Modelling and Comparative Assessment of Polyamide-6 Manufacturing Towards a Sustainable Chemical Industry
Total Page:16
File Type:pdf, Size:1020Kb
Modelling and Comparative Assessment of Polyamide-6 Manufacturing towards a Sustainable Chemical Industry Hendrikus Hubertus omas Herps ISBN: 978-94-6416-054-3 DOI: https://doi.org/10.33540/61 Print: Ridderprint | www.ridderprint.nl Layout: Publiss | www.publiss.nl Modelling and Comparative Assessment of Polyamide-6 Manufacturing towards a Sustainable Chemical Industry Modellering en comparatieve beoordeling van Polyamide-6 productie op weg naar een duurzame chemische industrie (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnicus, prof.dr. H.R.B.M. Kummeling, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op vrijdag 6 november 2020 des middags te 4.15 uur door Hendrikus Hubertus omas Herps geboren op 3 juni 1955 te Maastricht Promotor: Prof. dr. E. Worrell Copromotor: Dr. M. Gazzani veur mien kleinkinder vaan ampa Table of contents Table of contents 7 Units and abbreviations 11 1. Introduction 15 1.1. National and international environmental policies 16 1.2. Consequences for the chemical industry 16 1.3. Objectives of the dissertation research 19 Objective 1: methodology 19 Objective 2: polyamide-6 route designs 23 Objective 3: environmental assessment and comparison of PA-6 manufacturing routes 28 1.4. Outline of the thesis 29 2. Methodological characterization of PA-6 manufacturing routes 31 2.1. General outline of pathways to PA-6 32 2.2. System boundaries 33 Use of system boundaries 35 Detailed scoping and assumptions 37 2.3. Material- and energy ows 37 2.4. Comparison of processes 39 2.5. Eciency of molecular process steps (system boundary 3) 41 Carbon consumption 41 Balancing Equation 43 Energy Balance 45 2.6. Eciency of entire process routes (system boundaries 1, 2, 3) 47 Balancing Equation of entire routes 48 2.7. Energy analysis 49 Exergy analysis 49 Primary energy demand 49 2.8. Carbon dioxide emissions 50 7 3. Polyamide-6 production starting from benzene and ammonia 53 3.1. Process design of polyamide-6 production starting from benzene and ammonia 57 Benzene hydrogenation 58 Cyclohexane oxidation 60 Cyclohexanol dehydrogenation 65 Hydroxylamine preparation 66 Cyclohexanone oximation 70 Beckmann rearrangement 71 e-Caprolactam recovery 72 Polymerization of ε-caprolactam 74 3.2. Mass and energy balances 77 Balancing Equation from BBBs to PA-6 77 Raw material consumption and product and waste production 78 Energy balances 81 4. Polyamide-6 production starting from 1,3-butadiene and hydrogen cyanide 85 4.1. Process design of polyamide-6 production starting from 1,3-butadiene and hydrogen cyanide 87 Hydrocyanation of 1,3-butadiene to pentenenitriles 87 Hydrocyanation of pentenenitriles to adiponitrile 91 Hydrogenation of adiponitrile to 6-aminocapronitrile 93 Polymerization of 6-aminocapronitrile 96 4.2. Mass and energy balances 100 Balancing Equation from BBBs to PA-6 100 Raw material consumption and product and waste production 100 Energy balances 102 5. Polyamide-6 production starting from glucose and ammonia 107 5.1. Process design of polyamide-6 production starting from glucose and ammonia 110 Fermentation of glucose (Frost routes and ACA route) 112 Frost route 112 ACA route 113 8 Ion exchange purication (Frost routes or ACA route) 116 ε-Caprolactam production from L-lysine (Frost routes) 117 Cyclisation of lysine 117 Deamination of α-amino-ε-caprolactam 120 Polymerization (Frost and ACA route) 124 5.2. Mass and energy balances 127 5.2.1. Frost and Frost PLUS manufacturing route 127 Balancing Equation from BBBs to PA-6 127 Raw material consumption and product and waste production 128 Energy balances 131 5.2.2. ACA manufacturing route 133 Balancing Equation from BBBs to PA-6 133 Raw material consumption and product and waste production 135 Energy balances 137 Sensitivity of biobased manufacturing routes 140 6. Comparative material, energy and GHG assessment of PA-6 manufacturing 143 6.1. Accuracy of the modelling results 145 6.2. Background for the assumptions of the applied energy resources 147 6.3. Material consumption 147 Carbon consumption 147 Practical and environmental constraints and drawbacks 149 6.4. Energy consumption 151 Energy eciency 151 Primary Energy Demand comparison 155 Practical constraints and drawbacks 157 6.5. Fossil carbon dioxide emission 157 7. Summary, conclusions and recommendations 159 7.1. Background 160 7.2. Objectives of the dissertation research 161 7.3. Main ndings and key results 162 Objective 1 162 Objective 2 164 9 Objective 3 164 7.4. Limitations of the research 169 7.5. Further research 169 8. Samenvatting, conclusies en aanbevelingen 171 8.1. Achtergrond 172 8.2. Doelstellingen van het onderzoek 173 8.3. Belangrijkste bevindingen en resultaten 174 Doelstelling 1 174 Doelstelling 2 176 Doelstelling 3 176 8.4. Beperkingen van het onderzoek 181 8.5. Verder onderzoek 182 References 183 Acknowledgement 191 Curriculum Vitae 193 Appendix A: Primary Energy Demand of Basic Building Blocks 194 Appendix B: Design criteria, assumptions and conditions of the main equipment in the Aspen simulation model for the production of polyamide-6 from benzene and ammonia 197 Appendix C: Design criteria, assumptions and conditions of the main equipment in the Aspen simulation model for the production of polyamide-6 from 1,3-butadiene and hydrogen cyanide 208 Appendix D: Design criteria, assumptions and conditions of the main equipment in the Aspen simulation model for the production of polyamide-6 from glucose and ammonia 214 Appendix E: Method to calculate enthalpy and entropy of polyamide-6 chains 223 10 Units and abbreviations EJ Exa Joule (1018) Kelvin (k)g (Kilo)gram kJ Kilo Joule (103) kPa Kilo Pascal (103) kton Kiloton (103) kW Kilo Watt (103) L Liter MJ Mega Joule (106) MPa Mega Pascal (106) mton/mt Metric ton (1000 kg) Cp Heat capacity ΔEx Exergy loss ΔfH Enthalpy of formation 0 ΔfH Standard enthalpy of formation ΔrH Enthalpy of reaction 0 ΔrH Standard enthalpy of reaction h Enthalpy of processing stream at P, T [ in kW] h0 Enthalpy of processing stream at P0, T0 [in kW] k Eciency factor in condensate recycling Mn Molecular weight P Pressure P0 Atmospheric pressure [0.1 MPa] pH Scale used to specify the acidity or basicity of an aqueous solution pKa Scale used to specify acid dissociation Pn Polymerization degree S Entropy of processing stream at P, T [in kW] S0 Entropy of processing stream at P0, T0 [in kW] Sf Entropy of formation Sr Entropy of reaction T Temperature Tm Melting temperature T0 Temperature at environmental conditions [298.15 K] α Strength factor (mol/mol ratio) SO3 in oleum β Factor related to the thermodynamically required minimum amount of energy in hydrogen production (methane reforming) 11 6-ACA 6-aminocaproic acid ACN 6-aminocapronitrile ADN Adiponitrile AKA α-ketoadipate AKG α-ketogluterate AKP α-keto pimelate ALCA Attributional Life Cycle Assessment ANOL Cyclohexanol ANON Cyclohexanone AS Ammonium sulphate ATP Adenosine triphosphate BBB Basic Building Block BD 1,3-butadiene BPh3 Triphenyl borane BTX Benzene Toluene Xylene C3AC Propionic acid C3Salt Potassium propionate CED Cumulative Energy Demand CH3SH Methane thiol CCS Carbon capture and storage CCU Carbon capture and use CFP Carbon footprint CHHP Cyclohexyl hydroperoxide CHX Cyclohexane CLCA Consequential Life Cycle Assessment CPL Caprolactam CW Cooling water DIMERIC Dimeric product in Butadiene route EPD Environmental Product Declaration ESN Ethylsuccinonitrile EU European Union GHG Greenhouse gas GS Generated steam GWP Global Warming Potential HCN Hydrogen cyanide HDDCS Heat drain deep cooling system HMDA Hexamethylene diamine HMF 5-hydroxymethylfurfural 12 HPO Hydroxylamine Phosphate Oximation HSNO Hydroxylamine Sulphate Nitrogen Oxide HSO Hydroxylamine Sulphate Oximation IMINE 6-aminocaproimine IPCC Intergovernmental Panel on Climate Change KA-oil Keton-Alcohol-oil (cyclohexanone/cyclohexanol) KNAW Koninklijke Nederlandse Akademie van Wetenschappen LA Levulinic acid LCA Life Cycle Assessment LCI Life Cycle Inventory LCIA Life Cycle Impact Assessment Metaboli Intermediate product in glucose fermentation (modelled as pyruvic acid) NAD(P)H Nicotinamide adenine dinucleotide phosphate NGO Non-Governmental Organization NRM Natural Raw Material NRTL Non-random-two-liquid equation of state 2M3BN 2-methyl-3-butenenitrile 2MGN 2-methylglutaronitrile PA-6/PA6 Polyamide-6 (Nylon-6) PED Primary Energy Demand PN Pentenenitrile Radfrac Aspen model to simulate a multistage vapour-liquid fractionation RED Renewable Energy Directive (EU) RK Redlich-Kwong equation of state SC Steam condensate THA Tetrahydroazepine THF Tetrahydrofuran VCH Vinyl cyclohexene VK Vereinfacht kontinuierlich (polymerization column) VNCI Vereniging van de Nederlandse Chemische Industrie 13 Introducti on 1 Chapter 1 Environmental issues such as climate change become increasingly important for our society as we face the challenges of limited natural resources and growing human population, with a growing middle class in economically emerging regions aspiring to a higher standard of living. Persisting greenhouse gas emissions seriously aect climate change. e annual global emission of carbon dioxide (as main greenhouse gas) increased to 30–35 gigaton CO2 by 2019. Most of it (80%) originates from the burning of fossil fuels to generate heat and electricity (1)(2). Globally, the contribution of industry is approximately 25% (1). e annual CO2 emission in the Netherlands was 179.3 megatons in 2018. e direct contribution of industry was 36.7 megatons (21%) and energy generation (industry and public) contributes for 58.2 megatons (3). 1.1 National and international environmental policies Following the Paris Agreement (4), national policies such as the Dutch ‘Energieakkoord’ (5) and other national and international agreements based on the 2015 United Nations Climate Change Conference in Paris aim at intensive reduction of greenhouse gas (GHG) emissions. Carbon dioxide (CO2) emissions will have to be net-zero between 2040 and 2060, according to the IPCC (Intergovernmental Panel on Climate Change) scenarios, lest the average temperature rise will exceed the 1.5–2 °C maximum stipulated in 2015 by the Paris agreement (6).