Head-Capsule Widths and Number of Larval Instars in Gynaepiwra Species ...38 Vi

Total Page:16

File Type:pdf, Size:1020Kb

Head-Capsule Widths and Number of Larval Instars in Gynaepiwra Species ...38 Vi National tibrary Bibliothèque nationale du Canada Acquisitions and Acqui=i?ionset Bibliographic Services seivices bibliographiques 395 Wellingtort Street 393. rue Wellington OttawaON KiAON4 OttawaON K1AON4 canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant a la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microfom, vendre des copies de cette thèse sous paper or electronic formats. la forme de rnicrofiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantiai extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Supervisor: Dr. Richard A. Ring Increases in temperature and precipitation predicted under global wann i ng are expected to be most pronounced and thus have their greatest impact on ecosystems at high latitudes. Insects constitute a major component of the foodwebs of terrestrial ecosystems and should be among the Tirst organisms to show noticeable responses to predicted global warming, especiaily in the Arctic where climatic conditions are often limiting. However, interactions among species must also be taken into account. The genus GynaepIwra Hübner (Lepidoptera: Lymantnidae) is represented in North Amenca by two species, G. groenhdica (Wocke) and G. rossii (Curtis), and their geographic distributions overlap broadly across the Canadian Arctic. Previous studies have examined the biology, ecology, and physiology of these two species and have revealed many adaptations to the Arctic environment, but the immature stages of these insects have been misidentified even in recently published reports. Both species are found at Alexandra Fiord, Ellesmere Island, a High Arctic oasis largely isolated by expanses of ocean and icecap, and the population of G. groeiihrzdica at this site is thought to be limited mainly by prasitoid-induced mortality nther than by climatic conditions. Field observations, surveys, and tempenture-manipulation expenments were conducted at Alexandra Fiord during the spring and summer of 1994, 1995, and 1996; Iaboratory reaing was conducted under controlled conditions at the University of Victoria in the spring of 1996 and 1997. Immature stages of both species of Gyriaepiwra were described and illustrated, and ail species of insect parasitoids using GymzepIwra species as hosts at Alexandra Fiord were identified. Life histones and seasonal phenologies for Gyri~epIwruspecies and their insect parasitoids were elucidated from field studies, and temperanire/development reiationships for selected stages of most of these species were denved from Iaboratory rearing. The results of field studies and laboratoiy rearing were compared and used to formulate predictions about the responses of these insects to predicted global warming. Immature stages of the twc species of Gynaeplwra are easily distinguished by differences in the colour patterns, fom, and overall length of the larval hairs and by the structure of their cocoons. Both species of Gyr~aeplwracomplete metamorphosis and reproduction within a single growing season but spread larval development over a number of years. In G. groenlardica, seven larval instars and annual moulting combilis to produce a seven year lire cycle whereas G. rossii develops through six larval instars at a rate of two or three moulu per year, resulting in a three or four year life cycle. The parasitoid complex at Alexandra Fiord consists of three primas, parasitoids, Hyposoter pectirzatus (Thomson) (Hymenoptera: Ichneumonidae), ExoristB nsp. (Dipten: Tachinidae), and Ciierogetza gelida (Coquillett) (Diptera: Tachinidae), and one hyperpansitoid, Crypti~~leechi Mason (Hymenoptera: Ichneumonidae). Al1 of the parasi toids are uni vol tine, al thoug h H. pectinatirs may undergo delayed develo pment in some cases, and each of the primary parasitoids relies primarily on a single larval instar for hosts w hereas the hyperparasi toid attacks the primary parasi toi& dunng thei r metamorphosis. Seasonal phenologies of the parasitoids provide optimal access to new hosts but parasitoid-avoidance stmtegies of Gynaepiiora larvae ensure ihat a proportion of their populations escape pansitism. Laboratory rearing showed that the relative timing of host and parasitoid seasonal phenologies is maintained over a broad range of temperatures; therefore, temperature inmeases p~dictedunder global warming are unlikely to have any great effect on host-parasitoid interactions. However, increased cloudiness associateci with the predicted increase in precipitation might have profound effects resulting from lower ground-level temperatures caused by a Iack of solar heating. The extent of this effect is uncertain but might lead to reproductive fidure in Gynaephora species, with similar repercussions for the insect pamsitoids. TABLE OF CONTENTS TlTLE PAGE .................................. i ABSTRACT .................................. ü TABLE OF CONTENTS ............................ v LIST OF TABLES ..............................."ii LISTOFFIGURES .............................. xi ACKNOWLEDGEMENTS ........................... .!a DEDICATION ................................."i INTRODUCTION ............................... 1 The Greenhouse Effect andOlobal Warming Scenarios .............. 1 Implications of Global Wanning for Insects .................... 4 Global Warming and Insects in the Arctic ..................... 6 The Experirnental Animals ............................ 9 North Amencan Gynaepiwra Species ..................... 9 Insect Parasitoids of North Amencan Gynaeplwra Species ........... 13 The Study Site ................................. 18 Objectives ...................................30 MATERIALS AND METHODS .........................21 Field Studies ..................................71 Field Surveys ................................24 Field Evperiments .............................. 26 Gymeplwra life histories and effect of temperature on development .....26 Reproductive isolation of Gy~ephorospecies ...............31 Efrect of temperature on primary parasitoid metamorphosis .........31 Voltinism of the prirnary parasitoids ....................33 Laboratory Rearing ...............................35 Head-capsule Widths and Number of Larval Instars in Gynaepiwra Species ...38 vi RESULTS ................................... 42 Descriptions of Immafurc Stases of Gymeplwra Species .............. 42 Eggs ....................................42 Larvae ................................... 42 Hibernacula ................................. 50 Cocoons .................................. 53 Pupae .................................... 5Q Life Histories and Biology ............................ 56 GytlaeplwraSpecies ............................. 58 Head-capsule widths and number of larval instars .............. 58 Larval activity and rnoulting frequency ................... 65 Metamorphosis and reproduction ..................... 73 Parasi toids of Gyrzaepjwra S pecies ...................... 77 Hyposoter pectit1atu.s (Hymenoptem Ichneumonidae) ............ 81 fioriskz n.sp. (Diptera: Tachinidae) .................... 86 Cf~togeirngelida (Dipten: Tachiniche) ................... 93 Cryptzcs leeclu (Hymenoptera: Ichneumonidae) ............... 99 Temperature/Development Relationshijzi ....................103 FieId Studies ................................103 iaboratory Rearing .............................109 IXSCUSSION ................................. 121 Identification cf Immature Stages of Gymzepiwra Species .............121 Life Histories and Biology ..........................124 Gyrzaepiwra Species ...........................124 Head-capsule widths and number of larval instars .............124 Larval activity and moulting frequency ...................127 Metamorphosis and reproduction .................133 Parasi toi& of GynaepfwraSpecies .....................136 Hyposoter pectinnfirs (Hym enopten: Ic hneumonidae) ............139 Erorisa n.sp. and Cf~togerzagelida (Diptem Tachinidae) ..........142 Cryptirs kecfti (Hymenoptera: Ichneumonidae) .............145 Temperature/Developrnent Relationships ..................147 Field Studies ................................147 Labontory Rearing .............................149 Life History Strategies ..............................154 Implications of GloM Warming .........................161 CONCLUSIONS ................................164 REFERENCES CITED .............................167 APPENDIX: Instar Determination From Measured Head-capsule Widths . 187 LIST OF TABLES Table 1. 1nsect parasitoids reported to use North A mencan Gynaeplwra s pecies as hosts. Table 2. Morphological differences berneen hi& arctic Gytiueplwra species in the immature stages. For measurements, the full range found in this study is given. Table 3. Cornparison of previousl y ~portedmean larval head capsule widths (HCW)of Gyrraeplwra groetdarrdica to expected and observed mean HCW determined in this study, with corresponding growth ratios and boundary points between observed means. Reported means are from Kukal and Kevan (L987), expected means were predicted by the Brooks-Dyar Rule, observed means
Recommended publications
  • Chapter 10 • Principles of Conserving the Arctic's Biodiversity
    Chapter 10 Principles of Conserving the Arctic’s Biodiversity Lead Author Michael B. Usher Contributing Authors Terry V.Callaghan, Grant Gilchrist, Bill Heal, Glenn P.Juday, Harald Loeng, Magdalena A. K. Muir, Pål Prestrud Contents Summary . .540 10.1. Introduction . .540 10.2. Conservation of arctic ecosystems and species . .543 10.2.1. Marine environments . .544 10.2.2. Freshwater environments . .546 10.2.3. Environments north of the treeline . .548 10.2.4. Boreal forest environments . .551 10.2.5. Human-modified habitats . .554 10.2.6. Conservation of arctic species . .556 10.2.7. Incorporating traditional knowledge . .558 10.2.8. Implications for biodiversity conservation . .559 10.3. Human impacts on the biodiversity of the Arctic . .560 10.3.1. Exploitation of populations . .560 10.3.2. Management of land and water . .562 10.3.3. Pollution . .564 10.3.4. Development pressures . .566 10.4. Effects of climate change on the biodiversity of the Arctic . .567 10.4.1. Changes in distribution ranges . .568 10.4.2. Changes in the extent of arctic habitats . .570 10.4.3. Changes in the abundance of arctic species . .571 10.4.4. Changes in genetic diversity . .572 10.4.5. Effects on migratory species and their management . .574 10.4.6. Effects caused by non-native species and their management .575 10.4.7. Effects on the management of protected areas . .577 10.4.8. Conserving the Arctic’s changing biodiversity . .579 10.5. Managing biodiversity conservation in a changing environment . .579 10.5.1. Documenting the current biodiversity . .580 10.5.2.
    [Show full text]
  • Responses of Invertebrates to Temperature and Water Stress A
    Author's Accepted Manuscript Responses of invertebrates to temperature and water stress: A polar perspective M.J. Everatt, P. Convey, J.S. Bale, M.R. Worland, S.A.L. Hayward www.elsevier.com/locate/jtherbio PII: S0306-4565(14)00071-0 DOI: http://dx.doi.org/10.1016/j.jtherbio.2014.05.004 Reference: TB1522 To appear in: Journal of Thermal Biology Received date: 21 August 2013 Revised date: 22 January 2014 Accepted date: 22 January 2014 Cite this article as: M.J. Everatt, P. Convey, J.S. Bale, M.R. Worland, S.A.L. Hayward, Responses of invertebrates to temperature and water stress: A polar perspective, Journal of Thermal Biology, http://dx.doi.org/10.1016/j.jther- bio.2014.05.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Responses of invertebrates to temperature and water 2 stress: A polar perspective 3 M. J. Everatta, P. Conveyb, c, d, J. S. Balea, M. R. Worlandb and S. A. L. 4 Haywarda* a 5 School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK b 6 British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, 7 Cambridge, CB3 0ET, UK 8 cNational Antarctic Research Center, IPS Building, University Malaya, 50603 Kuala Lumpur, 9 Malaysia 10 dGateway Antarctica, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand 11 12 *Corresponding author.
    [Show full text]
  • Draft Nunavut Land Use Plan
    Draft Nunavut Land Use Plan Options and Recommendations Draft – 2014 Contents Introduction .............................................................................. 3 Aerodromes ................................................................................ 75 Purpose ........................................................................................... 3 DND Establishments ............................................................... 76 Guiding Policies, Objectives and Goals ............................... 3 North Warning System Sites................................................ 76 Considered Information ............................................................ 3 Encouraging Sustainable Economic Development ..... 77 Decision making framework .................................................... 4 Mineral Potential ...................................................................... 77 General Options Considered .................................................... 4 Oil and Gas Exploration .......................................................... 78 Protecting and Sustaining the Environment .................. 5 Commercial Fisheries .............................................................. 78 Key Migratory Bird Habitat Sites .......................................... 5 Mixed Use ............................................................................... 80 Caribou Habitat ......................................................................... 41 Mixed Use ..................................................................................
    [Show full text]
  • Taxonomic Position and Status of Arctic <I>Gynaephora</I> and <I
    PL-ISSN0015-5497(print),ISSN1734-9168(online) FoliaBiologica(Kraków),vol.63(2015),No4 Ó InstituteofSystematicsandEvolutionofAnimals,PAS,Kraków, 2015 doi:10.3409/fb63_4.257 TaxonomicPositionandStatusofArctic Gynaephora and Dicallomera Moths(Lepidoptera,Erebidae,Lymantriinae)* VladimirA.LUKHTANOV andOlgaA.KHRULEVA Accepted September 10, 2015 LUKHTANOV V.A., KHRULEVA O.A. 2015. Taxonomic position and status of arctic Gynaephora and Dicallomera moths (Lepidoptera, Erebidae, Lymantriinae). Folia Biologica (Kraków) 63: 257-261. We use analysis of mitochondrial DNA barcodes in combination with published data on morphology to rearrange the taxonomy of two arctic species, Gynaephora groenlandica and G. rossii. We demonstrate that (1) the taxon lugens Kozhanchikov, 1948 originally described as a distinct species is a subspecies of Gynaephora rossii, and (2) the taxon kusnezovi Lukhtanov et Khruliova, 1989 originally described as a distinct species in the genus Dicallomera isasubspeciesof Gynaephora groenlandica.Wealsoprovidethefirstevidence for the occurrence of G. groenlandica in the Palearctic region (Wrangel Island). Key words: COI, DNA barcode, Gynaephora, Dicallomera, Lymantriinae, polar environments. Vladimir A. LUKHTANOV, Department of Karyosystematics, Zoological Institute of Russian AcademyofSciences,Universitetskayanab.1,199034St.Petersburg, Russia;Departmentof Entomology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia. E-mail: [email protected] Olga A. KHRULEVA, Severtsov Institute of Ecology and Evolution of Russian Academy of Sci- ences, Leninsky 33, Moscow 119071, Russia. E-mail: [email protected] The genera Gynaephora Hübner, 1819 and Di- 1835) and G. lugens Kozhanchikov, 1948, and one callomera Butler, 1881 belong to the subfamily representative of Dicallomera (D. kusnezovi Lukh- Lymantriinae of the family Erebidae (ZAHIRI et al. tanov et Khruliova, 1989) are known to be high 2012).
    [Show full text]
  • Polar Continental Shelf Program Science Report 2019: Logistical Support for Leading-Edge Scientific Research in Canada and Its Arctic
    Polar Continental Shelf Program SCIENCE REPORT 2019 LOGISTICAL SUPPORT FOR LEADING-EDGE SCIENTIFIC RESEARCH IN CANADA AND ITS ARCTIC Polar Continental Shelf Program SCIENCE REPORT 2019 Logistical support for leading-edge scientific research in Canada and its Arctic Polar Continental Shelf Program Science Report 2019: Logistical support for leading-edge scientific research in Canada and its Arctic Contact information Polar Continental Shelf Program Natural Resources Canada 2464 Sheffield Road Ottawa ON K1B 4E5 Canada Tel.: 613-998-8145 Email: [email protected] Website: pcsp.nrcan.gc.ca Cover photographs: (Top) Ready to start fieldwork on Ward Hunt Island in Quttinirpaaq National Park, Nunavut (Bottom) Heading back to camp after a day of sampling in the Qarlikturvik Valley on Bylot Island, Nunavut Photograph contributors (alphabetically) Dan Anthon, Royal Roads University: page 8 (bottom) Lisa Hodgetts, University of Western Ontario: pages 34 (bottom) and 62 Justine E. Benjamin: pages 28 and 29 Scott Lamoureux, Queen’s University: page 17 Joël Bêty, Université du Québec à Rimouski: page 18 (top and bottom) Janice Lang, DRDC/DND: pages 40 and 41 (top and bottom) Maya Bhatia, University of Alberta: pages 14, 49 and 60 Jason Lau, University of Western Ontario: page 34 (top) Canadian Forces Combat Camera, Department of National Defence: page 13 Cyrielle Laurent, Yukon Research Centre: page 48 Hsin Cynthia Chiang, McGill University: pages 2, 8 (background), 9 (top Tanya Lemieux, Natural Resources Canada: page 9 (bottom
    [Show full text]
  • INSECT: GYNAEPHORA GROENLANDICA / G. ROSSII Per Mølgaard and Dean Morewood
    ITEX INSECT: GYNAEPHORA GROENLANDICA / G. ROSSII Per Mølgaard and Dean Morewood Woolly-bear caterpillars, Gynaephora groenlandica, are (Esper), is found in Europe but may not occur at tundra important predators on the leaf buds and young catkins of sites. The two North American species occur together at Salix spp. early in the season. Field observations have many sites in the Canadian Arctic and may be separated by shown a strong preference for Salix arctica, and for the the following characteristics. reproductive success as well as for vegetative growth of the willows, the number and activity of the caterpillars EGGS: Eggs themselves may be indistinguishable mor- may be of great importance. When present in the ITEX phologically; however, egg masses are often laid on co- plots, especially those with Salix spp., notes should be coons, which differ between the two species (see below). taken on the Salix sheets or on the sheets especially LARVAE: Because of their small size and their tendency designed for Gynaephora observations. to stayout of site, newly-hatched larvae are unlikely to be The life cycle of this moth is exceptional as it may encountered in the field unless found when they are still on take several years to develop from first instar larva to adult the cocoons where the eggs from which they hatched were insect. In Greenland, on Disko Island, outbreaks were seen laid. Older larvae may be separated according to the form in 1978 (Kristensen, pers. comm.) and again in 1992 and colour patterns of the larval hairs. Larvae of G. (Mølgaard pers. obs.), which indicates fluctuations with groenlandica have long hairs that range from dark brown peak populations with 14 years interval, which is similar to to golden yellow, depending on how recently they have the life cycle duration at Alexandra Fjord (Kukal and moulted, and have two distinct tufts of black followed by Kevan, 1987).
    [Show full text]
  • Seasonality of Some Arctic Alaskan Chironomids
    SEASONALITY OF SOME ARCTIC ALASKAN CHIRONOMIDS A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Shane Dennis Braegelman In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Program: Environmental and Conservation Sciences December 2015 Fargo, North Dakota North Dakota State University Graduate School Title Seasonality of Some Arctic Alaskan Chironomids By Shane Dennis Braegelman The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Malcolm Butler Chair Kendra Greenlee Jason Harmon Daniel McEwen Approved: June 1 2016 Wendy Reed Date Department Chair ABSTRACT Arthropods, especially dipteran insects in the family Chironomidae (non-biting midges), are a primary prey resource for many vertebrate species on Alaska’s Arctic Coastal Plain. Midge-producing ponds on the ACP are experiencing climate warming that may alter insect seasonal availability. Chironomids display highly synchronous adult emergence, with most populations emerging from a given pond within a 3-5 day span and the bulk of the overall midge community emerging over a 3-4 week period. The podonomid midge Trichotanypus alaskensis Brundin is an abundant, univoltine, species in tundra ponds near Barrow, Alaska, with adults appearing early in the annual emergence sequence. To better understand regulation of chironomid emergence phenology, we conducted experiments on pre-emergence development of T. alaskensis at different temperatures, and monitored pre-emergence development of this species under field conditions. We compared chironomid community emergence from ponds at Barrow, Alaska in the 1970s with similar data from 2009-2013 to assess changes in emergence phenology.
    [Show full text]
  • Territorial Sea Geographical Coordinates (Area 7) Décret Sur Les Coordonnées Géographiques Pour La Order Mer Territoriale (Région 7)
    CANADA CONSOLIDATION CODIFICATION Territorial Sea Geographical Décret sur les coordonnées Coordinates (Area 7) Order géographiques pour la mer territoriale (région 7) SOR/85-872 DORS/85-872 Current to September 11, 2021 À jour au 11 septembre 2021 Published by the Minister of Justice at the following address: Publié par le ministre de la Justice à l’adresse suivante : http://laws-lois.justice.gc.ca http://lois-laws.justice.gc.ca OFFICIAL STATUS CARACTÈRE OFFICIEL OF CONSOLIDATIONS DES CODIFICATIONS Subsections 31(1) and (3) of the Legislation Revision and Les paragraphes 31(1) et (3) de la Loi sur la révision et la Consolidation Act, in force on June 1, 2009, provide as codification des textes législatifs, en vigueur le 1er juin follows: 2009, prévoient ce qui suit : Published consolidation is evidence Codifications comme élément de preuve 31 (1) Every copy of a consolidated statute or consolidated 31 (1) Tout exemplaire d'une loi codifiée ou d'un règlement regulation published by the Minister under this Act in either codifié, publié par le ministre en vertu de la présente loi sur print or electronic form is evidence of that statute or regula- support papier ou sur support électronique, fait foi de cette tion and of its contents and every copy purporting to be pub- loi ou de ce règlement et de son contenu. Tout exemplaire lished by the Minister is deemed to be so published, unless donné comme publié par le ministre est réputé avoir été ainsi the contrary is shown. publié, sauf preuve contraire. ... [...] Inconsistencies in regulations
    [Show full text]
  • The Tachinid Times February 2014, Issue 27 INSTRUCTIONS to AUTHORS Chief Editor James E
    Table of Contents Articles Studying tachinids at the top of the world. Notes on the tachinids of Northeast Greenland 4 by T. Roslin, J.E. O’Hara, G. Várkonyi and H.K. Wirta 11 Progress towards a molecular phylogeny of Tachinidae, year two by I.S. Winkler, J.O. Stireman III, J.K. Moulton, J.E. O’Hara, P. Cerretti and J.D. Blaschke On the biology of Loewia foeda (Meigen) (Diptera: Tachinidae) 15 by H. Haraldseide and H.-P. Tschorsnig 20 Chasing tachinids ‘Down Under’. Expeditions of the Phylogeny of World Tachinidae Project. Part II. Eastern Australia by J.E. O’Hara, P. Cerretti, J.O. Stireman III and I.S. Winkler A new range extension for Erythromelana distincta Inclan (Tachinidae) 32 by D.J. Inclan New tachinid records for the United States and Canada 34 by J.E. O’Hara 41 Announcement 42 Tachinid Bibliography 47 Mailing List Issue 27, 2014 The Tachinid Times February 2014, Issue 27 INSTRUCTIONS TO AUTHORS Chief Editor JAMES E. O'HARA This newsletter accepts submissions on all aspects of tach- inid biology and systematics. It is intentionally maintained as a InDesign Editor OMBOR MITRA non-peer-reviewed publication so as not to relinquish its status as Staff JUST US a venue for those who wish to share information about tachinids in an informal medium. All submissions are subjected to careful editing and some are (informally) reviewed if the content is thought ISSN 1925-3435 (Print) to need another opinion. Some submissions are rejected because ISSN 1925-3443 (Online) they are poorly prepared, not well illustrated, or excruciatingly bor- ing.
    [Show full text]
  • Compendium of Research Undertaken in Nunavut 2004
    Compendium of Research Undertaken in Nunavut 2004 Nunavut Research Institute 1 Foreword The Nunavut Research Institute was created in 1995 when the Science Institute of the NWT was divided into eastern and western operations. In the Eastern Arctic, the re-named institute was amalgamated with Nunavut Arctic College. The Nunavut Research Institute focuses on supporting scientific research and technology development across a broad spectrum of issues and concerns. The Institute’s interpretation of research is broad – incorporating Inuit Qaujimanituqangit, social sciences, and natural sciences. The following mission statement guides the activities and services provided by the Institute: The mission of the Nunavut Research Institute is to provide leadership in developing, facilitating and promoting Inuit Qaujimanituqangit, science, research and technology as a resource for the well being of people in Nunavut. Institute services are guided by the core values of Nunavut Arctic College - strong communities, cultural appropriateness, partnerships, quality, access, responsiveness and life-long learning. The Nunavut Research Institute places emphasis on brokering northern-based research, which is linked to community needs, and making greater use of Inuit Qaujimanituqanit in research projects. This Compendium of Research has been produced as part of the Institute's effort to communicate information about research projects, which have recently taken place in Nunavut under the authority of the Nunavut Scientists Act. FOR MORE INFORMATION For more information about the research projects listed in this Compendium, please contact: Nunavut Research Institute P.O. Box 1720 Iqaluit, Nunavut X0A 0H0 Phone: (867) 979-7202/7279 Fax: (867) 979-4681 E-mail: [email protected] [email protected] Internet: www.nunanet.com/~research 2 TABLE OF CONTENTS Models and Metaphors of Healing in Aboriginal Context..................................................................................
    [Show full text]
  • Statutory Report on Wildlife to the Legislative Assembly of Nunavut
    Statutory Report on Wildlife to the Legislative Assembly of Nunavut Section 176 of the Wildlife Act 2018 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................ 3 LIST OF FIGURES AND TABLES ............................................................................................. 4 INTRODUCTION ....................................................................................................................... 7 EXECUTIVE SUMMARY ........................................................................................................... 9 1. WILDLIFE DIVISION ROLES AND RESPONSIBILITIES ..................................................13 2. WILDLIFE DIVISION ORGANIZATION .............................................................................15 3. WILDLIFE ACT AND REGULATIONS ..............................................................................17 4. WILDLIFE CO-MANAGEMENT .........................................................................................19 5. RESEARCH AND MANAGEMENT INITIATIVES BY REGION AND SPECIES ................21 5.1 QIKIQTAALUK REGION RESEARCH AND MANAGEMENT INITIATIVES ...................................21 5.1.1 Baffin Island Research and Management Initiatives .............................................22 5.1.2 High Arctic Research and Management Initiatives ...............................................27 5.2 KITIKMEOT REGION RESEARCH AND MANAGEMENT INITIATIVES .......................................29
    [Show full text]
  • Science Report
    P ROGRAMME DU P LATEAU LATEAU C ONTINENTAL ONTINENTAL P OLAR C ONTINENTAL S HELF P ROGRAM SCI E NCE P OLAIRE REPORT Logistical support for leading-edge Rapport Scientifique scientific research in the Canadian Arctic 2008 2009 2008-2009 2009 2008 2008-2009 dans l’Arctique canadien l’Arctique dans pointe de scientifique Soutien logistique à la recherche recherche la à logistique Soutien CIENTIFIQUE S Science Report T T R RAPPO ROGRAM P OLAIRE P ONTINENTAL C LATEAU P DU ROGRAMME P HELF S ONTINENTAL ONTINENTAL C OLAR P Polar Continental Shelf Program Science Report 2008/09: Logistical support for leading-edge scientific research in the Canadian Arctic Contact information Polar Continental Shelf Program Natural Resources Canada 615 Booth Street, Room 487 Ottawa ON K1A 0E9 Canada Tel.: 613-947-1650 E-mail: [email protected] Web site: pcsp.nrcan.gc.ca Cover photograph information A helicopter sits at a study site in the mountains of northern Ellesmere Island, Nunavut. (Credit: W. von Gosen) Cat. No. M78-1/1-2009 (Print) ISBN 978-1-100-51198-6 Cat. No. M78-1/1-2009E-PDF (On-line) ISBN 978-1-100-15115-1 © Her Majesty the Queen in Right of Canada, 2010 Recycled paper Table of contents 2 Minister’s message 4 The Polar Continental Shelf Program 5 Spotlight on a PCSP employee: George Benoit 6 The PCSP Resolute facility expansion: Improving support for Arctic science 6 PCSP Open House 2009 7 PCSP’s work with research organizations in Canada’s North 7 International Polar Year 8 The scientific legacy of Roy Koerner 9 PCSP-supported projects in the news 12 PCSP-supported field camps in the Canadian Arctic (2008) – map 14 PCSP-supported projects in 2008 13 Ecological integrity 20 Sustainable communities and culture 23 Climate change 30 Northern resources and development 33 Planetary science 36 National parks and weather stations A Twin Otter beside a field camp at Alexandra Fiord,Ellesmere Island, Nunavut J.
    [Show full text]