Nylon 66 of Nylon are especially however PA6 will remain it will take many months market over recent months. critical - here is an extract tight in the short term. Most for the supply chain to be from our monthly report on producers have rolled over replenished. The availability of The following content aims the polymer market called pricing on PA6 for May, but PA66 remains extremely tight to further explain the key price know-how . You can costs will remain high with with no relief expected. Further differences between the two. access price know-how by no reductions anticipated price increases into May are subscribing to our content for the foreseeable future. forecast, as supply is very Hub at: www.plastribution. tight and demand still strong Polyamides (Nylon) PA66 – Manufacture co.uk/knowhow-hub even with two bank holidays.
    [Show full text]
  • Assessing the Conversion of Various Nylon Polymers in the Hydrothermal Liquefaction of Macroalgae
    environments Article Assessing the Conversion of Various Nylon Polymers in the Hydrothermal Liquefaction of Macroalgae Sukanya Hongthong 1,2,*, Hannah S. Leese 2, Michael J. Allen 3,4 and Christopher J. Chuck 2 1 Department of Production Engineering, Chaiyaphum Rajabhat University, Chaiyaphum 36000, Thailand 2 Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; [email protected] (H.S.L.); [email protected] (C.J.C.) 3 Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK; [email protected] 4 College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK * Correspondence: [email protected]; Tel.: +66-840029670 Abstract: Marine macroalgae offers a promising third generation feedstock for the production of fuels and chemicals, avoiding competition with conventional agriculture and potentially helping to improve eutrophication in seas and oceans. However, an increasing amount of plastic is distributed into the oceans, and as such contaminating macroalgal beds. One of the major plastic contaminants is nylon 6 derived from discarded fishing gear, though an increasing amount of alternative nylon polymers, derived from fabrics, are also observed. This study aimed to assess the effect of these nylon contaminants on the hydrothermal liquefaction of Fucus serratus. The hydrothermal liquefaction (HTL) of macroalgae was undertaken at 350 ◦C for 10 min, with a range of nylon polymers (nylon 6, nylon 6/6, nylon 12 and nylon 6/12), in the blend of 5, 20 and 50 wt.% nylon to biomass; 17 wt.% biocrude was achieved from a 50% blend of nylon 6 with F.
    [Show full text]
  • Glass Filled Polyamide 66
    Eco-profiles of the European Plastics Industry GLASS FILLED POLYAMIDE 66 A report by I Boustead for Plastics Europe Data last calculated March 2005 n66g 1 IMPORTANT NOTE Before using the data contained in this report, you are strongly recommended to look at the following documents: 1. Methodology This provides information about the analysis technique used and gives advice on the meaning of the results. 2. Data sources This gives information about the number of plants examined, the date when the data were collected and information about up-stream operations. In addition, you can also download data sets for most of the upstream operations used in this report. All of these documents can be found at: www.plasticseurope.org. Plastics Europe may be contacted at Ave E van Nieuwenhuyse 4 Box 3 B-1160 Brussels Telephone: 32-2-672-8259 Fax: 32-2-675-3935 n66g 2 CONTENTS NYLON 66 ................................................................................................................................4 THE PRODUCTION OF GLASS FILLED NYLON 66 ......................................................5 ECO-PROFILE OF GLASS FILLED NYLON 66 ...............................................................6 n66g 3 NYLON 66 The polyamides are a group of polymers characterised by a carbon chain with -CO-NH- groups interspersed at regular intervals along it (See Figure 1). They are commonly referred to by the generic name nylon and may be produced by the direct polymerisation of amino-acids or by the reaction of a diamine with a dibasic acid. Different nylons are usually identified by a numbering system which refers to the number of carbon atoms between successive nitrogen atoms in the main chain. Polymers derived from amino-acids are referred to by a single number; for example, nylon-6 is polycaprolactam.
    [Show full text]
  • Hydrogenation of Adiponitrile to Hexamethylenediamine Over Raney Ni and Co Catalysts
    applied sciences Article Hydrogenation of Adiponitrile to Hexamethylenediamine over Raney Ni and Co Catalysts Younghyun Lee 1, Sung Woo Lee 2, Hyung Ju Kim 2, Yong Tae Kim 2 , Kun-Yi Andrew Lin 3 and Jechan Lee 1,4,* 1 Department of Environmental Engineering, Ajou University, 206 Worldcup-ro, Suwon 16499, Korea; [email protected] 2 C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Korea; [email protected] (S.W.L.); [email protected] (H.J.K.); [email protected] (Y.T.K.) 3 Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 402, Taiwan; [email protected] 4 Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Suwon 16499, Korea * Correspondence: [email protected] Received: 13 October 2020; Accepted: 23 October 2020; Published: 26 October 2020 Abstract: Hexamethylenediamine (HMDA), a chemical for producing nylon, was produced on Raney Ni and Raney Co catalysts via the hydrogenation of adiponitrile (ADN). HMDA was hydrogenated from ADN via 6-aminohexanenitrile (AHN). For the two catalysts, the effects of five different reaction parameters (reaction temperature, H2 pressure, catalyst loading, and ADN/HMDA ratio in the reactant) on the hydrogenation of ADN were investigated. Similar general trends demonstrating the dependence of ADN hydrogenation on the reaction conditions for both catalysts were observed: higher temperature (60–80 ◦C) and H2 pressure, as well as lower ADN/catalyst and ADN/HMDA ratios, led to higher HMDA yields.
    [Show full text]
  • MANUFACTURING FACILITY for NYLON 6,6 Mia an Grant Spencer Laura Beth Stover Michael Thomma March 9Th, 2017
    MANUFACTURING FACILITY FOR NYLON 6,6 Mia An Grant Spencer Laura Beth Stover Michael Thomma th March 9 , 2017 Table of Contents List of Tables ................................................................................................................................................. 3 List of Figures ................................................................................................................................................ 4 Abstract ......................................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Process Description: .................................................................................................................................... 10 Energy Balance and Utility Requirements .................................................................................................. 13 Unit Descriptions – Primary Equipment ..................................................................................................... 15 Fixed Capital Investment Summary ............................................................................................................ 37 Safety .......................................................................................................................................................... 39 Health .........................................................................................................................................................
    [Show full text]
  • Industrial Chemicals, Ashfords Dictionary, Chemical Name Index
    2 Chemical name index A A ACA 4-AA ACA AA ACAC AA acamprosate calcium AAA acarbose AABA ACB AADMC 7-ACCA AAEM ACE AAMX acebutolol AAOA aceclidine AAOC aceclofenac AAOT acemetacin AAPP acenaphthene AAPT acenocoumarol 4-ABA acephate ABA acepromazine abacavir acequinocyl ABAH acesulfame-K abamectin acetaldehyde ABFA acetaldehyde ethyl phenethyl diacetal ABL acetaldehyde oxime ABPA acetaldehyde n-propyl phenethyl diacetal ABS acetaldoxime ABS acetal resins O-ABTF acetal resins P-ABTF acetamide ACN acetamidine hydrochloride 7-ACA 5-acetamido-2-aminobenzenesulfonic acid 7-ANCA 6-acetamido-2-aminophenol-4-sulfonic acid Name Index: Ashford’s Dictionary of Industrial Chemicals 3-acetamidoaniline 3-acetamidoaniline acetic acid, s-butyl ester 4-acetamidoaniline acetic acid, calcium salt p-acetamidoanisole acetic acid, chromium salt 4-acetamidobenzenesulfonyl chloride acetic acid, cinnamyl ester 2-acetamidocinnamic acid acetic acid, citronellyl ester 3-acetamido-2-hydroxyaniline-5-sulfonic acid acetic acid, cobalt salt 1-acetamido-7-hydroxynaphthalene acetic acid, decahydro-β-naphthyl ester 8-acetamido-1-hydroxynaphthalene-3,6-disulfonic acid acetic acid, dicyclopentenyl ester 1-acetamido-7-naphthol acetic acid, diethylene glycol monobutyl ether ester 4-acetamidonitrobenzene acetic acid, 2-ethoxyethyl ester p-acetamidophenol acetic acid, ethoxypropyl ester 3-acetamidopropylsulfonic acid, calcium salt acetic acid, ethyl diglycol ester 5-acetamido-2,4,6-triiodo-N-methylisophthalamic acid acetic acid, ethylene glycol diester 4-acetamido-2-ethoxybenzoic
    [Show full text]
  • “Manufacturing Facility for Nylon 6 6”
    “Manufacturing Facility for Nylon 6 6” DEADLINE FOR ELECTRONIC SUBMISSION TO AIChE IS MIDNIGHT, Friday, June 16, 2017. Project Background and Motivation Nylon 6 6 is a co-polymer produced via step-growth polymerization of Adipic Acid and Hexamethylene diamine (HMDA). The two monomers each have 6 carbon atoms, which is what gives Nylon 6 6 its name. Nylon 6 6 is a widely used chemical product in a variety of industries, including textiles. The reaction chemistry is illustrated below: [1] Process Description Nylon 6 6 is synthesized by polycondensation of hexamethylenediamine and adipic acid. Equivalent amounts of hexamethylenediamine and adipic acid are combined with water in a reactor. This is crystallized to make nylon salt, which has precisely stoichiometric equivalents. The nylon salt goes into a reaction vessel where polymerization process takes place either in batches or continuously (this choice is up to each individual group, but you must justify your decision!). Removing water drives the reaction toward polymerization through the formation of amide bonds from the acid and amine functions. Thus molten nylon 6 6 is formed. It can either be extruded and granulated at this point or directly spun into fibers by extrusion through a spinneret (a small metal plate with fine holes) and cooling to form filaments (your choice!). [2] Design Requirements Your task is to prepare a complete economic analysis for building a grass roots plant to produce 85MM lbs/yr of Nylon 6 6 from Adipic Acid and HMDA. You may assume that the plant will be built in the Calvert City, Kentucky area.
    [Show full text]