Ascidian-Associated Polychaetes

Total Page:16

File Type:pdf, Size:1020Kb

Ascidian-Associated Polychaetes See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/267868444 Ascidian-associated polychaetes: ecological implications of aggregation size and tube- building chaetopterids on assemblage structure in the Southeastern Pacific Ocean ARTICLE in MARINE BIODIVERSITY · OCTOBER 2014 Impact Factor: 1.1 · DOI: 10.1007/s12526-014-0283-7 READS 80 5 AUTHORS, INCLUDING: Nicolas Rozbaczylo Christian M. Ibáñez Pontifical Catholic University of Chile Universidad Andrés Bello 63 PUBLICATIONS 373 CITATIONS 42 PUBLICATIONS 298 CITATIONS SEE PROFILE SEE PROFILE Marcelo A. Flores Juan M Cancino Universidad Andrés Bello Catholic University of the Most Holy Conce… 14 PUBLICATIONS 23 CITATIONS 46 PUBLICATIONS 742 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Roger D. Sepúlveda letting you access and read them immediately. Retrieved on: 28 December 2015 Mar Biodiv DOI 10.1007/s12526-014-0283-7 ORIGINAL PAPER Ascidian-associated polychaetes: ecological implications of aggregation size and tube-building chaetopterids on assemblage structure in the Southeastern Pacific Ocean Roger D. Sepúlveda & Nicolás Rozbaczylo & Christian M. Ibáñez & Marcelo Flores & Juan M. Cancino Received: 13 May 2014 /Revised: 13 October 2014 /Accepted: 20 October 2014 # Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2014 Abstract Epifaunal polychaetes inhabit a range of habitat chaetopterid tubes influenced the polychaete assemblage structures built by other organisms, such as ascidians. Here, structure, evidencing differences between morphotypes. We we examine: i) the polychaete fauna inhabiting aggregations suggest that both sample volume and the habitat structuring of the ascidian Pyura chilensis in central Chile; ii) the rela- capacity of the chaetopterid tubes change the habitat complex- tionship between sample volume (aggregation size) and poly- ity of the ascidian aggregations and, hence, produce differ- chaete assemblage variables; and iii) the effect of a tube- ences between morphotypes related to the polychaete assem- building chaetopterid on the polychaete assemblage structure. blage structure. The chaetopterid tube load on aggregations determines two ascidian morphotypes, those with a high load of chaetopterid Keywords Habitat complexity . Ecosystem engineering . tubes (HT morphotype) and those with a low load of Diversity . Tube-building . Ascidians chaetopterid tubes (LT morphotype). From a total of 38 ag- gregations studied, we found 5,524 specimens belonging to 35 species of polychaetes. Three species were the most abundant Introduction in the aggregations (Phyllochaetopterus socialis, Nicolea lobulata,andTyposyllis magdalena), reaching 22% of total Epifaunal polychaetes are an important component of hard abundance. The number of species and individuals increased and soft bottom marine communities, capable of colonizing a with sample volume, but only the number of species number variety of biogenic substrates such as algae (Fredriksen et al. varied between morphotypes. Sample volume and the 2005; Sánchez-Moyano and García-Asencio 2009), sponges (Cinar and Ergen 1998), mollusks (Thiel and Ullrich 2002; Vasconcelos et al. 2007), worm tubes (Dubois et al. 2002; R. D. Sepúlveda (*) Sepúlveda et al. 2003a), crustaceans (Hoberg et al. 1982; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Hernández et al. 2001), echinoderms (Britayev and Universidad Austral de Chile, Casilla 567, Valdivia, Chile e-mail: [email protected] Zamishliak 1996) and ascidians (Fielding et al. 1994; Cerda and Castilla 2001), among others. Within these biogenic hab- N. Rozbaczylo itats, polychaetes may find food and refuge (Woodin 1978; Departamento de Ecología, Facultad de Ciencias Biológicas, Edgar and Aoki 1993). Moreover, some of these species such Pontificia Universidad Católica de Chile, Santiago, Chile as borers, drillers or tube-builders may change the surround- C. M. Ibáñez ing environmental conditions through perforations, excava- Departamento de Ciencias Ecológicas, Facultad de Ciencias, tions or simply disturbing the surface sediment, thereby af- Universidad de Chile, Santiago, Chile fecting the other components of the fauna (Bolam and M. Flores Fernández 2002;Duboisetal.2002; Sepúlveda et al. 2003a). Departamento de Ecología y Biodiversidad, Facultad de Ecología y Certain species of ascidians are gregarious and capable of Recursos Naturales, Universidad Andres Bello, Santiago, Chile generating complex aggregations of organisms of different sizes living in close proximity. Aggregations of this kind of J. M. Cancino Departamento de Ecología, Facultad de Ciencias, Universidad organisms are called ecosystem engineers (Jones et al. 1994) Católica de la Santísima Concepción, Concepción, Chile because they modify the primary substrate, providing Mar Biodiv interstices and holes that serve as habitat for a diverse and Materials and methods abundant marine fauna (Guiler 1959; Cerda and Castilla 2001; Sepúlveda et al. 2003b). They also act as a biogenic substrate Study area and sample collection since the surface of the aggregation is a suitable substrate for direct settlement of many sessile organisms. Such aggrega- A total of 38 aggregations of the ascidian P. chilensis were tions therefore enhance local biodiversity by providing living obtained in San Vicente Bay, central Chile in 2000. From habitats that increase complexity (Voultsiadou et al. 2010). aggregations analysed and studied, 21 corresponded to aggre- The study of epibionts on ascidian aggregations is increasing gations with high density (average 0.465 tubes/ml., “hairy” because potential changes in the biogenic substrate resulting appearance, hereafter HT morphotype) and 17 to aggregations from disturbance or contamination will also impact the with low density (average 0.076 tubes/ml., “bald” appearance, associated fauna (Roberts et al. 2008). Moreover, some hereafter LT morphotype) of chaetopterid tubes (i.e., the load ascidians are commercially collected for human con- is six times greater in the HT than in LT morphotype). The sumption and their exploitation might produce cascading load of chaetopterid tubes displayed influences the number effects on the associated communities (Coleman and and size of individual ascidians, showing one to three ascid- Williams 2002; Monteiro et al. 2002). ians of small size in the HT morphotype, and two to six Pyura chilensis Molina, 1782, is a solitary ascidian species ascidians of medium size in the LT morphotype (Sepúlveda, that forms massive aggregations and/or patches on the subtidal pers. obs.). The LT morphotype samples were collected near seafloor, made up of one or several individuals (Guiler 1959). Roca Navia (36°44′49.71′S, 73°10′37.66”W) at a depth of Its geographic distribution range is between 10 and 44°S in the approximately 5 m below MLW, while the HT morphotype Southeast Pacific Ocean from the intertidal zone to a depth of samples were also collected at a depth of 5 m near playa 70 m (Vásquez 1983; Lancellotti and Vásquez 2000;Astorga Ramuntcho (36°45′11.99′S, 73°11′12.57”W) (Fig. 1); sam- and Ortíz 2006). Due to their high commercial value, these ples were collected by a diver equipped with “hookah” breath- ascidian aggregations are locally exploited along the Chilean ing gear. Samples of ascidians aggregations were removed coast by fishermen who recognize two types of aggregations from the rocky substrates using a spatula and metal hooks and depending on harvest location, “hairy” and “bald”; these two were wrapped in situ in a 1 mm-mesh polypropylene netting types can occur within the same area. The difference between to retain all associated polychaetes. The size (measured as aggregations is due to the high or low (or absent) load of tubes volume) of each aggregation was determined immersing the built by the chaetopterid polychaete Phyllochaetopterus sample in a 1,000-ml graduated cylinder and determining the socialis Claparède, 1869, which, when occurring at high volume of seawater displaced by the sample. Polychaetes densities on some ascidian aggregations, produces the “hairy” from each aggregation were separated with the aid of a ste- appearance. The polychaetes tubes are of considerable size reomicroscope and fixed in 10% formalin-seawater solution. (20–40 mm) and, since they are stiff and located on the surface Determination of total and per-sample taxonomic composition of the ascidian aggregation, change the external morphology of polychaete fauna was performed to the lowest possible as well as the effective size of the aggregations. Consequently, taxonomic level. Species abundance of all polychaetes was these tubes may change the hydrodynamics, increase the counted manually, and each species was assigned to trophic habitat complexity and oxygen demands and even produce and locomotion functional groups of polychaetes, following heterogeneous habitats in a uniform environment (Callaway Fauchald and Jumars (1979) and Jumars et al. (2014). 2006; Van Hoey et al. 2008). These effects of tube-building Although the results show differences between morphotypes, polychaetes may also influence larval settlement, dispersal we assume that the variations in polychaete assemblage may be patterns and, therefore, produce changes in the community due to the collection sites, since this study does not have variables and structure (Woodin 1978; Trueblood 1991;Qian replicated
Recommended publications
  • Temperature and Salinity Sensitivity of the Invasive Ascidian Microcosmus Exasperatus Heller, 1878
    Aquatic Invasions (2016) Volume 11, Issue 1: 33–43 DOI: http://dx.doi.org/10.3391/ai.2016.11.1.04 Open Access © 2016 The Author(s). Journal compilation © 2016 REABIC Research Article Temperature and salinity sensitivity of the invasive ascidian Microcosmus exasperatus Heller, 1878 1 1,2 Lilach Raijman Nagar and Noa Shenkar * 1Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel 2The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel *Corresponding author E-mail: [email protected] Received: 5 May 2015 / Accepted: 24 November 2015 / Published online: 30 December 2015 Handling editor: Vadim Panov Abstract Environmental factors, such as temperature and salinity, are known to influence distribution patterns and invasion success in ascidians. The solitary ascidian Microcosmus exasperatus Heller, 1878 has a wide global distribution and can be found in both tropical and sub-tropical waters. In the Mediterranean Sea, it is considered to be an invasive species introduced through the Suez Canal, with a restricted distribution in the eastern Mediterranean. Despite its global distribution, the environmental tolerances of this species are poorly known. We examined the effect of varying temperature and salinity on the survival of adult individuals of M. exasperatus in a laboratory setting to partially determine its environmental tolerance range. In addition, it’s global and local distribution as well as the seasonal abundance in ‘Akko Bay (northern Mediterranean coast of Israel) were examined. Field observations and laboratory experiments show that M. exasperatus is able to tolerate a temperature range of 12–30 ºC, and salinity of 37–45, but it survived poorly in salinity of 33–35 and temperatures > 32 ºC.
    [Show full text]
  • Tsmm.Pdf 5.573 Mb
    ANÀLISI DELS DESCARTAMENTS EFECTUATS PER LA FLOTA D’ARROSSEGAMENT EN EL GOLF DE LLEÓ Sandra MALLOL MARTÍNEZ ISBN: 84-689-4625-7 Dipòsit legal: GI-1170-2005 Anàlisi dels descartaments efectuats per la fl ota d’arrossegament en el Golf de Lleó Sandra Mallol i Martínez Memòria redactada per Sandra Mallol i Martínez, 2005 inscrita al programa de doctorat de Biologia Ambiental, del Departament de Ciències Ambientals, per optar al grau de Doctor en Biologia per la Universitat de Girona. Aquest treball s’ha realitzat a l’Àrea de Zoologia del Departament de Ciències Ambientals de la Universitat de Girona sota la direcció de la Dra. Margarida Casadevall Masó i el Dr. Emili García-Berthou. coberta_SMallol.indd 1 23/05/2005, 11:49 Tesi Doctoral Anàlisi dels descartaments efectuats per la flota d’arrossegament en el Golf de Lleó Memòria redactada per Sandra Mallol i Martínez, inscrita al programa de doctorat de Biologia Ambiental del Departament de Ciències Ambientals, per a optar al grau de Doctora en Biologia per la Universitat de Girona. El present treball s’ha realitzat a l’Àrea de Zoologia de la Universitat de Girona sota la codirecció de la Dra. Margarida Casadevall Masó i el Dr. Emili García-Berthou. Sandra Mallol i Martínez Vist-i-plau dels directors, Dra. Margarida Casadevall Masó Dr. Emili García-Berthou Professora titular Professor titular Àrea de Zoologia Àrea d’Ecologia Departament de Ciències Ambientals Departament de Ciències Ambientals Universitat de Girona Universitat de Girona Girona, 2005 Al meu avi Falet, per haver-me ensenyat a estimar tant la mar Agraïments Quan un arriba al final de l’odissea de la tesi es fa difícil escriure aquest apartat sobretot per la por a obliadar-te d’algú, perdoneu si es dóna el cas.
    [Show full text]
  • Ascidiacea (Chordata: Tunicata) of Greece: an Updated Checklist
    Biodiversity Data Journal 4: e9273 doi: 10.3897/BDJ.4.e9273 Taxonomic Paper Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist Chryssanthi Antoniadou‡, Vasilis Gerovasileiou§§, Nicolas Bailly ‡ Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece § Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Chryssanthi Antoniadou ([email protected]) Academic editor: Christos Arvanitidis Received: 18 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Antoniadou C, Gerovasileiou V, Bailly N (2016) Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist. Biodiversity Data Journal 4: e9273. https://doi.org/10.3897/BDJ.4.e9273 Abstract Background The checklist of the ascidian fauna (Tunicata: Ascidiacea) of Greece was compiled within the framework of the Greek Taxon Information System (GTIS), an application of the LifeWatchGreece Research Infrastructure (ESFRI) aiming to produce a complete checklist of species recorded from Greece. This checklist was constructed by updating an existing one with the inclusion of recently published records. All the reported species from Greek waters were taxonomically revised and cross-checked with the Ascidiacea World Database. New information The updated checklist of the class Ascidiacea of Greece comprises 75 species, classified in 33 genera, 12 families, and 3 orders. In total, 8 species have been added to the previous species list (4 Aplousobranchia, 2 Phlebobranchia, and 2 Stolidobranchia). Aplousobranchia was the most speciose order, followed by Stolidobranchia. Most species belonged to the families Didemnidae, Polyclinidae, Pyuridae, Ascidiidae, and Styelidae; these 4 families comprise 76% of the Greek ascidian species richness. The present effort revealed the limited taxonomic research effort devoted to the ascidian fauna of Greece, © Antoniadou C et al.
    [Show full text]
  • Ascidian News #87 June 2021
    ASCIDIAN NEWS* Gretchen Lambert 12001 11th Ave. NW, Seattle, WA 98177 206-365-3734 [email protected] home page: http://depts.washington.edu/ascidian/ Number 87 June 2021 Well, here we are still in this pandemic! I asked how you all are and again received many responses. A number are included in the next two sections. Nearly everyone still expresses confidence at having met the challenges and a great feeling of accomplishment even though tired of the whole thing; congratulations to you all! There are 117 new publications since December! Thanks to so many for the contributions and for letting me know how important AN continues to be. Please keep in touch and continue to send me contributions for the next issue. Keep safe, keep working, and good luck to everyone. *Ascidian News is not part of the scientific literature and should not be cited as such. NEWS AND VIEWS 1. From Hiroki Nishida ([email protected]) : In Japan, we are very slow to be vaccinated, but the labs are ordinarily opened and we can continue working. Number of patients are gradually increasing though and we are waiting for vaccines. I have to stay in my home and the lab. Postponement of 11th ITM (International Tunicate Meeting) This is an announcement about 11th ITM that had been planned to be held in July 2021 in Kobe, Japan. It is postponed by a year because of the global spread of COVID-19. We had an 11th ITM board meeting, and came to the conclusion that we had to reschedule it for July 2022 at the same venue (Konan University, Kobe, Japan) and similar dates (July 11 to 16).
    [Show full text]
  • 1 Phylogeny of the Families Pyuridae and Styelidae (Stolidobranchiata
    * Manuscript 1 Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) 2 inferred from mitochondrial and nuclear DNA sequences 3 4 Pérez-Portela Ra, b, Bishop JDDb, Davis ARc, Turon Xd 5 6 a Eco-Ethology Research Unit, Instituto Superior de Psicologia Aplicada (ISPA), Rua 7 Jardim do Tabaco, 34, 1149-041 Lisboa, Portugal 8 9 b Marine Biological Association of United Kingdom, The Laboratory Citadel Hill, PL1 10 2PB, Plymouth, UK, and School of Biological Sciences, University of Plymouth PL4 11 8AA, Plymouth, UK 12 13 c School of Biological Sciences, University of Wollongong, Wollongong NSW 2522 14 Australia 15 16 d Centre d’Estudis Avançats de Blanes (CSIC), Accés a la Cala St. Francesc 14, Blanes, 17 Girona, E-17300, Spain 18 19 Email addresses: 20 Bishop JDD: [email protected] 21 Davis AR: [email protected] 22 Turon X: [email protected] 23 24 Corresponding author: 25 Rocío Pérez-Portela 26 Eco-Ethology Research Unit, Instituto Superior de Psicologia Aplicada (ISPA), Rua 27 Jardim do Tabaco, 34, 1149-041 Lisboa, Portugal 28 Phone: + 351 21 8811226 29 Fax: + 351 21 8860954 30 [email protected] 31 1 32 Abstract 33 34 The Order Stolidobranchiata comprises the families Pyuridae, Styelidae and Molgulidae. 35 Early molecular data was consistent with monophyly of the Stolidobranchiata and also 36 the Molgulidae. Internal phylogeny and relationships between Styelidae and Pyuridae 37 were inconclusive however. In order to clarify these points we used mitochondrial and 38 nuclear sequences from 31 species of Styelidae and 25 of Pyuridae. Phylogenetic trees 39 recovered the Pyuridae as a monophyletic clade, and their genera appeared as 40 monophyletic with the exception of Pyura.
    [Show full text]
  • Time Or Space?
    fmars-08-657411 April 16, 2021 Time: 17:33 # 1 ORIGINAL RESEARCH published: 22 April 2021 doi: 10.3389/fmars.2021.657411 Time or Space? Relative Importance of Geographic Distribution and Interannual Variation in Three Lineages of the Ascidian Pyura chilensis in the Southeast Pacific Coast Pilar A. Haye1,2, Xavier Turon3 and Nicolás I. Segovia1,2,4* 1 Departamento de Biología Marina, Facultad de Ciencias de Mar, Universidad Católica del Norte, Coquimbo, Chile, 2 Instituto Milenio en Socio-ecología Costera (SECOS), Santiago, Chile, 3 Centre for Advanced Studies of Blanes (CEAB, CSIC), Blanes, Spain, 4 Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile Spatial and temporal variation of environmental parameters can affect dispersal, Edited by: recruitment and population persistence of marine benthic species. Studies including Sandie M. Degnan, The University of Queensland, inter-annual comparisons of genetic structure often indicate high/moderate temporal Australia heterogeneity in marine invertebrates, which may be a prevailing pattern. This Reviewed by: suggests that temporal studies are necessary to understand the dynamics of marine Pablo Saenz-Agudelo, metapopulations. In this study, we analyzed the spatio-temporal genetic structure of Austral University of Chile, Chile Carlos Vergara-Chen, the ascidian Pyura chilensis, a low dispersal sessile marine species endemic from the Technological University of Panama, Southeast Pacific coast and highly demanded for human consumption. We sequenced Panama S. López-Legentil, a fragment of the mitochondrial gene Cytochrome Oxidase I (COI) from 1,005 individuals University of North Carolina of six locations (30–40 individuals per site and year) spanning a wide latitudinal range at Wilmington, United States (24◦–42◦S) and sampled over 5 years (2012, 2014, 2015, 2016, and 2017).
    [Show full text]
  • Novel Microsatellite Markers for Pyura Chilensis Reveal Fine-Scale Genetic Structure Along the Southern Coast of Chile
    Mar Biodiv DOI 10.1007/s12526-017-0672-9 ORIGINAL PAPER Novel microsatellite markers for Pyura chilensis reveal fine-scale genetic structure along the southern coast of Chile E. C. Giles1 & C. Petersen-Zúñiga1 & S. Morales-González1 & S. Quesada-Calderón1 & Pablo Saenz-Agudelo1 Received: 25 August 2016 /Revised: 22 February 2017 /Accepted: 23 February 2017 # Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017 Abstract Studying the geographic scale of gene flow and here, it seems possible that genetic structure at this spatial population structure in marine populations can be a powerful scale is driven to some extent by local population dynamics tool with which to infer patterns of larval dispersal averaged (deviations from random mating and/or a large proportion of across generations. Here, we describe the development of ten larvae settling in proximity of relatives), yet infrequent long- novel polymorphic microsatellite markers for an important distance dispersal events might also be responsible for the endemic ascidian, Pyura chilensis, of the southeastern relatively weak spatial heterogeneity between sites. Overall, Pacific, and we report the results from fine-scale genetic struc- our results both highlight the utility of this new marker set for ture analysis of 151 P. chilensis individuals sampled from five population genetic studies of this species and provide new sites constituting ∼80 km of coastline in southern Chile. All evidence regarding the complexity of the small-scale popula- microsatellite markers were highly polymorphic (number of tion structure of this species. alleles ranged from 12 to 36). Our results revealed significant deviations from Hardy–Weinberg equilibrium (HWE) for Keywords Population genetics .
    [Show full text]
  • Biologia I Genètica De Poblacions De L'ascidi
    UNIVERSITAT DE BARCELONA DEPARTAMENT DE BIOLOGIA ANIMAL BIOLOGIA I GENÈTICA DE POBLACIONS DE L’ASCIDI INVASOR Microcosmus squamiger BIOLOGY AND POPULATION GENETICS OF THE INVASIVE ASCIDIAN Microcosmus squamiger Marc Rius Viladomiu 2008 TESI DOCTORAL UNIVERSITAT DE BARCELONA FACULTAT DE BIOLOGIA DEPARTAMENT DE BIOLOGIA ANIMAL Programa: Zoologia Bienni: 2004-2006 BIOLOGIA I GENÈTICA DE POBLACIONS DE L’ASCIDI INVASOR Microcosmus squamiger BIOLOGY AND POPULATION GENETICS OF THE INVASIVE ASCIDIAN Microcosmus squamiger Memòria presentada per Marc Rius Viladomiu, realitzada en el Departament de Biologia Animal per accedir al títol de Doctor en Ciències Biològiques de la Universitat de Barcelona, sota la direcció dels doctors Xavier Turon Barrera i Marta Pascual Berniola Marc Rius Viladomiu Barcelona, maig de 2008 VIST-I-PLAU VIST-I-PLAU EL DIRECTOR DE LA TESI LA DIRECTORA DE LA TESI Dr. Xavier Turon Barrera Dra. Marta Pascual Berniola Professor titular de la UB Professora titular de la UB Facultat de Biologia Facultat de Biologia Universitat de Barcelona Universitat de Barcelona Posició actual: Professor d’investigació Centre d’Estudis Avançats de Blanes (CSIC) Agraïments / Acknowledgements La veritat és que arribar a aquest punt és una sensació ben estranya. Tanta gent, tantes experiències acumulades, la llista d’agraïments hauria de ser inacabable. Primer de tot voldria agrair als primers responsables de tot plegat, a la meva família, pel seu suport i comprensió al llarg dels meus primers passos sota aigua i per tot el què ha vingut després. Els següents de la llista són tres professors i venen per ordre cronològic, des de Súnion, passant per la UB, fins a la Rhodes University.
    [Show full text]
  • Sustainability of the Artisanal Fishery in Northern Chile: a Case Study of Caleta Pisagua
    sustainability Article Sustainability of the Artisanal Fishery in Northern Chile: A Case Study of Caleta Pisagua Carola Espinoza 1,2,Víctor A. Gallardo 1, Carlos Merino 3, Pedro Pizarro 3 and Kwang-Ming Liu 1,4,5,* 1 Institute of Marine Affairs and Resource Management, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung 20224, Taiwan; [email protected] (C.E.); [email protected] (V.A.G.) 2 Department of Oceanography, University of Concepción, Concepción 4030000, Chile 3 Faculty of Natural Renewables Resources, Arturo Prat University, Iquique 2210000, Chile; [email protected] (C.M.); [email protected] (P.P.) 4 George Chen Shark Research Center, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung 20224, Taiwan 5 Center of Excellence for the Oceans, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung 20224, Taiwan * Correspondence: [email protected]; Tel.: +886-2-2462-2192 (ext. 5018) Received: 14 August 2020; Accepted: 3 September 2020; Published: 5 September 2020 Abstract: The Humboldt Current, one of the most productive waters in the world, flows along the Chilean coast with high primary production level. However, living marine resources in these waters are declining due to overexploitation and other anthropogenic and environmental factors. It has been reported that deploying artificial reefs in coastal waters can improve the production of benthic resources. Toensure the sustainability of coastal fisheries in northern Chile this study aims to investigate fishermen’s perceptions on deploying artificial reefs and propose future management measures using Caleta Pisagua as a case study. Interviews of artisanal fishermen regarding four aspects: fishermen profile, fishing activity, resources, and artificial reefs were conducted.
    [Show full text]
  • Ascidian News*
    ASCIDIAN NEWS* Gretchen Lambert 12001 11th Ave. NW, Seattle, WA 98177 206-365-3734 [email protected] home page: http://depts.washington.edu/ascidian/ Number 79 June 2017 Rosana Rocha and I will be teaching the next tunicate workshop June 20-July 4 in Panama, at the Smithsonian’s Bocas del Toro Tropical Research Institute on the Caribbean. This is the 5th advanced workshop we have taught since 2006 at this lab; it is very gratifying to see that many of the participants are now faculty members at various institutions, with their own labs and students pursuing research projects on ascidians. A big thank-you to all who sent in contributions. There are 113 New Publications listed at the end of this issue. Please continue to send me articles, and your new papers, to be included in the next issue of AN. *Ascidian News is not part of the scientific literature and should not be cited as such. NEWS AND VIEWS 1. I hope to see many of you at the upcoming Intl. Tunicata meeting in New York City July 17-21, at New York University, hosted by Dr. Lionel Christiaen. There will be a welcome reception on the evening of July 16th. For more information see https://2017-tunicate- meeting.bio.nyu.edu/ . 2. The next International Summer Course will be held at Sugashima Marine Biological Laboratory, Toba, Mie Prefecture, Japan, from July 7 to July 14, 2017. This course deals with experiments and lectures on basic developmental biology of sea urchins and ascidians, basic taxonomy, and advanced course of experiments on genome editing and proteomics.
    [Show full text]
  • Ascidian-Associated Polychaetes: Ecological Implications of Aggregation Size and Tube-Building Chaetopterids on Assemblage Structure in the Southeastern Pacific Ocean
    Author's personal copy Mar Biodiv (2015) 45:733–741 DOI 10.1007/s12526-014-0283-7 ORIGINAL PAPER Ascidian-associated polychaetes: ecological implications of aggregation size and tube-building chaetopterids on assemblage structure in the Southeastern Pacific Ocean Roger D. Sepúlveda & Nicolás Rozbaczylo & Christian M. Ibáñez & Marcelo Flores & Juan M. Cancino Received: 13 May 2014 /Revised: 13 October 2014 /Accepted: 20 October 2014 /Published online: 4 November 2014 # Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2014 Abstract Epifaunal polychaetes inhabit a range of habitat chaetopterid tubes influenced the polychaete assemblage structures built by other organisms, such as ascidians. Here, structure, evidencing differences between morphotypes. We we examine: i) the polychaete fauna inhabiting aggregations suggest that both sample volume and the habitat structuring of the ascidian Pyura chilensis in central Chile; ii) the rela- capacity of the chaetopterid tubes change the habitat complex- tionship between sample volume (aggregation size) and poly- ity of the ascidian aggregations and, hence, produce differ- chaete assemblage variables; and iii) the effect of a tube- ences between morphotypes related to the polychaete assem- building chaetopterid on the polychaete assemblage structure. blage structure. The chaetopterid tube load on aggregations determines two ascidian morphotypes, those with a high load of chaetopterid Keywords Habitat complexity . Ecosystem engineering . tubes (HT morphotype) and those with a low load of Diversity . Tube-building . Ascidians chaetopterid tubes (LT morphotype). From a total of 38 ag- gregations studied, we found 5,524 specimens belonging to 35 species of polychaetes. Three species were the most abundant Introduction in the aggregations (Phyllochaetopterus socialis, Nicolea lobulata,andTyposyllis magdalena), reaching 22% of total Epifaunal polychaetes are an important component of hard abundance.
    [Show full text]
  • Contrasting Patterns of Native and Introduced Ascidians in Subantarctic and Temperate Chile
    Management of Biological Invasions (2016) Volume 7, Issue 1: 77–86 DOI: http://dx.doi.org/10.3391/mbi.2016.7.1.10 Open Access © 2016 The Author(s). Journal compilation © 2016 REABIC Proceedings of the 5th International Invasive Sea Squirt Conference (October 29–31, 2014, Woods Hole, USA) Research Article Too cold for invasions? Contrasting patterns of native and introduced ascidians in subantarctic and temperate Chile 1 2 3,4 5 6 Xavier Turon *, Juan I. Cañete , Javier Sellanes , Rosana M. Rocha and Susanna López-Legentil 1Center for Advanced Studies of Blanes (CEAB-CSIC), Accés Cala S. Francesc 14, 17300 Blanes, Girona, Spain 2Facultad de Ciencias, Universidad de Magallanes, Chile 3Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile 4Millenium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Chile 5Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil 6Dep. of Biology and Marine Biology, and Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28409, USA *Corresponding author E-mail: [email protected] Received: 6 May 2015 / Accepted: 30 September 2015 / Published online: 26 November 2015 Handling editor: Mary Carman Abstract We analysed the biodiversity of ascidians in two areas located in southern and northern Chile: Punta Arenas in the Strait of Magellan (53º latitude, subantarctic) and Coquimbo (29º latitude, temperate). The oceanographic features of the two zones are markedly different, with influence of the Humboldt Current in the north, and the Cape Horn Current System, together with freshwater influxes, in the Magellanic zone. Both regions were surveyed twice during 2013 by SCUBA diving and pulling ropes and aquaculture cages.
    [Show full text]