Borel Measures and Hausdorff Distance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Integral Representation of a Linear Functional on Function Spaces
INTEGRAL REPRESENTATION OF LINEAR FUNCTIONALS ON FUNCTION SPACES MEHDI GHASEMI Abstract. Let A be a vector space of real valued functions on a non-empty set X and L : A −! R a linear functional. Given a σ-algebra A, of subsets of X, we present a necessary condition for L to be representable as an integral with respect to a measure µ on X such that elements of A are µ-measurable. This general result then is applied to the case where X carries a topological structure and A is a family of continuous functions and naturally A is the Borel structure of X. As an application, short solutions for the full and truncated K-moment problem are presented. An analogue of Riesz{Markov{Kakutani representation theorem is given where Cc(X) is replaced with whole C(X). Then we consider the case where A only consists of bounded functions and hence is equipped with sup-norm. 1. Introduction A positive linear functional on a function space A ⊆ RX is a linear map L : A −! R which assigns a non-negative real number to every function f 2 A that is globally non-negative over X. The celebrated Riesz{Markov{Kakutani repre- sentation theorem states that every positive functional on the space of continuous compactly supported functions over a locally compact Hausdorff space X, admits an integral representation with respect to a regular Borel measure on X. In symbols R L(f) = X f dµ, for all f 2 Cc(X). Riesz's original result [12] was proved in 1909, for the unit interval [0; 1]. -
Some Properties of Gromov–Hausdorff Distances
Discrete Comput Geom (2012) 48:416–440 DOI 10.1007/s00454-012-9406-8 Some Properties of Gromov–Hausdorff Distances Facundo Mémoli Received: 25 March 2011 / Revised: 6 December 2011 / Accepted: 7 February 2012 / Published online: 29 February 2012 © Springer Science+Business Media, LLC 2012 Abstract The Gromov–Hausdorff distance between metric spaces appears to be a useful tool for modeling some object matching procedures. Since its conception it has been mainly used by pure mathematicians who are interested in the topology generated by this distance, and quantitative consequences of the definition are not very common. As a result, only few lower bounds for the distance are known, and the stability of many metric invariants is not understood. This paper aims at clarifying some of these points by proving several results dealing with explicit lower bounds for the Gromov–Hausdorff distance which involve different standard metric invari- ants. We also study a modified version of the Gromov–Hausdorff distance which is motivated by practical applications and both prove a structural theorem for it and study its topological equivalence to the usual notion. This structural theorem pro- vides a decomposition of the modified Gromov–Hausdorff distance as the supremum over a family of pseudo-metrics, each of which involves the comparison of certain discrete analogues of curvature. This modified version relates the standard Gromov– Hausdorff distance to the work of Boutin and Kemper, and Olver. Keywords Gromov–Hausdorff distance · Metric geometry · Curvature sets 1 Introduction The Gromov–Hausdorff distance is a useful tool for studying topological properties of families of metric spaces. -
Set Theory, Including the Axiom of Choice) Plus the Negation of CH
ANNALS OF ~,IATltEMATICAL LOGIC - Volume 2, No. 2 (1970) pp. 143--178 INTERNAL COHEN EXTENSIONS D.A.MARTIN and R.M.SOLOVAY ;Tte RockeJ~'ller University and University (.~t CatiJbrnia. Berkeley Received 2 l)ecemt)er 1969 Introduction Cohen [ !, 2] has shown that tile continuum hypothesis (CH) cannot be proved in Zermelo-Fraenkel set theory. Levy and Solovay [9] have subsequently shown that CH cannot be proved even if one assumes the existence of a measurable cardinal. Their argument in tact shows that no large cardinal axiom of the kind present;y being considered by set theorists can yield a proof of CH (or of its negation, of course). Indeed, many set theorists - including the authors - suspect that C1t is false. But if we reject CH we admit Gurselves to be in a state of ignorance about a great many questions which CH resolves. While CH is a power- full assertion, its negation is in many ways quite weak. Sierpinski [ 1 5 ] deduces propcsitions there called C l - C82 from CH. We know of none of these propositions which is decided by the negation of CH and only one of them (C78) which is decided if one assumes in addition that a measurable cardinal exists. Among the many simple questions easily decided by CH and which cannot be decided in ZF (Zerme!o-Fraenkel set theory, including the axiom of choice) plus the negation of CH are tile following: Is every set of real numbers of cardinality less than tha't of the continuum of Lebesgue measure zero'? Is 2 ~0 < 2 ~ 1 ? Is there a non-trivial measure defined on all sets of real numbers? CIhis third question could be decided in ZF + not CH only in the unlikely event t Tile second author received support from a Sloan Foundation fellowship and tile National Science Foundation Grant (GP-8746). -
Geometric Integration Theory Contents
Steven G. Krantz Harold R. Parks Geometric Integration Theory Contents Preface v 1 Basics 1 1.1 Smooth Functions . 1 1.2Measures.............................. 6 1.2.1 Lebesgue Measure . 11 1.3Integration............................. 14 1.3.1 Measurable Functions . 14 1.3.2 The Integral . 17 1.3.3 Lebesgue Spaces . 23 1.3.4 Product Measures and the Fubini–Tonelli Theorem . 25 1.4 The Exterior Algebra . 27 1.5 The Hausdorff Distance and Steiner Symmetrization . 30 1.6 Borel and Suslin Sets . 41 2 Carath´eodory’s Construction and Lower-Dimensional Mea- sures 53 2.1 The Basic Definition . 53 2.1.1 Hausdorff Measure and Spherical Measure . 55 2.1.2 A Measure Based on Parallelepipeds . 57 2.1.3 Projections and Convexity . 57 2.1.4 Other Geometric Measures . 59 2.1.5 Summary . 61 2.2 The Densities of a Measure . 64 2.3 A One-Dimensional Example . 66 2.4 Carath´eodory’s Construction and Mappings . 67 2.5 The Concept of Hausdorff Dimension . 70 2.6 Some Cantor Set Examples . 73 i ii CONTENTS 2.6.1 Basic Examples . 73 2.6.2 Some Generalized Cantor Sets . 76 2.6.3 Cantor Sets in Higher Dimensions . 78 3 Invariant Measures and the Construction of Haar Measure 81 3.1 The Fundamental Theorem . 82 3.2 Haar Measure for the Orthogonal Group and the Grassmanian 90 3.2.1 Remarks on the Manifold Structure of G(N,M).... 94 4 Covering Theorems and the Differentiation of Integrals 97 4.1 Wiener’s Covering Lemma and its Variants . -
Lecture Notes
MEASURE THEORY AND STOCHASTIC PROCESSES Lecture Notes José Melo, Susana Cruz Faculdade de Engenharia da Universidade do Porto Programa Doutoral em Engenharia Electrotécnica e de Computadores March 2011 Contents 1 Probability Space3 1 Sample space Ω .....................................4 2 σ-eld F .........................................4 3 Probability Measure P .................................6 3.1 Measure µ ....................................6 3.2 Probability Measure P .............................7 4 Learning Objectives..................................7 5 Appendix........................................8 2 Chapter 1 Probability Space Let's consider the experience of throwing a dart on a circular target with radius r (assuming the dart always hits the target), divided in 4 dierent areas as illustrated in Figure 1.1. 4 3 2 1 Figure 1.1: Circular Target The circles that bound the regions 1, 2, 3, and 4, have radius of, respectively, r , r , 3r , and . 4 2 4 r Therefore, the probability that a dart lands in each region is: 1 , 3 , 5 , P (1) = 16 P (2) = 16 P (3) = 16 7 . P (4) = 16 For this kind of problems, the theory of discrete probability spaces suces. However, when it comes to problems involving either an innitely repeated operation or an innitely ne op- eration, this mathematical framework does not apply. This motivates the introduction of a measure-theoretic probability approach to correctly describe those cases. We dene the proba- bility space (Ω; F;P ), where Ω is the sample space, F is the event space, and P is the probability 3 measure. Each of them will be described in the following subsections. 1 Sample space Ω The sample space Ω is the set of all the possible results or outcomes ! of an experiment or observation. -
Borel Structure in Groups and Their Dualso
BOREL STRUCTURE IN GROUPS AND THEIR DUALSO GEORGE W. MACKEY Introduction. In the past decade or so much work has been done toward extending the classical theory of finite dimensional representations of com- pact groups to a theory of (not necessarily finite dimensional) unitary repre- sentations of locally compact groups. Among the obstacles interfering with various aspects of this program is the lack of a suitable natural topology in the "dual object"; that is in the set of equivalence classes of irreducible representations. One can introduce natural topologies but none of them seem to have reasonable properties except in extremely special cases. When the group is abelian for example the dual object itself is a locally compact abelian group. This paper is based on the observation that for certain purposes one can dispense with a topology in the dual object in favor of a "weaker struc- ture" and that there is a wide class of groups for which this weaker structure has very regular properties. If .S is any topological space one defines a Borel (or Baire) subset of 5 to be a member of the smallest family of subsets of 5 which includes the open sets and is closed with respect to the formation of complements and countable unions. The structure defined in 5 by its Borel sets we may call the Borel structure of 5. It is weaker than the topological structure in the sense that any one-to-one transformation of S onto 5 which preserves the topological structure also preserves the Borel structure whereas the converse is usually false. -
On Stochastic Distributions and Currents
NISSUNA UMANA INVESTIGAZIONE SI PUO DIMANDARE VERA SCIENZIA S’ESSA NON PASSA PER LE MATEMATICHE DIMOSTRAZIONI LEONARDO DA VINCI vol. 4 no. 3-4 2016 Mathematics and Mechanics of Complex Systems VINCENZO CAPASSO AND FRANCO FLANDOLI ON STOCHASTIC DISTRIBUTIONS AND CURRENTS msp MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS Vol. 4, No. 3-4, 2016 dx.doi.org/10.2140/memocs.2016.4.373 ∩ MM ON STOCHASTIC DISTRIBUTIONS AND CURRENTS VINCENZO CAPASSO AND FRANCO FLANDOLI Dedicated to Lucio Russo, on the occasion of his 70th birthday In many applications, it is of great importance to handle random closed sets of different (even though integer) Hausdorff dimensions, including local infor- mation about initial conditions and growth parameters. Following a standard approach in geometric measure theory, such sets may be described in terms of suitable measures. For a random closed set of lower dimension with respect to the environment space, the relevant measures induced by its realizations are sin- gular with respect to the Lebesgue measure, and so their usual Radon–Nikodym derivatives are zero almost everywhere. In this paper, how to cope with these difficulties has been suggested by introducing random generalized densities (dis- tributions) á la Dirac–Schwarz, for both the deterministic case and the stochastic case. For the last one, mean generalized densities are analyzed, and they have been related to densities of the expected values of the relevant measures. Ac- tually, distributions are a subclass of the larger class of currents; in the usual Euclidean space of dimension d, currents of any order k 2 f0; 1;:::; dg or k- currents may be introduced. -
Invariant Radon Measures on Measured Lamination Space
INVARIANT RADON MEASURES ON MEASURED LAMINATION SPACE URSULA HAMENSTADT¨ Abstract. Let S be an oriented surface of genus g ≥ 0 with m ≥ 0 punctures and 3g − 3+ m ≥ 2. We classify all Radon measures on the space of measured geodesic laminations which are invariant under the action of the mapping class group of S. 1. Introduction Let S be an oriented surface of finite type, i.e. S is a closed surface of genus g 0 from which m 0 points, so-called punctures, have been deleted. We assume that≥ 3g 3 + m 1,≥ i.e. that S is not a sphere with at most 3 punctures or a torus without− puncture.≥ In particular, the Euler characteristic of S is negative. Then the Teichm¨uller space (S) of S is the quotient of the space of all complete hyperbolic metrics of finite volumeT on S under the action of the group of diffeomorphisms of S which are isotopic to the identity. The mapping class group MCG(S) of all isotopy classes of orientation preserving diffeomorphisms of S acts properly discontinuously on (S) with quotient the moduli space Mod(S). T A geodesic lamination for a fixed choice of a complete hyperbolic metric of finite volume on S is a compact subset of S foliated into simple geodesics. A measured geodesic lamination is a geodesic lamination together with a transverse translation invariant measure. The space of all measured geodesic laminations on S, equipped with the weak∗-topology,ML is homeomorphic to S6g−7+2m (0, ) where S6g−7+2m is the 6g 7+2m-dimensional sphere. -
STAT 571 Assignment 1 Solutions 1. If Ω Is a Set and C a Collection Of
STAT 571 Assignment 1 solutions 1. If Ω is a set and a collection of subsets of Ω, let be the intersection of all σ-algebras that contain . ProveC that is the σ-algebra generatedA by . C A C Solution: Let α α A be the collection of all σ-algebras that contain , and fA j 2 g C set = α. We first show that is a σ-algebra. There are three things to A \ A A α A prove. 2 (a) For every α A, α is a σ-algebra, so Ω α, and hence Ω α A α = . 2 A 2 A 2 \ 2 A A (b) If B , then B α for every α A. Since α is a σ-algebra, we have c 2 A 2 A 2 A c B α. But this is true for every α A, so we have B . 2 A 2 2 A (c) If B1;B2;::: are sets in , then B1;B2;::: belong to α for each α A. A A 2 Since α is a σ-algebra, we have 1 Bn α. But this is true for every A [n=1 2 A α A, so we have 1 Bn . 2 [n=1 2 A Thus is a σ-algebra that contains , and it must be the smallest one since α for everyA α A. C A ⊆ A 2 2. Prove that the set of rational numbers Q is a Borel set in R. Solution: For every x R, the set x is the complement of an open set, and hence Borel. -
(Measure Theory for Dummies) UWEE Technical Report Number UWEETR-2006-0008
A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2006-0008 May 2006 Department of Electrical Engineering University of Washington Box 352500 Seattle, Washington 98195-2500 PHN: (206) 543-2150 FAX: (206) 543-3842 URL: http://www.ee.washington.edu A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 University of Washington, Dept. of EE, UWEETR-2006-0008 May 2006 Abstract This tutorial is an informal introduction to measure theory for people who are interested in reading papers that use measure theory. The tutorial assumes one has had at least a year of college-level calculus, some graduate level exposure to random processes, and familiarity with terms like “closed” and “open.” The focus is on the terms and ideas relevant to applied probability and information theory. There are no proofs and no exercises. Measure theory is a bit like grammar, many people communicate clearly without worrying about all the details, but the details do exist and for good reasons. There are a number of great texts that do measure theory justice. This is not one of them. Rather this is a hack way to get the basic ideas down so you can read through research papers and follow what’s going on. Hopefully, you’ll get curious and excited enough about the details to check out some of the references for a deeper understanding. -
Nonlinear Structures Determined by Measures on Banach Spaces Mémoires De La S
MÉMOIRES DE LA S. M. F. K. DAVID ELWORTHY Nonlinear structures determined by measures on Banach spaces Mémoires de la S. M. F., tome 46 (1976), p. 121-130 <http://www.numdam.org/item?id=MSMF_1976__46__121_0> © Mémoires de la S. M. F., 1976, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Journees Geom. dimens. infinie [1975 - LYON ] 121 Bull. Soc. math. France, Memoire 46, 1976, p. 121 - 130. NONLINEAR STRUCTURES DETERMINED BY MEASURES ON BANACH SPACES By K. David ELWORTHY 0. INTRODUCTION. A. A Gaussian measure y on a separable Banach space E, together with the topolcT- gical vector space structure of E, determines a continuous linear injection i : H -> E, of a Hilbert space H, such that y is induced by the canonical cylinder set measure of H. Although the image of H has measure zero, nevertheless H plays a dominant role in both linear and nonlinear analysis involving y, [ 8] , [9], [10] . The most direct approach to obtaining measures on a Banach manifold M, related to its differential structure, requires a lot of extra structure on the manifold : for example a linear map i : H -> T M for each x in M, and even a subset M-^ of M which has the structure of a Hilbert manifold, [6] , [7]. -
Probability Measures on Metric Spaces
Probability measures on metric spaces Onno van Gaans These are some loose notes supporting the first sessions of the seminar Stochastic Evolution Equations organized by Dr. Jan van Neerven at the Delft University of Technology during Winter 2002/2003. They contain less information than the common textbooks on the topic of the title. Their purpose is to present a brief selection of the theory that provides a basis for later study of stochastic evolution equations in Banach spaces. The notes aim at an audience that feels more at ease in analysis than in probability theory. The main focus is on Prokhorov's theorem, which serves both as an important tool for future use and as an illustration of techniques that play a role in the theory. The field of measures on topological spaces has the luxury of several excellent textbooks. The main source that has been used to prepare these notes is the book by Parthasarathy [6]. A clear exposition is also available in one of Bour- baki's volumes [2] and in [9, Section 3.2]. The theory on the Prokhorov metric is taken from Billingsley [1]. The additional references for standard facts on general measure theory and general topology have been Halmos [4] and Kelley [5]. Contents 1 Borel sets 2 2 Borel probability measures 3 3 Weak convergence of measures 6 4 The Prokhorov metric 9 5 Prokhorov's theorem 13 6 Riesz representation theorem 18 7 Riesz representation for non-compact spaces 21 8 Integrable functions on metric spaces 24 9 More properties of the space of probability measures 26 1 The distribution of a random variable in a Banach space X will be a probability measure on X.