Factors Determining the Risk of the Metabolic Syndrome: Is There a Central Role for Adiponectin?

Total Page:16

File Type:pdf, Size:1020Kb

Factors Determining the Risk of the Metabolic Syndrome: Is There a Central Role for Adiponectin? European Journal of Clinical Nutrition (2013) 67, 485–491 & 2013 Macmillan Publishers Limited All rights reserved 0954-3007/13 www.nature.com/ejcn REVIEW Factors determining the risk of the metabolic syndrome: is there a central role for adiponectin? EK Calton, VS Miller and MJ Soares BACKGROUND AND OBJECTIVES: The pathogenesis of the metabolic syndrome (MetS) is not well understood. This review is based on the hypothesis that both traditional and emerging risk factors act through adiponectin. SUBJECTS AND METHODS: We conducted a search of the literature using prominent electronic databases and search terms that included in combination: adiponectin, diet, dietary patterns, exercise, metabolic rate, MetS and testosterone. Articles were restricted to studies conducted on adult humans, reported in English and within the time period 2000–2012. RESULTS AND CONCLUSIONS: Both traditional and emerging risk factors associated with the MetS show some evidence of exerting their influence through adiponectin. High-quality randomized controlled trials that alter adiponectin levels are required to further corroborate this hypothesis. European Journal of Clinical Nutrition (2013) 67, 485–491; doi:10.1038/ejcn.2013.1; published online 30 January 2013 Keywords: metabolic syndrome; adiponectin; diet; vitamin D; basal metabolic rate; mitochondria INTRODUCTION several factors on MetS risk through adiponectin (Figure 1). We The metabolic syndrome (MetS) represents a clustering of risk also investigate the outcomes from randomized controlled trials factors for cardiovascular disease and type 2 diabetes mellitus on circulating adiponectin and the associated benefits on (T2DM), which include: hypertension, low high-density lipoprotein- components of the MetS (Table 1). cholesterol (HDL-C), high triglycerides (TG), high fasting blood glucose (FBG) and abdominal obesity.1 Obesity and insulin resistance (IR) have long been accepted as having a pivotal role METHODS in the etiopathogenesis of the syndrome.2,3 However, emerging We conducted a literature review of the following electronic databases: evidence indicates that even after controlling for these variables, Cambridge University Press Journals Complete, Proquest Central, PubMed there remains a substantial unexplained risk.2,4–6 Central, Science Direct and Wiley Online Library. Individual Journals were Adiponectin, a collagen-like protein was first discovered in 1995 also searched for relevant studies, these included: American Journal of Clinical Nutrition, Cardiovascular and Metabolic Risk, Circulation Journal, by Dcherer and Lodish, who called it adipocyte complement- 7 Diabetologia, European Journal of Clinical Nutrition, Journal of Clinical related protein of 30 kDa (Acrp30). At a similar time, three other Endocrinology and Metabolism, Metabolism, Clinical and Experimental and independent groups discovered adiponectin, calling it adipose Obesity Journal. Articles were restricted to the English language, studies most abundant gene transcript 1 (apM1), AdipoQ and gelatin- conducted with adult humans and within the time period 2000–2012. The binding protein of 28 kDa (GBP28).8 Adiponectin is secreted following key words in various combinations were used: adiponectin, diet, primarily from adipose tissue into the circulation where high- dietary patterns, exercise, metabolic rate, MetS and testosterone. molecular-weight, medium-molecular-weight and low-molecular- weight oligomeric forms exist.8,9 Total adiponectin as well as the individual oligomeric forms have been associated with health RESULTS benefits.9 Consistent links between low adiponectin levels and Adiposity, inflammation, IR and the MetS increased TG, FBG, waist circumference, blood pressure (BP) levels Adipose tissue is now recognized as an active organ, and not as an and decreased HDL-C explain its potential role in the etiology of inert store of excess lipid as once believed.7 Adipose tissue secre- MetS.2,10 Furthermore, genetic studies have linked adiponectin tes a variety of bioactive adipocytokines, many of which are and MetS in individuals of European descent.11 Specifically, overall proinflammatory. It is widely accepted that the abnormal inflam- adiposity, abdominal adiposity and IR were influenced by gene matory profile observed in obesity is secondary to adipocyte loci, which also encode adiponectin.12 hypertrophy (increase in cell size) caused by the storage of excess This review discusses both traditional and emerging factors that lipid.15 Recently, chronic low-grade inflammation, otherwise may influence the prevalence of MetS. Furthermore, the possibility known as meta-inflammation, has been implicated as a major that adiponectin may have an important role in the pathogenesis factor in the development of the syndrome. Evidence of a of the syndrome was evaluated. As there is inconsistency proinflammatory state in MetS comes from the observation of in the literature whether total, high-molecular-weight, medium- elevated concentrations of a variety of inflammatory molecules molecular-weight or low-molecular-weight adiponectin was mea- such as C-reactive protein (CRP), tumor necrosis factor-a (TNF-a), sured,4,13,14 this review discusses adiponectin in general terms. We resistin, interleukins (IL-6, IL-8) and visfatin.16 In general, as the present a model that emphasizes the flow-through effects of number of MetS components observed increase, levels of Discipline of Nutrition and Dietetics, School of Public Health, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia. Correspondence: Professor MJ Soares, Discipline of Nutrition and Dietetics, Curtin Health Innovation Research Institute, School of Public Health, Curtin University, Perth, WA 6845, Australia. E-mail: [email protected] Received 6 August 2012; revised 12 December 2012; accepted 26 December 2012; published online 30 January 2013 Adiponectin and the metabolic syndrome EK Calton et al 486 Female Diet (↑dairy, ↑Vitamin D/ ↓BMR/↑Mitochondrial ↓Age ↑PA gender/↓TT low GL) ↓PTH function (3) (4) (5) (2) (1) (6) ↑ ADIPONECTIN (↓ adiponectin resistance) (7) ↓ Inflammatory response (8) ↑ Insulin sensitivity (9) ↓ METABOLIC SYNDROME Figure 1. Schematic of factors that influence MetS risk through adiponectin. (1) ¼ Van Berendoncks et al.48; (2) ¼ Ryo et al.2, Cnop et al.19, Kern et al.27; (3) ¼ Jurimae et al.59; (4) ¼ Yu et al.29, Pischon et al.49, Zemel et al.53; (5) ¼ Vaidya et al.65, Nimitphong et al.66; (6) ¼ Ruige et al.21, Schrauwen-Hinderling et al.72, Larsen et al.75 (7) ¼ Lara-Castro et al.9, Hamilton et al.14, Baratta et al.23, Hotta et al.24; (8) ¼ Sharma 18; (9) Ryo et al.2, Beavers et al.3,Xuet al.17 BMR, basal metabolic rate; GL, glycemic load; PA, physical activity; PTH, parathyroid hormone; TT, testosterone; m, increased; k, decreased. inflammatory markers increase. Furthermore, individual enhances the production of anti-inflammatory cytokines by inflammatory markers are associated with specific components macrophages, monocytes and dendritic cells.25 Numerous of MetS.16 In addition, greater adipose tissue leads to greater studies have found proinflammatory cytokines and adiponectin circulating fatty acids, which results in IR.17 In turn, IR leads to (an anti-inflammatory cytokine), to inhibit each other’s expression increased hepatic TG synthesis (increased very-low-density lipo- and secretion.9,15,26 protein in circulation) and increased HDL-C uptake from the Similarly, there is significant evidence of an inverse association circulation (due to changed HDL-C composition secondary to between adiponectin and IR. Several cross-sectional studies have increased very-low-density lipoprotein). IR also results in increased found adiponectin to be significantly and negatively correlated blood glucose due to increased hepatic glucose production, with IR21,24 and positively correlated with insulin sensitivity decreased glucose uptake by insulin-sensitive tissues and (IS).19,22,24 Furthermore, this relationship has been shown to be increases in BP secondary to salt reabsorption in the kidney.17 independent of gender, age and body mass index (BMI).27,28 Furthermore, it has been opined that IR may be responsible for Intervention trials with a variety of insulin-sensitizing drugs have increased inflammatory cytokine production in both the liver and resulted in increased adiponectin without changes in BMI; thus, adipose tissue.18 Thus, there is a considerable body of evidence adiponectin may be at least partly responsible for the insulin- implicating adiposity-induced IR and inflammation in the sensitizing benefits of these drugs.29–31 A 3-month intervention pathogenesis of the MetS (Figure 1). study29 with a specific thiazolidinedione (TZD) showed significant increases in adiponectin levels with improvements in fasting blood glucose, HDL-C and TG levels (Table 1). Furthermore, Does adiponectin have a role? thiazolidinediones have been shown to act directly on adipocytes, Adiponectin has repeatedly been shown to be inversely related to increasing adiponectin production as well as ameliorating the both adiposity and inflammatory cytokines through a variety of inhibitory effect of TNF-a on adiponectin expression.8 Adiponectin study designs, including cross-sectional, case–control and inter- receptors are found in microvascular endothelial cells, liver and vention studies.4,19–22 Intra-abdominal fat has been shown to be pancreatic b-cells.8 While the significance is not well understood, it negatively related to circulating concentrations of adiponectin in is possible that
Recommended publications
  • Multifaceted Physiological Roles of Adiponectin in Inflammation And
    International Journal of Molecular Sciences Review Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases Hyung Muk Choi 1, Hari Madhuri Doss 1,2 and Kyoung Soo Kim 1,2,* 1 Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Korea; [email protected] (H.M.C.); [email protected] (H.M.D.) 2 East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Gandong-gu, Seoul 02447, Korea * Correspondence: [email protected]; Tel.: +82-2-961-9619 Received: 3 January 2020; Accepted: 10 February 2020; Published: 12 February 2020 Abstract: Adiponectin is the richest adipokine in human plasma, and it is mainly secreted from white adipose tissue. Adiponectin circulates in blood as high-molecular, middle-molecular, and low-molecular weight isoforms. Numerous studies have demonstrated its insulin-sensitizing, anti-atherogenic, and anti-inflammatory effects. Additionally, decreased serum levels of adiponectin is associated with chronic inflammation of metabolic disorders including Type 2 diabetes, obesity, and atherosclerosis. However, recent studies showed that adiponectin could have pro-inflammatory roles in patients with autoimmune diseases. In particular, its high serum level was positively associated with inflammation severity and pathological progression in rheumatoid arthritis, chronic kidney disease, and inflammatory bowel disease. Thus, adiponectin seems to have both pro-inflammatory and anti-inflammatory effects. This indirectly indicates that adiponectin has different physiological roles according to an isoform and effector tissue. Knowledge on the specific functions of isoforms would help develop potential anti-inflammatory therapeutics to target specific adiponectin isoforms against metabolic disorders and autoimmune diseases.
    [Show full text]
  • Associations Between Serum Leptin Level and Bone Turnover in Kidney Transplant Recipients
    Associations between Serum Leptin Level and Bone Turnover in Kidney Transplant Recipients ʈ ʈ ʈ Csaba P. Kovesdy,*† Miklos Z. Molnar,‡§ Maria E. Czira, Anna Rudas, Akos Ujszaszi, Laszlo Rosivall,‡ Miklos Szathmari,¶ Adrian Covic,** Andras Keszei,†† Gabriella Beko,‡‡ ʈ Peter Lakatos,¶ Janos Kosa,¶ and Istvan Mucsi §§ *Division of Nephrology, Salem Veterans Affairs Medical Center, Salem, Virginia; †Division of Nephrology, University of Virginia, Charlottesville, Virginia; ‡Institute of Pathophysiology, Semmelweis University, Budapest, Hungary; §Harold Simmons Center for Chronic Disease Research & Epidemiology, Los Angeles Biomedical Research Institute at ʈ Harbor-University of California–Los Angeles Medical Center, Torrance, California; Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary; ¶First Department of Internal Medicine, Semmelweis University, Budapest, Hungary; **University of Medicine Gr T Popa, Iasi, Romania; ††Department of Epidemiology, Maastricht University, Maastricht, Netherlands; ‡‡Central Laboratory, Semmelweis University, Budapest, Hungary; and §§Division of Nephrology, Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada Background and objectives: Obesity is associated with increased parathyroid hormone (PTH) in the general population and in patients with chronic kidney disease (CKD). A direct effect of adipose tissue on bone turnover through leptin production has been suggested, but such an association has not been explored in kidney transplant recipients. Design, setting, participants, & measurements: This study examined associations of serum leptin with PTH and with biomarkers of bone turnover (serum beta crosslaps [CTX, a marker of bone resorption] and osteocalcin [OC, a marker of bone formation]) in 978 kidney transplant recipients. Associations were examined in multivariable regression models. Path analyses were used to determine if the association of leptin with bone turnover is independent of PTH.
    [Show full text]
  • Endocrine System WS19
    Endocrine System Human Physiology Unit 3 Endocrine System • Various glands located throughout the body • Some organs may also have endocrine functions • Endocrine glands/organs synthesize and release hormones • Hormones travel in plasma to target cells Functions of the Endocrine System • Differentiation of nervous and reproductive system during fetal development • Regulation of growth and development • Regulation of the reproductive system • Maintains homeostasis • Responds to changes from resting state Mechanisms of Hormone Regulation • Hormones have different rates and rhythms of secretion • Hormones are regulated by feedback systems to maintain homeostasis • Receptors for hormones are only on specific effector cells • Excretion of hormones vary for steroid hormones and peptide hormones Regulation of Hormone Secretion • Release of hormones occurs in response to • A change from resting conditions • Maintaining a regulated level of hormones or substances • Hormone release is regulated by • Chemical factors (glucose, calcium) • Endocrine factors (tropic hormones, HPA) HPA = Hypothalamic-Pituitary Axis • Neural controls (sympathetic activation) Hormone Feedback Systems Negative feedback maintains hormone concentrations within physiological ranges • Negative feedback • Feedback to one level Loss of • Long-loop Negative Feedback feedback • Feedback to two levels control often leads to • Hypothalamus-Pituitary-Gland Axis pathology Negative Feedback Short-Loop Negative Feedback Long-Loop Negative Feedback Hormone Transport Peptide/Protein Hormones
    [Show full text]
  • Resistin Levels and Inflammatory Markers in Patients with Morbid Obesity
    Nutr Hosp. 2010;25(4):630-634 ISSN 0212-1611 • CODEN NUHOEQ S.V.R. 318 Original Resistin levels and inflammatory markers in patients with morbid obesity D. A. De Luis, M. González Sagrado, R. Conde, R. Aller and O. Izaola Instituto de Endocrinología y Nutrición Clínica. Medicine School and Unit of Investigation. Hospital Rio Hortega. RD-056/0013 RETICEF. University of Valladolid. Valladolid. Spain. Abstract NIVELES DE RESISTINA Y MARCADORES INFLAMATORIOS EN PACIENTES Background: The aim of the present study was to CON OBESIDAD MÓRBIDA explore the relationship of resistin levels with inflamma- tory markers and anthropometric parameters in morbid obese patients. Resumen Subjects: A population of 46 morbid obese was ana- lyzed. A complete nutritional and biochemical evaluation Introducción: El objetivo del presente estudio es eva- was performed. Patients were divided in two groups by luar la relación entre los niveles de resistina con los mar- median resistin value (3.49 ng/ml), group I (low values, cadores inflamatorios y parámetros antropométricos en average value 2.60 ± 0.5) and group II (high values, aver- pacientes obesos morbidos. age value 5.71 ± 2.25). Sujetos y métodos: Una muestra de 46 obesos morbidos Results: Patients in the group II had higher weight, fue analizada. Se realizó una valoración nutricional y bio- BMI, fat mass, waist circumference, LDL-cholesterol, química completa. Los pacientes fueron divididos en dos triglycerides, fibrinogen and C reactive protein than grupos en función de la mediana de resistina (3,49 ng/ml), patients in group I. In the multivariate analysis with age- grupo I (valores bajos, media del valor 2,60 ± 0,5 ng/ml) y and sex-adjusted basal resistin concentration as a depen- grupo II (valores altos, media del valor 5,71 ± 2,25 ng/ml).
    [Show full text]
  • (Title of the Thesis)*
    THE PHYSIOLOGICAL ACTIONS OF ADIPONECTIN IN CENTRAL AUTONOMIC NUCLEI: IMPLICATIONS FOR THE INTEGRATIVE CONTROL OF ENERGY HOMEOSTASIS by Ted Donald Hoyda A thesis submitted to the Department of Physiology In conformity with the requirements for the degree of Doctor of Philosophy Queen‟s University Kingston, Ontario, Canada (September, 2009) Copyright © Ted Donald Hoyda, 2009 ABSTRACT Adiponectin regulates feeding behavior, energy expenditure and autonomic function through the activation of two receptors present in nuclei throughout the central nervous system, however much remains unknown about the mechanisms mediating these effects. Here I investigate the actions of adiponectin in autonomic centers of the hypothalamus (the paraventricular nucleus) and brainstem (the nucleus of the solitary tract) through examining molecular, electrical, hormonal and physiological consequences of peptidergic signalling. RT-PCR and in situ hybridization experiments demonstrate the presence of AdipoR1 and AdipoR2 mRNA in the paraventricular nucleus. Investigation of the electrical consequences following receptor activation in the paraventricular nucleus indicates that magnocellular-oxytocin cells are homogeneously inhibited while magnocellular-vasopressin neurons display mixed responses. Single cell RT-PCR analysis shows oxytocin neurons express both receptors while vasopressin neurons express either both receptors or one receptor. Co-expressing oxytocin and vasopressin neurons express neither receptor and are not affected by adiponectin. Median eminence projecting corticotropin releasing hormone neurons, brainstem projecting oxytocin neurons, and thyrotropin releasing hormone neurons are all depolarized by adiponectin. Plasma adrenocorticotropin hormone concentration is increased following intracerebroventricular injections of adiponectin. I demonstrate that the nucleus of the solitary tract, the primary cardiovascular regulation site of the medulla, expresses mRNA for AdipoR1 and AdipoR2 and mediates adiponectin induced hypotension.
    [Show full text]
  • Resistin, Is There Any Role in the Mediation of Obesity, Insulin Resistance and Type-II Diabetes Mellitus?
    Review Article JOJ Case Stud Volume 6 Issue 3 - March 2018 Copyright © All rights are reserved by Rajeev Pandey DOI: 10.19080/JOJCS.2018.06.555686 Resistin, Is There any Role in the Mediation of Obesity, Insulin Resistance and Type-II Diabetes Mellitus? Rajeev Pandey1* and Gurumurthy2 1Department of Biochemistry, Spartan Health Science University, West Indies 2Department of Neurosciences, Spartan Health Science University, West Indies Submission: February 21, 2018; Published: March 05, 2018 *Corresponding author: Rajeev Pandey, Department of Biochemistry, Spartan Health Science University, St. Lucia, West Indies, Email: Abstract Resistin is a member of a class of cystein-rich proteins collectively termed as resistin-like molecules. Resistin has been implicated in tothe date pathogenesis there has ofbeen obesity-mediated considerable controversy insulin resistance surrounding and T2DM this 12.5kDa(Type II polypeptidediabetes mellitus). in understanding In addition, its resistin physiological also appears relevance to be in a bothpro- inflammatory cytokine. Taken together, resistin, like many other adipocytokines, may possess a dual role in contributing to disease risk. However, involvementhuman and rodent of resistin systems. molecule Furthermore, in the causation this has and led progression question, ofwhether obesity resistin and type represents II diabetes an mellitus important and pathogenicfactors associated factor within the alteration etiology inof theT2DM expression or not. Inof this magicreview, molecule authors athave physiological made an attemptand genetic to discuss levels. the key controversies and developments made so far towards the Keywords: Resistin; Obesity; T2DM; Insulin resistance Introduction Adipose tissue is known to produce a vast array of In addition, we will highlight the continuing complexity of the adipocyte-derived factors, known as adipocytokines.
    [Show full text]
  • Pathophysiology of Gestational Diabetes Mellitus: the Past, the Present and the Future
    6 Pathophysiology of Gestational Diabetes Mellitus: The Past, the Present and the Future Mohammed Chyad Al-Noaemi1 and Mohammed Helmy Faris Shalayel2 1Al-Yarmouk College, Khartoum, 2National College for Medical and Technical Studies, Khartoum, Sudan 1. Introduction It is just to remember that “Pathophysiology” refers to the study of alterations in normal body function (physiology and biochemistry) which result in disease. E.g. changes in the normal thyroid hormone level causes either hyper or hypothyroidism. Changes in insulin level as a decrease in its blood level or a decrease in its action will cause hyperglycemia and finally diabetes mellitus. Scientists agreed that gestational diabetes mellitus (GDM) is a condition in which women without previously diagnosed diabetes exhibit high blood glucose levels during pregnancy. From our experience most women with GDM in the developing countries are not aware of the symptoms (i.e., the disease will be symptomless). While some of the women will have few symptoms and their GDM is most commonly diagnosed by routine blood examinations during pregnancy which detect inappropriate high level of glucose in their blood samples. GDM should be confirmed by doing fasting blood glucose and oral glucose tolerance test (OGTT), according to the WHO diagnostic criteria for diabetes. A decrease in insulin sensitivity (i.e. an increase in insulin resistance) is normally seen during pregnancy to spare the glucose for the fetus. This is attributed to the effects of placental hormones. In a few women the physiological changes during pregnancy result in impaired glucose tolerance which might develop diabetes mellitus (GDM). The prevalence of GDM ranges from 1% to 14% of all pregnancies depending on the population studied and the diagnostic tests used.
    [Show full text]
  • The ENDOCRINE SYSTEM Luteinizinghormones Hormone/Follicle-Stimulating Are Chemical Hormone Messengers
    the ENDOCRINE SYSTEM LuteinizingHormones hormone/follicle-stimulating are chemical hormone messengers. (LH/FSH) They bind to specific target cells Crucial for sex cell production Growth hormone–releasingwith receptors, hormone regulate (GHRH) metabolism and the sleep cycle, and contribute Thyrotropin-releasing hormone (TRH) Regulatesto thyroid-stimulating growth and hormone development. release The endocrine glands and organs secrete Corticotropin-releasing hormone (CRH) Regulatesthese to release hormones of adrenocorticotropin all over that is vitalthe to body. the production of cortisol (stress response hormone). The hypothalamus is a collection of specialized cells that serve as the central relay system between the nervous and endocrine systems. hypothalamus Growth hormone-releasing hormone (GHRH) Thyrotropin-releasing hormone (TRH) Regulates the release of thyroid-stimulating hormones Luteinizing hormone/follicle-stimulating hormone (LH/FSH) Crucial for sex cell production Corticotropin-releasing hormone (CRH) Regulates the release of adrenocorticotropin that’s vital to the production of cortisol 2 The hypothalamus translates the signals from the brain into hormones. From there, the hormones then travel to the pituitary gland. Located at the base of the brain inferior to the hypothalamus, the pituitary gland secretes endorphins, controls several other endocrine glands, and regulates the ovulation and menstrual cycles. pituitary gland 3 The anterior lobe regulates the activity of the thyroid, adrenals, and reproductive glands by producing hormones that regulate bone and tissue growth in addition to playing a role in the absorption of nutrients and minerals. anterior lobe Prolactin Vital to activating milk production in new mothers Thyrotropin Stimulates the thyroid to produce thyroid hormones vital to metabolic regulation Corticotropin Vital in stimulating the adrenal gland and the “fight-or-flight” response 4 The posterior lobe stores hormones produced by the hypothalamus.
    [Show full text]
  • Links Between HPA Axis and Adipokines: Clinical Implications in Paradigms of Stress-Related Disorders
    Expert Review of Endocrinology & Metabolism ISSN: 1744-6651 (Print) 1744-8417 (Online) Journal homepage: https://www.tandfonline.com/loi/iere20 Links between HPA axis and adipokines: clinical implications in paradigms of stress-related disorders Panagiota Papargyri, Evangelia Zapanti, Nicolaos Salakos, Loukas Papargyris, Alexandra Bargiota & George MASTORAKOS To cite this article: Panagiota Papargyri, Evangelia Zapanti, Nicolaos Salakos, Loukas Papargyris, Alexandra Bargiota & George MASTORAKOS (2018) Links between HPA axis and adipokines: clinical implications in paradigms of stress-related disorders, Expert Review of Endocrinology & Metabolism, 13:6, 317-332, DOI: 10.1080/17446651.2018.1543585 To link to this article: https://doi.org/10.1080/17446651.2018.1543585 Accepted author version posted online: 01 Nov 2018. Published online: 13 Nov 2018. Submit your article to this journal Article views: 55 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=iere20 EXPERT REVIEW OF ENDOCRINOLOGY & METABOLISM 2018, VOL. 13, NO. 6, 317–332 https://doi.org/10.1080/17446651.2018.1543585 REVIEW Links between HPA axis and adipokines: clinical implications in paradigms of stress-related disorders Panagiota Papargyria, Evangelia Zapantib, Nicolaos Salakosc, Loukas Papargyrisd,e, Alexandra Bargiotaf and George MASTORAKOSa aUnit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, School of Medicine, National and Kapodistrian
    [Show full text]
  • Endocrine Paraneoplastic Syndromes: a Review
    Endocrinology & Metabolism International Journal Review Article Open Access Endocrine paraneoplastic syndromes: a review Abstract Volume 1 Issue 1 - 2015 Paraneoplastic endocrine syndromes result from ectopic production of hormones by Hala Ahmadieh,1 Asma Arabi2 different tumors. Hypercalcemia of malignancy is the most common, mostly caused by 1Division of Endocrinology, American University of Beirut, ectopic parathyroid hormone related peptide (PTHrP) production which increases bone Lebanon resorption. Other causes include the rare ectopic parathyroid hormone (PTH) production, 2Department of Internal Medicine, American University of ectopic production of 1, 25-(OH)2 vitamin D by the tumor and its adjacent macrophages and Beirut-Medical Center, Lebanon bone metastasis which by itself in addition to the local production of PTHrP at the level of the bone lead to bone resorption and thus hypercalcemia. Treatment includes extracellular Correspondence: Asma Arabi, Department of Internal fluid volume repletion, bisphosphonates or denosumab and calcitonin. Ectopic Cushing’s Medicine, Division of Endocrinology, American University of syndrome caused by ectopic ACTH production results in hypokalemia, proximal muscle Beirut-Medical Center, Po Box 11-0236, Riad El-Solh, Beirut, weakness, easy bruisability, hypertension, diabetes and psychiatric abnormalities including Lebanon, Email depression and mood disorders. Different diagnostic measures help to differentiate Cushing’s disease from ectopic Cushing’s syndrome. Treatment includes surgical resection Received: October 26, 2014 | Published: January 02, 2015 of tumor and medical therapy to suppress excess cortisol production. Ectopic secretion of ADH has been associated with different tumor types. The best treatment options include removal of the underlying tumor, chemotherapy, or radiotherapy in addition to free water restriction, demeclocycline and vaptans.
    [Show full text]
  • Physiological Adaptations in Pregnancy-Resources Table
    Responsibility/ Adaptations in Pregnancy Additional Information Hormones ➢ Maintaining homeostasis Perinatal Nursing – 2021 ➢ Regulation of growth Simpson, Creehan, O’Brien-Abel, Roth ➢ Development and Cellular communication & Rohan Chapter three – Physiological Changes of Pregnancy Blackburn, Susan Tucker Page 48 Placenta ➢ Responsible for transfer of nutrients to the fetus ❖ Placental Hormones are critical and waste products away from the fetus for many of the metabolic and ➢ Functions as the fetal lungs, gi, liver, kidney and endocrine changes during endocrine organ pregnancy ➢ Major Hormones ❖ Fetal bone growth and placental ❖ hCG - Human chorionic gonadotropin calcium transport is mediated ❖ hPL – Human Placental Lactogen by Parathyroid hormone related ❖ Estrogen protein or PTHrP ❖ Progesterone ❖ Corticotrophin-releasing ❖ Serves as an endocrine gland hormone or CRH and PGs have a ❖ Major Hormones major role in initiation of ❖ hCG - Human chorionic gonadotropin myometrial contractility and ❖ hPL – Human Placental Lactogen labor onset ❖ Estrogen Page 49 ❖ Progesterone ➢ HCG ➢ Primarily secreted by the placenta Page 49 1 | P a g e ➢ Major function is to maintain progesterone and estrogen production by the corpus luteum until the placental function is adequate (approximately 10 weeks post-conception) ➢ Thought to have a role in fetal testosterone and corticosteroid production and angiogenesis ➢ Found in maternal serum by within 7-8 days after implantation ➢ Positive pregnancy test – 3 weeks after conception and 5 weeks after LMP ➢ Elevated
    [Show full text]
  • IL-33, Diet-Induced Obesity, and Pulmonary Responses to Ozone David I
    Kasahara and Shore Respiratory Research (2020) 21:98 https://doi.org/10.1186/s12931-020-01361-9 RESEARCH Open Access IL-33, diet-induced obesity, and pulmonary responses to ozone David I. Kasahara and Stephanie A. Shore* Abstract Background: Obesity augments pulmonary responses to ozone. We have reported that IL-33 contributes to these effects of obesity in db/db mice. The purpose of this study was to determine whether IL-33 also contributes to obesity-related changes in the response to ozone in mice with diet-induced obesity. Methods: Male wildtype C57BL/6 mice and mice deficient in ST2, the IL-33 receptor, were placed on chow or high fat diets for 12 weeks from weaning. Because the microbiome has been implicated in obesity-related changes in the pulmonaryresponsetoozone,micewereeitherhousedwithothermiceofthesamegenotype(samehoused)orwith mice of the opposite genotype (cohoused). Cohousing transfers the gut microbiome from one mouse to its cagemates. Results: Diet-induced increases in body mass were not affected by ST2 deficiency or cohousing. In same housed mice, ST2 deficiency reduced ozone-induced airway hyperresponsiveness and neutrophil recruitment in chow-fed but not HFD- fed mice even though ST2 deficiency reduced bronchoalveolar lavage IL-5 in both diet groups. In chow-fed mice, cohousing abolished ST2-related reductions in ozone-induced airway hyperresponsiveness and neutrophil recruitment, butinHFD-fedmice,noeffectofcohousingontheseresponsestoozonewasobserved.Inchow-fedmice,ST2 deficiency and cohousing caused changes in the gut microbiome. High fat diet-feeding caused marked changes in the gut microbiome and overrode both ST2-related and cohousing-related differences in the gut microbiome observed in chow-fed mice.
    [Show full text]