Disorders of Amino Acid Metabolism 1971

Total Page:16

File Type:pdf, Size:1020Kb

Disorders of Amino Acid Metabolism 1971 Medical Progress Disorders of Amino Acid Metabolism 1971 JOHN H. MENKES, M.D., Los Angeles OVER THE PAST TWENTY YEARS the number of dis- The metabolic defect in PKU is a failure in the orders to which we are able to assign a known hydroxylation of phenylalanine to tyrosine. Phen- enzymatic defect in amino acid metabolism has ylketonuric children are born with only slightly increased strikingly. Even so, they are relatively elevated phenylalanine blood levels, but due to uncommon, and their importance lies, in part, in inactivity or absence of phenylalanine hydroxyl- the insight they offer into the normal develop- ase, the amino acid derived from food proteins ment and function of the human nervous system. accumulates in serum and cerebrospinal fluid In some of the disorders, such as cystathioninuria, and is excreted in large quantities. In lieu of the hyperprolinemia and hydroxyprolinemia, the as- normal degradative pathway phenylalanine is sociation of a neurologic disturbance may be converted to phenylpyruvic acid, phenyllactic fortuitous and merely the result of subjecting acid and phenylacetylglutamine. The transam- retarded children, a highly selected group, to ination of phenylalanine to phenylpyruvic acid is biochemical examination. A survey of the normal sometimes deficient for the first few days of life, adult population for the incidence of inborn er- and the age when phenylpyruvic acid may be rors of amino acid metabolism is needed to deter- first detected varies from 2 to 34 days. From the mine which of the conditions mentioned in this first week of life on, o-hydroxyphenylacetic acid review represent harmless metabolic variants. is also excreted in large amounts. Alterations within the brain are non-specific, Phenylketonuria usually confined to white matter, and probably Phenylketonuria (PKU) is an inborn error of progress in severity with increasing age. They metabolism due to the inability to convert phen- include an interference with the normal matura- ylalanine to tyrosine; it produces mental retarda- tion of the central nervous system, defective tion, seizures, and imperfect hair pigmentation. myelination, and a cystic degeneration of white Folling in 1934 first called attention to the con- matter.2 dition.' Since then the disease has been found in Phenylketonuric infants appear normal at birth. all parts of the world, although it is rare in Ne- During the first two months of life, vomiting, of- groes or in Jews of European descent. Its fre- ten projectile, and irritability are frequent. By quency in the United States, as determined by four to nine months delayed intellectual develop- screening programs, is approximately 1 in 14,000. ment becomes apparent.3 In the classic case, It is transmitted as an autosomal recessive dis- mental retardation may be severe, precluding order. speech and toilet training, and the Intelligence Quotient is under 50. Seizures are common in From the Division of Pediatric Neurology, University of California, Los Angeles, Center for the Health Sciences, and the Veterans Admin- the more severely retarded. These usually start istration Hospital, Brentwood. Original research reported in this review is supported by Research before 18 months of age and may cease spon- Grants NB 06938 from the National Institutes of Health, and by grants from the National Genetic Foundation, and Childrens' Brain Diseases. taneously. During infancy they may take the Reprint requests to: Division of Pediatric Neurology, University of form of infantile spasms, and later grand mal at- California, Los Angeles, Center for the Health Sciences, Los Angeles, Ca. 90024 (Dr. J. H. Menkes). tacks. 14 OCTOBER 1971 * 115 * 4 TABLE 1.-Screening Tests for Metabolic Defects addition of a dilute solution of 2,4-dinitrophenyl- Ferric Nitro- hydrazine produces a copious yellow precipitate Condition Chloride DNPH prusside in both fresh and old specimens (Table 1). For Phenylketonuria Green + routine screening on infants a simple stick test Maple Syrup Disease Navy Blue + Tyrosinosis Pale Green + (Phenistix®) is available for use on wet diapers. (transient) Confirmatory evidence can be obtained by find- Histidinemia Green Brown + ing an elevation of plasma phenylalanine. These Hyperglycinemia Purple + Methylmalonic Aciduria Purple + may already be abnormal in the cord blood of Homocystinuria - + PKU infants, and rise rapidly within a few hours Cystinuria - + of birth. Inasmuch as there may be a delay in Glutathioninuria - + the appearance of phenylpyruvic acid, both the ferric chloride and the dinitrophenylhydrazine tests are inadequate for the diagnosis of PKU dur- The typical patient is blond and blue eyed, ing the neonatal period. A program for routine with normal, and often pleasant features. The screening involving the microbiological or spec- skin is rough and dry, and there may be eczema. trofluorometric estimation of blood phenylalanine A peculiar musty odor, attributable to phenyl- levels has been instituted in California.6 acetic acid, may suggest the diagnosis. Signifi- cant neurological abnormalities are rare, although The widespread use of screening programs to microcephaly, and a mild increase in muscle tone, detect the newborn infant whose blood phenyl- particularly in the lower extremities, may be pres- alanine concentration is higher than normal has ent. Older children are restless and hyperactive; uncovered several other conditions that are as- and are inclined to self-stimulative movements sociated with elevated blood phenylalanine levels of the body and hands.. In institutionalized pa- during the neonatal period.7 tients there may be intellectual deterioration, Aside from phenylketonuria a variant, previ- owing perhaps to environment, perhaps to the ously termed "atypical phenylketonuria," is the natural history of the disease. most common. On a normal protein intake pa- A variety of electroencephalographic abnor- tients with this condition have blood phenylala- malities has been found, but hypsarrhythmic pat- nine between 7 mg and 20 mg per 100 ml. This terns, recorded even in the absence of seizures, contrasts with the classic PKU patient whose phen- and single and multiple foci of spike and poly- ylalanine levels are 20 mg per 100 ml or higher. spike discharges are the most common.4 The gene distribution of this entity differs from Untreated PKU is not invariably accompanied that of phenylketonuria, with a relatively high by intellectual deficit. There are a number of prevalence amongst Jews of European descent. phenylketonuric persons with intelligence quo- Less commonly, a defect in phenylalanine hy- tients above 90, athough having classic biochem- droxylation is coupled with a temporary or per- ical features of the condition. Although the manent abnormality of phenylalanine trans- incidence of spontaneous abortions is high, a amination. In these patients the excretion of number of PKu women have had children; most phenylpyruvic and o-hydroxyphenylacetic acids of the offspring, although heterozygous for PKU, is inappropriately low for the serum phenylalanine showed prenatal and postnatal growth retarda- concentrations, and the ferric chloride test is neg- tion, microcephaly, severe intellectual delay, and ative on a normal diet and may become only in a few instances major congenital malforma- slightly positive during a phenylalanine load. In tions. It seems likely that the high amino acid yet another variant the phenylalanine tolerance level in the pregnant PKU mother may damage the improves gradually over the first few months of fetus.5 life, but while the ability to metabolize phenylal- in it is The diagnosis of PKU can be suspected from anine is greater than PKU, never normal. the clinical features of the disease and from the In addition, elevated blood phenylalanine lev- examination of the patient's urine by the addition els are observed in a large proportion of prema- of ferric chloride. In inadequately preserved ture infants, particularly those receiving a high specimens, phenylpyruvic acid decomposes and protein formula. In all these patients tyrosine the ferric chloride test becomes negative. The levels are decidedly increased as well. CALIFORNIA MEDICINE 15 The Western Journol of Medicine In view of the existence of these variants of pear and the electroencephalogram often reverts PKU, the diagnosis of PKU can only be made if the to normal. Abnormally blond hair regains its nat- following criteria are satisfied: ural color. The effects on mental ability are less * Blood phenylalanine 20 mg per 100 ml or clear-cut. In the experience of Fuller and Shu- greater, with normal blood tyrosine levels. man"1",2 treated PKU children fell into a tri-modal * In untreated infants a positive ferric chloride distribution with respect to their I.Q. The age test by 2 to 36 days of age. at which therapy was initiated did not determine * When the infant is temporarily returned to a into which of the three groups a given child fell. normal diet between four and nine months of age, However, infants under 18 months of age whose the blood phenylalanine concentration rises to 20 blood phenylalanine levels were maintained un- mg per 100 ml or higher, and he begins to excrete der 5 mg per 100 ml had a decrease in intel- phenylpyruvic acid. lectual performance. Patients who were started * After an acute phenylalanine load, the blood on treatment before six months of age, some of tyrosine concentration does not rise. whom may have had phenylalaninemia, were The distinction between PKU and phenylala- represented
Recommended publications
  • Effect of Propionic Acid on Fatty Acid Oxidation and U Reagenesis
    Pediat. Res. 10: 683- 686 (1976) Fatty degeneration propionic acid hyperammonemia propionic acidemia liver ureagenesls Effect of Propionic Acid on Fatty Acid Oxidation and U reagenesis ALLEN M. GLASGOW(23) AND H. PET ER C HASE UniversilY of Colorado Medical Celller, B. F. SlOlillsky LaboralOries , Denver, Colorado, USA Extract phosphate-buffered salin e, harvested with a brief treatment wi th tryps in- EDTA, washed twice with ph os ph ate-buffered saline, and Propionic acid significantly inhibited "CO z production from then suspended in ph os ph ate-buffe red saline (145 m M N a, 4.15 [I-"ejpalmitate at a concentration of 10 11 M in control fibroblasts m M K, 140 m M c/, 9.36 m M PO" pH 7.4) . I n mos t cases the cells and 100 11M in methyl malonic fibroblasts. This inhibition was we re incubated in 3 ml phosph ate-bu ffered sa lin e cont aining 0.5 similar to that produced by 4-pentenoic acid. Methylmalonic acid I1Ci ll-I4Cj palm it ate (19), final concentration approximately 3 11M also inhibited ' 'C0 2 production from [V 'ejpalmitate, but only at a added in 10 II I hexane. Increasing the amount of hexane to 100 II I concentration of I mM in control cells and 5 mM in methyl malonic did not impair palmit ate ox id ation. In two experiments (Fig. 3) the cells. fibroblasts were in cub ated in 3 ml calcium-free Krebs-Ringer Propionic acid (5 mM) also inhibited ureagenesis in rat liver phosphate buffer (2) co nt ain in g 5 g/ 100 ml essent iall y fatty ac id slices when ammonia was the substrate but not with aspartate and free bovine se rum albumin (20), I mM pa lm itate, and the same citrulline as substrates.
    [Show full text]
  • Birth Prevalence of Disorders Detectable Through Newborn Screening by Race/Ethnicity
    ©American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE Birth prevalence of disorders detectable through newborn screening by race/ethnicity Lisa Feuchtbaum, DrPH, MPH1, Jennifer Carter, MPH2, Sunaina Dowray, MPH2, Robert J. Currier, PhD1 and Fred Lorey, PhD1 Purpose: The purpose of this study was to describe the birth prev- Conclusion: The California newborn screening data offer a alence of genetic disorders among different racial/ethnic groups unique opportunity to explore the birth prevalence of many through population-based newborn screening data. genetic dis orders across a wide spectrum of racial/ethnicity classifications. The data demonstrate that racial/ethnic subgroups Methods: Between 7 July 2005 and 6 July 2010 newborns in Cali- of the California newborn population have very different patterns fornia were screened for selected metabolic, endocrine, hemoglobin, of heritable disease expression. Determining the birth prevalence and cystic fibrosis disorders using a blood sample collected via heel of these disorders in California is a first step to understanding stick. The race and ethnicity of each newborn was self-reported by the short- and long-term medical and treatment needs faced by the mother at the time of specimen collection. affected communities, especially those groups that are impacted by Results: Of 2,282,138 newborns screened, the overall disorder detec- more severe disorders. tion rate was 1 in 500 births. The disorder with the highest prevalence Genet Med 2012:14(11):937–945 among all groups was primary congenital hypothyroidism (1 in 1,706 births). Birth prevalence for specific disorders varied widely among Key Words: birth prevalence; disorders; newborn screening; race different racial/ethnic groups.
    [Show full text]
  • Inherited Metabolic Disease
    Inherited metabolic disease Dr Neil W Hopper SRH Areas for discussion • Introduction to IEMs • Presentation • Initial treatment and investigation of IEMs • Hypoglycaemia • Hyperammonaemia • Other presentations • Management of intercurrent illness • Chronic management Inherited Metabolic Diseases • Result from a block to an essential pathway in the body's metabolism. • Huge number of conditions • All rare – very rare (except for one – 1:500) • Presentation can be non-specific so index of suspicion important • Mostly AR inheritance – ask about consanguinity Incidence (W. Midlands) • Amino acid disorders (excluding phenylketonuria) — 18.7 per 100,000 • Phenylketonuria — 8.1 per 100,000 • Organic acidemias — 12.6 per 100,000 • Urea cycle diseases — 4.5 per 100,000 • Glycogen storage diseases — 6.8 per 100,000 • Lysosomal storage diseases — 19.3 per 100,000 • Peroxisomal disorders — 7.4 per 100,000 • Mitochondrial diseases — 20.3 per 100,000 Pathophysiological classification • Disorders that result in toxic accumulation – Disorders of protein metabolism (eg, amino acidopathies, organic acidopathies, urea cycle defects) – Disorders of carbohydrate intolerance – Lysosomal storage disorders • Disorders of energy production, utilization – Fatty acid oxidation defects – Disorders of carbohydrate utilization, production (ie, glycogen storage disorders, disorders of gluconeogenesis and glycogenolysis) – Mitochondrial disorders – Peroxisomal disorders IMD presentations • ? IMD presentations • Screening – MCAD, PKU • Progressive unexplained neonatal
    [Show full text]
  • Genes Investigated
    BabyNEXTTM EXTENDED Investigated genes and associated diseases Gene Disease OMIM OMIM Condition RUSP gene Disease ABCC8 Familial hyperinsulinism 600509 256450 Metabolic disorder - ABCC8-related Inborn error of amino acid metabolism ABCD1 Adrenoleukodystrophy 300371 300100 Miscellaneous RUSP multisystem (C) * diseases ABCD4 Methylmalonic aciduria and 603214 614857 Metabolic disorder - homocystinuria, cblJ type Inborn error of amino acid metabolism ACAD8 Isobutyryl-CoA 604773 611283 Metabolic Disorder - RUSP dehydrogenase deficiency Inborn error of (S) ** organic acid metabolism ACAD9 acyl-CoA dehydrogenase-9 611103 611126 Metabolic Disorder - (ACAD9) deficiency Inborn error of fatty acid metabolism ACADM Acyl-CoA dehydrogenase, 607008 201450 Metabolic Disorder - RUSP medium chain, deficiency of Inborn error of fatty (C) acid metabolism ACADS Acyl-CoA dehydrogenase, 606885 201470 Metabolic Disorder - RUSP short-chain, deficiency of Inborn error of fatty (S) acid metabolism ACADSB 2-methylbutyrylglycinuria 600301 610006 Metabolic Disorder - RUSP Inborn error of (S) organic acid metabolism ACADVL very long-chain acyl-CoA 609575 201475 Metabolic Disorder - RUSP dehydrogenase deficiency Inborn error of fatty (C) acid metabolism ACAT1 Alpha-methylacetoacetic 607809 203750 Metabolic Disorder - RUSP aciduria Inborn error of (C) organic acid metabolism ACSF3 Combined malonic and 614245 614265 Metabolic Disorder - methylmalonic aciduria Inborn error of organic acid metabolism 1 ADA Severe combined 608958 102700 Primary RUSP immunodeficiency due
    [Show full text]
  • Metabolomic Analysis Reveals That the Drosophila Gene Lysine Influences Diverse Aspects of Metabolism
    Genetics: Early Online, published on October 6, 2017 as 10.1534/genetics.117.300201 Metabolomic analysis reveals that the Drosophila gene lysine influences diverse aspects of metabolism Samantha L. St. Clair*‡, Hongde Li*‡, Usman Ashraf†, Jonathan A. Karty†, and Jason M. *§ Tennessen * Department of Biology, Indiana University, Bloomington, IN 47405, USA † Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA. ‡ These authors contributed equally to this work. § Correspondence: [email protected] Keywords: Drosophila, metabolomics, lysine, LKRSDH, familial hyperlysinemia 1 Copyright 2017. ABSTRACT The fruit fly Drosophila melanogaster has emerged as a powerful model for investigating the molecular mechanisms that regulate animal metabolism. A major limitation of these studies, however, is that many metabolic assays are tedious, dedicated to analyzing a single molecule, and rely on indirect measurements. As a result, Drosophila geneticists commonly use candidate gene approaches, which, while important, bias studies towards known metabolic regulators. In an effort to expand the scope of Drosophila metabolic studies, we used the classic mutant lysine (lys) to demonstrate how a modern metabolomics approach can be used to conduct forward genetic studies. Using an inexpensive and well-established gas chromatography-mass spectrometry (GC-MS)-based method, we genetically mapped and molecularly characterized lys by using free lysine levels as a phenotypic readout. Our efforts revealed that lys encodes the Drosophila homolog of Lysine Ketoglutarate Reductase/Saccharopine Dehydrogenase (LKRSDH), which is required for the enzymatic degradation of lysine. Furthermore, this approach also allowed us to simultaneously survey a large swath of intermediate metabolism, thus demonstrating that Drosophila lysine catabolism is complex and capable of influencing seemingly unrelated metabolic pathways.
    [Show full text]
  • Amyloid Like Aggregates Formed by the Self-Assembly of Proline And
    Please do not adjust margins Journal Name ARTICLE Amyloid like aggregates formed by the self-assembly of proline and Hydroxyproline Bharti Koshtia, Ramesh Singh Chilwalb, Vivekshinh Kshtriyaa, Shanka Walia c, Dhiraj Bhatiac, K.B. Joshib* and Nidhi Goura* a Department of Chemistry, Indrashil University, Mehsana, Gujarat, India b Department of Chemistry, Dr. Hari Singh Gour, Sagar University, Madhya Pradesh, India c Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Gujarat, India Abstract: Single amino acid based self-assembled structures have gained a lot of interest recently owing to their pathological significance in metabolite disorders. There is plethora of significant research work which illustrate amyloid like characteristics of assemblies formed by aggregation of single amino acids like Phenylalanine, Tyrosine, Tryptophan, Cysteine and Methionine and its implications in pathophysiology of single amino acid metabolic disorders like phenylketonuria, tyrosinemia, hypertryptophanemia, cystinuria and hypermethioninemia respectively. Hence, studying aggregation behaviour of single amino acids is very crucial to assess the underlying molecular mechanism behind metabolic disorders. In this manuscript we report for the very first time the aggregation properties of non-aromatic single amino acids Hydroxy-proline and Proline. The morphologies of these were studied extensively by Optical microscopy (OM), ThT binding fluorescence microscopy, Scanning Electron Microscopy (SEM) and Atomic force microscopy (AFM). It can be assessed that these amino acids form globular structures at lower concentrations and gradually changes to tape like structures on increasing the This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 1 Please do not adjust margins Please do not adjust margins Journal Name ARTICLE concentration as assessed by AFM.
    [Show full text]
  • Amino Acid Disorders
    471 Review Article on Inborn Errors of Metabolism Page 1 of 10 Amino acid disorders Ermal Aliu1, Shibani Kanungo2, Georgianne L. Arnold1 1Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; 2Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA Contributions: (I) Conception and design: S Kanungo, GL Arnold; (II) Administrative support: S Kanungo; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: E Aliu, GL Arnold; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Georgianne L. Arnold, MD. UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Suite 1200, Pittsburgh, PA 15224, USA. Email: [email protected]. Abstract: Amino acids serve as key building blocks and as an energy source for cell repair, survival, regeneration and growth. Each amino acid has an amino group, a carboxylic acid, and a unique carbon structure. Human utilize 21 different amino acids; most of these can be synthesized endogenously, but 9 are “essential” in that they must be ingested in the diet. In addition to their role as building blocks of protein, amino acids are key energy source (ketogenic, glucogenic or both), are building blocks of Kreb’s (aka TCA) cycle intermediates and other metabolites, and recycled as needed. A metabolic defect in the metabolism of tyrosine (homogentisic acid oxidase deficiency) historically defined Archibald Garrod as key architect in linking biochemistry, genetics and medicine and creation of the term ‘Inborn Error of Metabolism’ (IEM). The key concept of a single gene defect leading to a single enzyme dysfunction, leading to “intoxication” with a precursor in the metabolic pathway was vital to linking genetics and metabolic disorders and developing screening and treatment approaches as described in other chapters in this issue.
    [Show full text]
  • Formula Name Category Description Qualifying
    Memorandum #17-079 TO: WIC Regional Directors WIC Local Agency Directors FROM: Amanda Hovis, Director Nutrition Education/Clinic Services Unit Nutrition Services Section DATE: August 4, 2017 SUBJECT: Revised Formula Approval Resources Posted The formula approval resources have been revised to reflect the recent clinic formula table changes and will be posted to the DSHS WIC website. You will be able view them at the following link under “Formula Approval Resources” once they are posted. http://www.dshs.texas.gov/wichd/nut/foods-nut.shtm The following documents have been revised for July, 2017. Presently, they are attached to this memo as PDF files. 1. Texas WIC Formulary 2. Formula Code List 3. Texas WIC Formula Maximum Quantity Table 4. Nutrition Assessment Requirements Guide If you have questions or require additional information, contact Pat Koym, Formula Specialist, at [email protected] or 512-341-4578. This institution is an equal opportunity provider TEXAS WIC FORMULARY AND MEDICAL REASONS FOR ISSUANCE JULY 2017 Formula Category Description Qualifying Conditions Staff Instructions - May issue for 1 cert Manufacturer Name period unless otherwise indicated Alfamino Infant Elemental 20 cal/oz when mixed 1 scoop to 1 oz 1) Malabsorption syndrome Formula history required. Nestle water; hypoallergenic amino acid 2) GI impairment When requested for food allergy - a failed trial of a protein based elemental. 43% of fat is MCT 3) GER/GERD hydrolysate (Extensive HA, Nutramigen, Alimentum, or oil; Similar to Elecare DHA/ARA, 4) Food allergies (cow's milk, soy or Pregestimil) is recommended before issuing unless medically Neocate DHA/ARA and PurAmino.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0281166 A1 BHATTACHARJEE Et Al
    US 20160281 166A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0281166 A1 BHATTACHARJEE et al. (43) Pub. Date: Sep. 29, 2016 (54) METHODS AND SYSTEMIS FOR SCREENING Publication Classification DISEASES IN SUBJECTS (51) Int. Cl. (71) Applicant: PARABASE GENOMICS, INC., CI2O I/68 (2006.01) Boston, MA (US) C40B 30/02 (2006.01) (72) Inventors: Arindam BHATTACHARJEE, G06F 9/22 (2006.01) Andover, MA (US); Tanya (52) U.S. Cl. SOKOLSKY, Cambridge, MA (US); CPC ............. CI2O 1/6883 (2013.01); G06F 19/22 Edwin NAYLOR, Mt. Pleasant, SC (2013.01); C40B 30/02 (2013.01); C12O (US); Richard B. PARAD, Newton, 2600/156 (2013.01); C12O 2600/158 MA (US); Evan MAUCELI, (2013.01) Roslindale, MA (US) (21) Appl. No.: 15/078,579 (57) ABSTRACT (22) Filed: Mar. 23, 2016 Related U.S. Application Data The present disclosure provides systems, devices, and meth (60) Provisional application No. 62/136,836, filed on Mar. ods for a fast-turnaround, minimally invasive, and/or cost 23, 2015, provisional application No. 62/137,745, effective assay for Screening diseases, such as genetic dis filed on Mar. 24, 2015. orders and/or pathogens, in Subjects. Patent Application Publication Sep. 29, 2016 Sheet 1 of 23 US 2016/0281166 A1 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S{}}\\93? sau36 Patent Application Publication Sep. 29, 2016 Sheet 2 of 23 US 2016/0281166 A1 &**** ? ???zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz??º & %&&zzzzzzzzzzzzzzzzzzzzzzz &Sssssssssssssssssssssssssssssssssssssssssssssssssssssssss & s s sS ------------------------------ Patent Application Publication Sep. 29, 2016 Sheet 3 of 23 US 2016/0281166 A1 23 25 20 FG, 2. Patent Application Publication Sep. 29, 2016 Sheet 4 of 23 US 2016/0281166 A1 : S Patent Application Publication Sep.
    [Show full text]
  • Table S1. Disease Classification and Disease-Reaction Association
    Table S1. Disease classification and disease-reaction association Disorder class Associated reactions cross Disease Ref[Goh check et al.
    [Show full text]
  • Annual Symposium of the Society for the Study of Inborn Errors of Metabolism Birmingham, UK, 4 – 7 September 2012
    J Inherit Metab Dis (2012) 35 (Suppl 1):S1–S182 DOI 10.1007/s10545-012-9512-z ABSTRACTS Annual Symposium of the Society for the Study of Inborn Errors of Metabolism Birmingham, UK, 4 – 7 September 2012 This supplement was not sponsored by outside commercial interests. It was funded entirely by the SSIEM. 01. Amino Acids and PKU O-002 NATURAL INHIBITORS OF CARNOSINASE (CN1) O-001 Peters V1 ,AdelmannK2 ,YardB2 , Klingbeil K1 ,SchmittCP1 , Zschocke J3 3-HYDROXYISOBUTYRIC ACID DEHYDROGENASE DEFICIENCY: 1Zentrum für Kinder- und Jugendmedizin de, Heidelberg, Germany IDENTIFICATION OF A NEW INBORN ERROR OF VALINE 2Universitätsklinik, Mannheim, Germany METABOLISM 3Humangenetik, Innsbruck, Austria Wanders RJA1 , Ruiter JPN1 , Loupatty F.1 , Ferdinandusse S.1 , Waterham HR1 , Pasquini E.1 Background: Carnosinase degrades histidine-containing dipeptides 1Div Metab Dis, Univ Child Hosp, Amsterdam, Netherlands such as carnosine and anserine which are known to have several protective functions, especially as antioxidant agents. We recently Background, Objectives: Until now only few patients with an established showed that low carnosinase activities protect from diabetic nephrop- defect in the valine degradation pathway have been identified. Known athy, probably due to higher histidine-dipeptide concentrations. We deficiencies include 3-hydroxyisobutyryl-CoA hydrolase deficiency and now characterized the carnosinase metabolism in children and identi- methylmalonic semialdehyde dehydrogenase (MMSADH) deficiency. On fied natural inhibitors of carnosinase. the other hand many patients with 3-hydroxyisobutyric aciduria have been Results: Whereas serum carnosinase activity and protein concentrations described with a presumed defect in the valine degradation pathway. To correlate in adults, children have lower carnosinase activity although pro- identify the enzymatic and molecular defect in a group of patients with 3- tein concentrations were within the same level as for adults.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0134109 A1 Gaitanaris Et Al
    US 2006O134109A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0134109 A1 Gaitanaris et al. (43) Pub. Date: Jun. 22, 2006 (54) GPROTEIN COUPLED RECEPTORS AND in-part of application No. 60/461.329, filed on Apr. 9. USES THEREOF 2003. (75) Inventors: George A. Gaitanaris, Seattle, WA Publication Classification (US); John E. Bergmann, Mercer Island, WA (US); Alexander Gragerov, (51) Int. Cl. Seattle, WA (US); John Hohmann, La CI2O I/68 (2006.01) Conner, WA (US); Fusheng Li, Seattle, C7H 2L/04 (2006.01) WA (US); Linda Madisen, Seattle, WA (US); Kellie L. McIlwain, Renton, WA CI2P 2/06 (2006.01) (US); Maria N. Pavlova, Seattle, WA A 6LX 39/395 (2006.01) (US); Demitri Vassilatis, Seattle, WA C07K I4/705 (2006.01) (US); Hongkui Zeng, Shoreline, WA (52) U.S. Cl. ......................... 424/143.1: 435/6: 435/69.1; 435/320.1; 435/325; 530/350; (US) 536/23.5 Correspondence Address: SEED INTELLECTUAL PROPERTY LAW GROUP PLLC (57) ABSTRACT 701 FIFTHAVE SUTE 63OO The present invention provides GPCR polypeptides and SEATTLE, WA 98104-7092 (US) polynucleotides, recombinant materials, and transgenic (73) Assignee: Nura Inc., Seattle, WA (US) mice, as well as methods for their production. The polypep tides and polynucleotides are useful, for example, in meth (21) Appl. No.: 10/527,265 ods of diagnosis and treatment of diseases and disorders. The invention also provides methods for identifying com (22) PCT Fed: Sep. 9, 2003 pounds (e.g., agonists or antagonists) using the GPCR polypeptides and polynucleotides of the invention, and for (86) PCT No.: PCT/USO3/28226 treating conditions associated with GPCR dysfunction with the GPCR polypeptides, polynucleotides, or identified com Related U.S.
    [Show full text]