Ms3pro ULTIMATE User Manual 12 | 18 | 18 1.5.1 Firmware CONTENTS CONTENTS

Total Page:16

File Type:pdf, Size:1020Kb

Ms3pro ULTIMATE User Manual 12 | 18 | 18 1.5.1 Firmware CONTENTS CONTENTS MS3Pro ULTIMATE User Manual 12 | 18 | 18 1.5.1 Firmware CONTENTS CONTENTS Contents 1 Introduction 13 1.1 Overview . 13 1.1.1 Warning labels . 13 1.1.2 Technical support . 13 1.1.3 Copyrights . 13 1.2 MS3Pro components . 13 1.2.1 MS3Pro Engine Control Unit Family . 13 1.2.1.1 MS3Pro (first generation) . 13 1.2.1.2 MS3Pro Module . 14 1.2.1.3 MS3Pro Plug and Play . 14 1.2.1.4 MS3Pro Ultimate . 14 1.2.2 Wiring harness . 15 1.2.3 Tuning cables . 15 1.3 MS3Pro accessories . 15 1.3.1 Sensors . 15 1.3.2 QuadSpark . 15 1.3.3 Ignition coils . 15 1.3.4 CAN-EGT thermocouple interface . 15 1.3.5 MicroSquirt . 15 1.3.6 HSD-4 High Side Driver module . 16 1.3.7 Peak and hold driver module . 16 1.4 Tools . 16 2 Installing the software 17 2.1 Registering TunerStudio . 17 2.2 TunerStudio . 17 2.2.1 Start screen . 17 2.2.2 Creating a project . 18 2.2.3 TunerStudio main screen . 20 2.2.4 Loading and saving tunes . 21 2.3 Tune Analyze Live . 21 3 MS3Pro hardware 23 3.1 Overview . 23 3.2 Inputs . 24 3.2.1 Engine speed . 24 3.2.2 Temperature inputs . 25 3.2.3 Throttle position . 25 3.2.4 O2 sensor input . 25 3.2.5 MAP sensor input . 25 3.2.6 General purpose analog inputs . 25 3.2.7 Knock input . 26 3.2.8 Digital I/O channels . 26 3.2.9 Barometric pressure input . 26 3.3 Outputs . 27 3.3.1 Injector outputs . 27 3.3.2 Ignition outputs . 27 3.3.2.1 Additional ignition outputs for V10 coil on plug applications . 27 3.3.3 High current outputs . 28 3.3.4 PWM medium current outputs . 28 3.3.5 Digital Output pins . 28 3.3.6 Tach output . 29 3.3.7 Stepper motor control output . 29 3.3.8 Digital I/O as outputs . 29 3.4 Communications lines . 29 AMP EFI MS3ProUltimate manual version 1.205, firmware 1.5.1, 10/31/2018 Page 2 CONTENTS CONTENTS 3.4.1 RS232 . 29 3.4.2 USB . 29 3.4.3 CANbus . 29 3.5 Maintenance inside the case . 29 3.5.1 Diagnostic lights . 30 3.5.2 Changing the fuses . 30 3.5.3 Replacing the SD card . 30 3.5.4 Changing the real time clock battery . 30 3.5.5 Water seal specifications . 31 3.5.6 Mounting footprint . 31 4 Wiring 32 4.1 ECU pinout . 32 4.2 Wiring diagram . 35 4.3 Engine position sensors . 40 4.3.1 Variable reluctor sensors . 40 4.3.2 Hall effect and optical sensors . 40 4.3.3 Points triggering and points replacement devices . 41 4.3.4 Fuel only installations . 41 4.4 Other sensors . 41 4.4.1 Temperature sensors . 41 4.4.2 MAP sensors . 42 4.4.3 Throttle position sensor . 43 4.4.4 Mass air flow sensors . 43 4.4.4.1 Ford 5.0 Mustang 4 pin oval connector MAF . 44 4.4.4.2 Ford 5 pin rectangular connector MAF . 44 4.4.4.3 Nissan / Infiniti Q45 MAF . 44 4.4.5 Oxygen sensors . 45 4.4.6 Knock sensors . 46 4.4.7 Speed and.
Recommended publications
  • Fdsjgfd Not Imitators!
    PERFORMANCE INNOVATORS FDSJGFD NOT IMITATORS! CPC TURBO M8 HANDBOOK USING GARRET TURBO FOR PROCLIMB / PROCROSS 800 Stage 2 CUTLER’S PERFORMANCE CENTER “PERFORMANCE INNOVATORS NOT IMMITATORS” CPC Turbo M8 Handbook Using Garrett Turbo For Pro Climb and Pro Cross 800’s Thank you for purchasing a CPC Pro Climb and Pro Cross Turbo Kit. Our kits are built to the highest quality standards. This handbook contains both generic and specific information regarding turbo operation and installation. This handbook also contains valuable information that will help you understand how your turbo works and how to tune your turbo powered Arctic Cat to get the most performance out of this product as well as ways to avoid potential problems and save money. CPC has been turbo charging snowmobiles since the mid 1990's with a 1993 EXT 550 model as our first project. Two years later we completed a more reliable turbo charged ZR 580 with great success. As the years followed, the Turbo kits continue to be refined. What kind of Turbo does CPC use and why? CPC uses a GT Garrett RS series ball bearing turbo. Garrett turbos have passed intensive testing for durability, safety and efficiency. Garrett GT series turbos have a higher efficiency rating which reduces heat and produces more pounds of air per minute than many other turbo manufactures. What kind of maintenance and care is required for the Garrett RS series turbo? We recommend that you use Mobile 1 synthetic 5 w 30 oil or other high quality synthetic oils. Use 0 w 30 if temps drop below -20 F.
    [Show full text]
  • EVC 7 Manual 01 Outline 2020 02 27
    £ 10)1\f-£00917 WI-£ ·,al\ Y�Ef'Z 1fOZOZ 00-00Z00)1-IU903 The 7th generation 0 --ffe.J..[1t�=1�==-t'J=l?}t/�'M':::lc 'c;\-::;,-::?,1t'.,t�,q(f::J cp !:!::(�.=' 0 , 1�?-t>!:J::(¥:.=-J., 1�::J11fco �ti� '�JF-tc.t-1::J-fi'�f,f�J:I:� 0 , 1�?./-)J..Ct'1-::1-r--e�f-;fj..�::J4!!&�.--fl t[{_ 4!!+1-MllJr 0 �- , 1�?./-)J..11*�}::J���J�j..� "fl+J.µ.}21Jr ELECJRON/C VALVE CONJROLLER Instruction anual Product EVC7 Use Boost Controller- Automotive Turbocharged Engine Application Vehicle that operates on a DC 12V negative ground. Part No. 45003-AK013 · A fuel-ignition Correction device (e.g. HKS F-CON etc) is required in order to use this product. • Hose set is required in order to install this product to a vehicle with poppet valve, twin turbo engine, or 4mm hose piping. Remarks Hose set is available separately. ·When you increase the boost, some vehicles will have a fuel cut. When the fuel cut is released, be sure to use the fuel increase device together. H3110HLNO:J 3A1VA :JINOHL:J313 Installation should be performed by a professional. Prior to installation and use, thoroughly read the instruction manual. Retain this instruction manual for later reference. E05121 K00200-00 February, 2020 Ver. 3-1.01 45003-AK0l 3 Introduction E fO)l\f-EOOSI> HKS EVC7 Read this instruction manual prior to installation to ensure safe and correct usage and optimal product performance, The HKS EVC7 enables the adjustment of the boost setting from inside the vehicle.
    [Show full text]
  • Marine Engine Electronics C7 –
    C7 - C32 Marine Engine Electronics Application and Installation Guide APPLICATION AND INSTALLATION GUIDE MARINE ENGINE ELECTRONICS C7 – C32 Caterpillar: Confidential Yellow 1 C7 - C32 Marine Engine Electronics Application and Installation Guide 1 Introduction and Purpose…………………………………….…………………5 1.1 Safety……………………………………………………………………………5 1.2 Replacement Parts…………………………………………………………….6 2 Engine System Overview……………………………………………………….7 2.1 Electronic Engine Control……………………………………………………..7 2.2 Factory Configuration Parameters……………………………………………8 2.3 Engine Component Overview…………………………………………………9 2.4 Engine Component Locations……………………………………………….12 3 Customer System Overview…………………………………………………..13 3.1 Customer Configuration Parameters……………………………………….13 3.2 Customer Component Overview…………………………………………….14 4 Power and Grounding Considerations……………………………………….15 4.1 Power Requirements…………………………………………………………15 4.2 Engine Grounding…………………………………………………………….18 4.3 Suppression of Voltage Transients…………………………………………20 4.4 Battery Disconnect Switch…………………………………………………...21 4.5 Welding on a Machine with an Electronic Engine…………………………22 5 Connectors and Wiring Harness Requirements………………………….…23 5.1 Wiring Harness Components………………………………………………..23 5.2 Wiring Harness Design………………………………………………………29 5.3 Service Tool Connector (J66) Wiring……………………………………….32 5.4 SAE J1939/ 11 - Data Bus Wiring…………………………………………..34 6 Customer Equipment I.D. and Passwords…………………………………..37 6.1 Equipment Identification……….……………………………………………..37 6.2 Customer Passwords.………………………………………………………..37 7 Factory
    [Show full text]
  • G-Force2 Instuctions
    GFB Electronic boost controller instruction manual MENU SCRAMBLE BOOST Go Fast Bits P/L Ph: +61 (0)2 9534 0099 P.O. Box 1017 Fax: +61 (0)2 9534 3999 Riverwood NSW 2210 Email: [email protected] Australia Web: www.gfb.com.au contents Intro About the G-Force II 2 Installation Wiring Diagram 3 Solenoid Valve Installation Diagram 4 Menu Navigation Menu Structure 5 Boost Presets 6 Setting the Boost Pressure Duty Cycle 7 Gain 8 Sensitivity 9 Controller Functions Scramble Boost 10 Overboost 11 Peak Hold 11 Display Setting - Units of Pressure 12 Input Setup 12 Colour Settings 13 Additional Info Tips 14 Troubleshooting 15 Tech 16 Warranty 16 about the g force ii The GFB G-Force II boost controller is designed to bring on boost as fast and accurately as possible on a turbocharged vehicle. It incorporates an advanced and unique boost control strategy that allows the user fine control over the peak boost, rise rate, and closed-loop correction. The G-Force II also features a new user interface, making menu navigation and setup as fast and simple as possible. Features at a glance: ?6 individually programmable boost preset memories, selectable on-the-fly ?Closed-loop correction - helps prevent boost variations ?New scramble boost strategy - increase or decrease boost for a certain amount of time at the push of a button ?Overboost protection - shuts down the solenoid and flashes a warning if boost goes too high ?Peak hold display ?Real-time boost/vacuum gauge display - in BAR, kPa, or PSI ?External input - can be used to activate scramble or select boost memories remotely ?Adjustable button colours - tie in with the car’s existing lighting 91.5mm Installing the Head Unit The G-Force II casing is a ½ DIN size, allowing to be MENU mounted into one half of a standard stereo slot.
    [Show full text]
  • Grimmspeed 3 Port Boost Control Solenoid Installation Instructions 2002+ Subaru WRX/Sti/LGT/FXT
    GrimmSpeed 3 Port Boost Control Solenoid Installation Instructions 2002+ Subaru WRX/STi/LGT/FXT ***Image above is a generic photo, your EBCS may look different*** All GrimmSpeed products are intended for Off-Road use only. Park your vehicle on a level surface. Fully engage the parking brake and put wheel stops on the front and rear wheels to keep the vehicle from rolling. Warning (read before installing): Before moving forward with the setups outlined below, insure that you have the experience and confidence to properly tune your car. If not, please consult a tuning professional. Without a proper tune you can overboost and damage your engine. Under no circumstances is the GrimmSpeed Solenoid to be used in any applications where failure of the valve to operate as intended could jeopardize the safety of the operator or any other person or property. Note! You must tune for this hardware! Using stock or off-the-shelf EM with a 3-port solenoid installed in interrupt mode will result in overboosting! A. Purpose The benefits of this upgrade are faster spool, ability to hold higher boost, and better control over boost. A side benefit of the improved boost control is the ability to reach higher target boost levels in the low (1st and 2nd) gears. Grimmspeed 1 B. Technical Background A BCS is a binary device – i.e. it is either on (energized), or off. In the context of the Subaru device, when the BCS is energized, air is allowed to pass through the device, while when it is off, the air flow is cut.
    [Show full text]
  • 3Gr-Fse Intake Eg 89
    ENGINE – 3GR-FSE INTAKE EG 89 3GR-FSE INTAKE General ● A surge tank with a built-in ACIS (Acoustic Control Induction System) and an intake manifold with a built-in SCV (Swirl Control Valve) are used. ● A hot-wire type Mass airflow meter (with a built-in intake air temperature sensor) is provided in the air cleaner cap. ● The ETCS-i system is used and a single-valve, electronically controlled throttle body is installed. Purge VSV Resonator Throttle Body Mass Air Flow Meter SCV Position Sensor Air Cleaner Motor for SCV (Swirl Control Valve) Air Cleaner Inlet Intake Manifold Serge Tank Link Mechanism Rotary Solenoid for ACIS Link Mechanism Resonator Throttle Body Exhaust Manifold Air Cleaner Intake Air Control Valve SCV Serge Tank Mass Air Flow Meter Rotary Solenoid for ACIS Engine Exhaust Manifold Sensor ECM SCV Position Sensor Intake Manifold Motor for SCV (Swirl Control Valve) A4270050P ENGINE – EG 90 3GR-FSE INTAKE Air Cleaner ● A removable cap type air cleaner case is used for enhanced serviceability. Also, an Mass airflow meter (with a built-in intake air temperature sensor) is provided in the air cleaner cap. ● A dry type air cleaner element is used and provided with an ample filtering surface area. ● A compact resonator is provided in the air cleaner hose to reduce intake noise. ● A full fabric air filter element, which does not contain an outer frame or rubber seal, is used. As a result, the case could be made compact, with recyclability in mind. ● A carbon filter,which adsorbs the HC that accumulates in the intake system when the engine is stopped ,has been adopted in the air cleaner cap in order to reduce evaporative emissions.(For U.S.A.,Canada,Koria,Taiwan) Mass Air Flow Meter Air Cleaner Cap Carbon Filter Air Cleaner Hose Full Fabric Air Filter Element Resonator Air Cleaner Element Air Cleaner Case Air Cleaner Inlet A4270051P Mass Air Flow Meter ● This mass air flow meter, which is a plug-in type, allows a portion of the intake air to flow through the detection area.
    [Show full text]
  • Automotive Sensors Commercial Vehicle Sensors Circuit Protection Solutions Automotive Sensors
    Automotive Division PRODUCT PROFILE Automotive Sensors Commercial Vehicle Sensors Circuit Protection Solutions Automotive Sensors he Bourns Automotive Division has played a leading role in Tthe design, development and manufacture of potentiometer sensors for over 70 years. At our engineering centers in Riverside/ California, Taufkirchen/Germany and Auburn Hills/Michigan we develop and design a range of customized automotive position, speed and torque sensors. These products are manufactured in Ajka/Hungary, Chihuahua & Tijuana/Mexico and Xiamen/China. Bourns, Inc. is a privately held company with headquarters in Riverside, California. Currently, there are about 5,300 employees located in 14 different Bourns-owned design and manufacturing locations worldwide. Our research and development work combined with close collaboration with customers helps to ensure that our products meet the highest standards set for the automotive industry. Using state-of-the-art development software and world-class production methods, Bourns can provide innovative and cost-effective solutions for your applications. 2 Automotive Division ur phenolic paper, high aluminum oxide ceramics, Othermosetting plastics and specially developed Bourns® resistor inks are designed to withstand the harshest operating conditions within rated limits, with many of our sensors used in rigorous on and off highway applications. Our non-contacting sensors are developed with a wide range of magneto resistance- based angular sensor solutions supplemented by competitive Hall Effect and 2 Axis Hall Effect technology. Bourns can assist in the selection of the most appropriate technology for your specific applications. Bourns TS16949 certified quality system and the Bourns Production System (BPS) help ensure uncompromised quality and maximum reliability. Lean production methods are also used during the design and manufacturing phases of a project.
    [Show full text]
  • Re-Engineering a 2007 Yamaha Phazer for the Clean Snowmobile Challenge 2009 Northern Illinois University
    Re-Engineering a 2007 Yamaha Phazer for The Clean Snowmobile Challenge 2009 Northern Illinois University Mark Baumhardt, Matt Davis, Nick Diorio, Luke Gidcumb, Mike Guinta, Jarred Hopkinson, Mason Long, Mike Mautsky, Ben Nichols, Tim Olson, Matt Potts, Wayne Richards, Nolan Scanlan, Drew Scott, Kurt Steinkamp, Andrew Timmerman, Blake VerStraete, Andrew Woodlief SAE Clean Snowmobile Team Members Dr. Federico Sciammarella Department of Mechanical Engineering ____________________________________________________________________________________ Abstract The snowmobile will be tested for improved A 2007 Yamaha Phazer has been chosen to exhaust emissions and reduction of noise as well be re-engineered to compete in the Clean as events that will challenge the snowmobile in a Snowmobile Challenge 2009. The objectives of the variety of customs. The events will take place over competition were to modify a snowmobile to a period of six days; testing fuel economy, increase its performance while lowering it’s exhaust marketability, and overall performance of the and noise emissions. Each snowmobile will be snowmobile [2]. tested and analyzed against the EPA 2012 emission standards. The design will also take rider Team History comfort, cost effectiveness, and costumer appeal The SAE Clean Snowmobile Team at into consideration. The stock Yamaha engine Northern Illinois University is currently in its second management computer was replaced with a custom year. The program started in the hands of four tuned unit in order to accommodate the rules for mechanical engineering students as a senior the 2009 competition. The exhaust system was design project. The initial idea was to convert a modified by adding a catalytic converter and a turbo snowmobile engine to run on E85, lowering its for increased performance and efficiency.
    [Show full text]
  • 7 3 85 P1299-Vacuum Leak Found (Iac Fully Seated)
    DRIVEABILITY Symptom: P1299-VACUUM LEAK FOUND (IAC FULLY SEATED) When Monitored and Set Condition: P1299-VACUUM LEAK FOUND (IAC FULLY SEATED) When Monitored: With the engine running. Set Condition: The MAP sensor signal does not correlate to the TPS signal. POSSIBLE CAUSES VACUUM LEAK MAP SENSOR DEFECTIVE (OUT OF CALIBRATION) TPS DEFECTIVE (VOLTAGE GREATER THAN 1.5 AT REST) TPS DEFECTIVE (VOLTAGE LESS THAN 3.4 AT WIDE OPEN THROTTLE) TEST ACTION APPLICABILITY 1 Note: A large vacuum leak is the most likely cause of this DTC. All Inspect the Intake Manifold for vacuum leaks. Inspect the Power Brake Booster for any vacuum leaks. Inspect the PCV system for proper operation or any vacuum leaks. Were any problems found? Yes → Repair vacuum leak as necessary. Perform the Powertrain Verification Test - Ver 5. No → Go To 2 2 Note: Throttle must be fully closed and against throttle stop. All Turn ignition on. With the DRB in Sensors, read the Throttle Position Sensor voltage. Is the voltage 1.5 volts or less with the throttle closed? Yes → Go To 3 No → Replace the Throttle Position Sensor. Perform the Powertrain Verification Test - Ver 5. 3 Turn ignition off. All Tee-in a vacuum gauge to a manifold vacuum source. Start the engine and allow to idle. Note: If the engine will not idle, maintain a constant RPM above idle. With the DRB in Sensors, read the MAP Sensor Vacuum value. Is the DRB reading within 1Љ of the teed-in vacuum gauge? Yes → Go To 4 No → Replace the MAP Sensor. Perform the Powertrain Verification Test - Ver 5.
    [Show full text]
  • Page: 1 BA-2125RD 42MM MIKUNI FLATSLIDE CARBURETOR
    BA-2125RD Page: 1 42MM MIKUNI FLATSLIDE CARBURETOR Revision: 1.1 - 02/23/2010 INSTRUCTIONS: Your new Mikuni HSR carburetor comes pre-jetted with a #160 main jet and #20 pilot (42mm carb) or a 175 main jet and a #25 pilot jet (45mm carb). Also included in the kit will be other main jets for fine tuning the carb for your application (167.5, 170, 172.5). To install, remove the stock carb per Yamaha shop manual procedures. Remove stock throttle cables. Install Mikuni HSR carb into intake manifold and tighten manifold clamp. Install new HSR series throttle cables and adjust cable slack per Yamaha shop manual procedures. Hook fuel line to HSR carb and fasten clamp.* Start motorcycle and fine tune HSR carb for proper running per supplied Mikuni tuning manual. *NOTE: Mikuni HSR series carburetors are designed for gravity-feed fuel systems. You should bypass your stock fuel pump and directly feed your HSR carb right from the fuel petcock. We have noted, though, that you may not be able to get good fuel flow from your Road Star fuel tank in low-fuel situations. You may run your stock fuel pump with the HSR carb, but to do so requires the purchase and installation of an adjustable fuel pressure regulator (set at 1/2 to 1 lb. of pressure). These are available from most auto parts stores. The stock carb has 2 wires running to the lower rear of the float bowl , these were for a carb warmer, they are not used in this application. Unplug these wires at the main wire harness and retain with your stock carb.
    [Show full text]
  • '09-'11 R1 Yamaha Wiring Harness Connector Identification Guide
    ‘09-‘11 R1 Yamaha Wiring Harness Connector Identification Guide Whether you have recently received a freshly converted harness or are working with a more seasoned harness, you may find it useful to familiarize yourself with the harness and the different connectors that it is comprised of. This guide is focused on the wiring harness for a 2009 – 2011 Yamaha R1. Please note that when referencing cylinder # designations, the outermost cylinder (left side of the car) is #1. The second one is #2 and so on. If the harness is installed into the racecar and has been used, remove it and place it onto a bench or table. This will allow you to easily identify any potential problems or other areas which may require attention. Start at one end of the harness and work towards the other, looking for areas of worn-through tape, broken wires or connectors and any signs of melting. If any of these conditions exist, gently peel pack a section of tape to further assess the damage. Any areas where bare wires are exposed have potential to cause catastrophic damage to the harness and other electronic components of the car. It’s best to consult a professional at Hyper Racing for repair instructions and services. ECU Connectors (1) The ECU (Engine Control Unit) Connectors are some of the most identifiable because of the multitude of wires leading to them. These will be the largest and most populated connectors on the harness. Intake Air Temperature Sensor Connector (2) The Intake Air Temperature Sensor measures the ambient air temperature.
    [Show full text]
  • Instruction Manual
    HK S E L E C TR ONIC S TE C HNOL OG Y Instruction Manual Installation should be performed by a professional. Prior to installation and use, thoroughly read the instruction manual. Retain this instruction manual for later reference. 45003-AK005 HKS USA Inc Ver.111506 Introduction HKS EVC Read this instruction manual prior to installation to ensure safe and correct usage and optimal product performance, Product EVC Use Boost Controller- Automotive Turbocharged Engine Application Vehicle that operates on a DC 12V negative ground. Part No. 45003-AK005 ・A fuel controller (e.g. F-CON, AIC, etc) may be needed when raising boost pressure with the EVC Boost Controller. Remarks ・Some vehicles have a fuel cut function when boost is raised. To bypass the fuel cut function, a unit such as the HKS FCD can be used. When using an HKS FCD, a fuel controller may be required for additional fuel tuning. The HKS EVC enables the adjustment of the boost setting from inside the vehicle. Utilizing a stepping motor, it stimulates boost increase and attains the designated boost value without over-shooting. This product was developed to improve engine output and was designed to be used for racing in a closed circuit. Improving engine output may affect oil and/or water temperature and oil pressure. To preserve engine performance, regularly monitor engine conditions before driving. To use this product on public roads, follow the necessary procedures if there are any regulations for a tuned/modified vehicle. ●Compact Design Its compact designed display and stepping motor enables a versatile installation into the vehicle interior and the engine compartment.
    [Show full text]