1 Standard Multiview Drawings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Realistic Modeling and Rendering of Plant Ecosystems
Realistic modeling and rendering of plant ecosystems Oliver Deussen1 Pat Hanrahan2 Bernd Lintermann3 RadomÂõr MechÏ 4 Matt Pharr2 Przemyslaw Prusinkiewicz4 1 Otto-von-Guericke University of Magdeburg 2 Stanford University 3 The ZKM Center for Art and Media Karlsruhe 4 The University of Calgary Abstract grasslands, human-made environments, for instance parks and gar- dens, and intermediate environments, such as lands recolonized by Modeling and rendering of natural scenes with thousands of plants vegetation after forest ®res or logging. Models of these ecosystems poses a number of problems. The terrain must be modeled and plants have a wide range of existing and potential applications, including must be distributed throughout it in a realistic manner, re¯ecting the computer-assisted landscape and garden design, prediction and vi- interactions of plants with each other and with their environment. sualization of the effects of logging on the landscape, visualization Geometric models of individual plants, consistent with their po- of models of ecosystems for research and educational purposes, sitions within the ecosystem, must be synthesized to populate the and synthesis of scenes for computer animations, drive and ¯ight scene. The scene, which may consist of billions of primitives, must simulators, games, and computer art. be rendered ef®ciently while incorporating the subtleties of lighting Beautiful images of forests and meadows were created as early in a natural environment. as 1985 by Reeves and Blau [50] and featured in the computer We have developed a system built around a pipeline of tools that animation The Adventures of Andre and Wally B. [34]. Reeves and address these tasks. -
CS 543: Computer Graphics Lecture 7 (Part I): Projection Emmanuel
CS 543: Computer Graphics Lecture 7 (Part I): Projection Emmanuel Agu 3D Viewing and View Volume n Recall: 3D viewing set up Projection Transformation n View volume can have different shapes (different looks) n Different types of projection: parallel, perspective, orthographic, etc n Important to control n Projection type: perspective or orthographic, etc. n Field of view and image aspect ratio n Near and far clipping planes Perspective Projection n Similar to real world n Characterized by object foreshortening n Objects appear larger if they are closer to camera n Need: n Projection center n Projection plane n Projection: Connecting the object to the projection center camera projection plane Projection? Projectors Object in 3 space Projected image VRP COP Orthographic Projection n No foreshortening effect – distance from camera does not matter n The projection center is at infinite n Projection calculation – just drop z coordinates Field of View n Determine how much of the world is taken into the picture n Larger field of view = smaller object projection size center of projection field of view (view angle) y y z q z x Near and Far Clipping Planes n Only objects between near and far planes are drawn n Near plane + far plane + field of view = Viewing Frustum Near plane Far plane y z x Viewing Frustrum n 3D counterpart of 2D world clip window n Objects outside the frustum are clipped Near plane Far plane y z x Viewing Frustum Projection Transformation n In OpenGL: n Set the matrix mode to GL_PROJECTION n Perspective projection: use • gluPerspective(fovy, -
An Analytical Introduction to Descriptive Geometry
An analytical introduction to Descriptive Geometry Adrian B. Biran, Technion { Faculty of Mechanical Engineering Ruben Lopez-Pulido, CEHINAV, Polytechnic University of Madrid, Model Basin, and Spanish Association of Naval Architects Avraham Banai Technion { Faculty of Mathematics Prepared for Elsevier (Butterworth-Heinemann), Oxford, UK Samples - August 2005 Contents Preface x 1 Geometric constructions 1 1.1 Introduction . 2 1.2 Drawing instruments . 2 1.3 A few geometric constructions . 2 1.3.1 Drawing parallels . 2 1.3.2 Dividing a segment into two . 2 1.3.3 Bisecting an angle . 2 1.3.4 Raising a perpendicular on a given segment . 2 1.3.5 Drawing a triangle given its three sides . 2 1.4 The intersection of two lines . 2 1.4.1 Introduction . 2 1.4.2 Examples from practice . 2 1.4.3 Situations to avoid . 2 1.5 Manual drawing and computer-aided drawing . 2 i ii CONTENTS 1.6 Exercises . 2 Notations 1 2 Introduction 3 2.1 How we see an object . 3 2.2 Central projection . 4 2.2.1 De¯nition . 4 2.2.2 Properties . 5 2.2.3 Vanishing points . 17 2.2.4 Conclusions . 20 2.3 Parallel projection . 23 2.3.1 De¯nition . 23 2.3.2 A few properties . 24 2.3.3 The concept of scale . 25 2.4 Orthographic projection . 27 2.4.1 De¯nition . 27 2.4.2 The projection of a right angle . 28 2.5 The two-sheet method of Monge . 36 2.6 Summary . 39 2.7 Examples . 43 2.8 Exercises . -
Viewing in 3D
Viewing in 3D Viewing in 3D Foley & Van Dam, Chapter 6 • Transformation Pipeline • Viewing Plane • Viewing Coordinate System • Projections • Orthographic • Perspective OpenGL Transformation Pipeline Viewing Coordinate System Homogeneous coordinates in World System zw world yw ModelViewModelView Matrix Matrix xw Tractor Viewing System Viewer Coordinates System ProjectionProjection Matrix Matrix Clip y Coordinates v Front- xv ClippingClipping Wheel System P0 zv ViewportViewport Transformation Transformation ne pla ing Window Coordinates View Specifying the Viewing Coordinates Specifying the Viewing Coordinates • Viewing Coordinates system, [xv, yv, zv], describes 3D objects with respect to a viewer zw y v P v xv •A viewing plane (projection plane) is set up N P0 zv perpendicular to zv and aligned with (xv,yv) yw xw ne pla ing • In order to specify a viewing plane we have View to specify: •P0=(x0,y0,z0) is the point where a camera is located •a vector N normal to the plane • P is a point to look-at •N=(P-P)/|P -P| is the view-plane normal vector •a viewing-up vector V 0 0 •V=zw is the view up vector, whose projection onto • a point on the viewing plane the view-plane is directed up Viewing Coordinate System Projections V u N z N ; x ; y z u x • Viewing 3D objects on a 2D display requires a v v V u N v v v mapping from 3D to 2D • The transformation M, from world-coordinate into viewing-coordinates is: • A projection is formed by the intersection of certain lines (projectors) with the view plane 1 2 3 ª x v x v x v 0 º ª 1 0 0 x 0 º « » « -
Implementation of Projections
CS488 Implementation of projections Luc RENAMBOT 1 3D Graphics • Convert a set of polygons in a 3D world into an image on a 2D screen • After theoretical view • Implementation 2 Transformations P(X,Y,Z) 3D Object Coordinates Modeling Transformation 3D World Coordinates Viewing Transformation 3D Camera Coordinates Projection Transformation 2D Screen Coordinates Window-to-Viewport Transformation 2D Image Coordinates P’(X’,Y’) 3 3D Rendering Pipeline 3D Geometric Primitives Modeling Transform into 3D world coordinate system Transformation Lighting Illuminate according to lighting and reflectance Viewing Transform into 3D camera coordinate system Transformation Projection Transform into 2D camera coordinate system Transformation Clipping Clip primitives outside camera’s view Scan Draw pixels (including texturing, hidden surface, etc.) Conversion Image 4 Orthographic Projection 5 Perspective Projection B F 6 Viewing Reference Coordinate system 7 Projection Reference Point Projection Reference Point (PRP) Center of Window (CW) View Reference Point (VRP) View-Plane Normal (VPN) 8 Implementation • Lots of Matrices • Orthographic matrix • Perspective matrix • 3D World → Normalize to the canonical view volume → Clip against canonical view volume → Project onto projection plane → Translate into viewport 9 Canonical View Volumes • Used because easy to clip against and calculate intersections • Strategies: convert view volumes into “easy” canonical view volumes • Transformations called Npar and Nper 10 Parallel Canonical Volume X or Y Defined by 6 planes -
Visualization in Multiobjective Optimization
Final version Visualization in Multiobjective Optimization Bogdan Filipič Tea Tušar Tutorial slides are available at CEC Tutorial, Donostia - San Sebastián, June 5, 2017 http://dis.ijs.si/tea/research.htm Computational Intelligence Group Department of Intelligent Systems Jožef Stefan Institute Ljubljana, Slovenia 2 Contents Introduction A taxonomy of visualization methods Visualizing single approximation sets Introduction Visualizing repeated approximation sets Summary References 3 Introduction Introduction Multiobjective optimization problem Visualization in multiobjective optimization Minimize Useful for different purposes [14] f: X ! F • Analysis of solutions and solution sets f:(x ;:::; x ) 7! (f (x ;:::; x );:::; f (x ;:::; x )) 1 n 1 1 n m 1 n • Decision support in interactive optimization • Analysis of algorithm performance • X is an n-dimensional decision space ⊆ Rm ≥ • F is an m-dimensional objective space (m 2) Visualizing solution sets in the decision space • Problem-specific ! Conflicting objectives a set of optimal solutions • If X ⊆ Rm, any method for visualizing multidimensional • Pareto set in the decision space solutions can be used • Pareto front in the objective space • Not the focus of this tutorial 4 5 Introduction Introduction Visualization can be hard even in 2-D Stochastic optimization algorithms Visualizing solution sets in the objective space • Single run ! single approximation set • Interested in sets of mutually nondominated solutions called ! approximation sets • Multiple runs multiple approximation sets • Different -
Squaring the Circle in Panoramas
Squaring the Circle in Panoramas Lihi Zelnik-Manor1 Gabriele Peters2 Pietro Perona1 1. Department of Electrical Engineering 2. Informatik VII (Graphische Systeme) California Institute of Technology Universitat Dortmund Pasadena, CA 91125, USA Dortmund, Germany http://www.vision.caltech.edu/lihi/SquarePanorama.html Abstract and conveying the vivid visual impression of large panora- mas. Such mosaics are superior to panoramic pictures taken Pictures taken by a rotating camera cover the viewing with conventional fish-eye lenses in many respects: they sphere surrounding the center of rotation. Having a set of may span wider fields of view, they have unlimited reso- images registered and blended on the sphere what is left to lution, they make use of cheaper optics and they are not be done, in order to obtain a flat panorama, is projecting restricted to the projection geometry imposed by the lens. the spherical image onto a picture plane. This step is unfor- The geometry of single view point panoramas has long tunately not obvious – the surface of the sphere may not be been well understood [12, 21]. This has been used for mo- flattened onto a page without some form of distortion. The saicing of video sequences (e.g., [13, 20]) as well as for ob- objective of this paper is discussing the difficulties and op- taining super-resolution images (e.g., [6, 23]). By contrast portunities that are connected to the projection from view- when the point of view changes the mosaic is ‘impossible’ ing sphere to image plane. We first explore a number of al- unless the structure of the scene is very special. -
Inviwo — a Visualization System with Usage Abstraction Levels
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MAY 2019 1 Inviwo — A Visualization System with Usage Abstraction Levels Daniel Jonsson,¨ Peter Steneteg, Erik Sunden,´ Rickard Englund, Sathish Kottravel, Martin Falk, Member, IEEE, Anders Ynnerman, Ingrid Hotz, and Timo Ropinski Member, IEEE, Abstract—The complexity of today’s visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities. Index Terms—Visualization systems, data visualization, visual analytics, data analysis, computer graphics, image processing. F 1 INTRODUCTION The field of visualization is maturing, and a shift can be employing different layers of abstraction. -
EX NIHILO – Dahlgren 1
EX NIHILO – Dahlgren 1 EX NIHILO: A STUDY OF CREATIVITY AND INTERDISCIPLINARY THOUGHT-SYMMETRY IN THE ARTS AND SCIENCES By DAVID F. DAHLGREN Integrated Studies Project submitted to Dr. Patricia Hughes-Fuller in partial fulfillment of the requirements for the degree of Master of Arts – Integrated Studies Athabasca, Alberta August, 2008 EX NIHILO – Dahlgren 2 Waterfall by M. C. Escher EX NIHILO – Dahlgren 3 Contents Page LIST OF ILLUSTRATIONS 4 INTRODUCTION 6 FORMS OF SIMILARITY 8 Surface Connections 9 Mechanistic or Syntagmatic Structure 9 Organic or Paradigmatic Structure 12 Melding Mechanical and Organic Structure 14 FORMS OF FEELING 16 Generative Idea 16 Traits 16 Background Control 17 Simulacrum Effect and Aura 18 The Science of Creativity 19 FORMS OF ART IN SCIENTIFIC THOUGHT 21 Interdisciplinary Concept Similarities 21 Concept Glossary 23 Art as an Aid to Communicating Concepts 27 Interdisciplinary Concept Translation 30 Literature to Science 30 Music to Science 33 Art to Science 35 Reversing the Process 38 Thought Energy 39 FORMS OF THOUGHT ENERGY 41 Zero Point Energy 41 Schools of Fish – Flocks of Birds 41 Encapsulating Aura in Language 42 Encapsulating Aura in Art Forms 50 FORMS OF INNER SPACE 53 Shapes of Sound 53 Soundscapes 54 Musical Topography 57 Drawing Inner Space 58 Exploring Inner Space 66 SUMMARY 70 REFERENCES 71 APPENDICES 78 EX NIHILO – Dahlgren 4 LIST OF ILLUSTRATIONS Page Fig. 1 - Hofstadter’s Lettering 8 Fig. 2 - Stravinsky by Picasso 9 Fig. 3 - Symphony No. 40 in G minor by Mozart 10 Fig. 4 - Bird Pattern – Alhambra palace 10 Fig. 5 - A Tree Graph of the Creative Process 11 Fig. -
A Very Simple Approach for 3-D to 2-D Mapping
Image Processing & Communications, vol. 11, no. 2, pp. 75-82 75 A VERY SIMPLE APPROACH FOR 3-D TO 2-D MAPPING SANDIPAN DEY (1), AJITH ABRAHAM (2),SUGATA SANYAL (3) (1) Anshin Soft ware Pvt. Ltd. INFINITY, Tower - II, 10th Floor, Plot No.- 43. Block - GP, Salt Lake Electronics Complex, Sector - V, Kolkata - 700091 email: [email protected] (2) IITA Professorship Program, School of Computer Science, Yonsei University, 134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, Republic of Korea email: [email protected] (3) School of Technology & Computer Science Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai - 400005, INDIA email: [email protected] Abstract. libraries with any kind of system is often a tough trial. This article presents a very simple method of Many times we need to plot 3-D functions e.g., in mapping from 3-D to 2-D, that is free from any com- many scientific experiments. To plot this 3-D func- plex pre-operation, also it will work with any graph- tions on 2-D screen it requires some kind of map- ics system where we have some primitive 2-D graph- ping. Though OpenGL, DirectX etc 3-D rendering ics function. Also we discuss the inverse transform libraries have made this job very simple, still these and how to do basic computer graphics transforma- libraries come with many complex pre-operations tions using our coordinate mapping system. that are simply not intended, also to integrate these 76 S. Dey, A. Abraham, S. Sanyal 1 Introduction 2 Proposed approach We have a pictorial representation (Fig.1) of our 3-D to 2-D mapping system: We have a function f : R2 → R, and our intention is to draw the function in 2-D plane. -
The New Plot to Hijack GIS and Mapping
The New Plot to Hijack GIS and Mapping A bill recently introduced in the U.S. Senate could effectively exclude everyone but licensed architects, engineers, and surveyors from federal government contracts for GIS and mapping services of all kinds – not just those services traditionally provided by surveyors. The Geospatial Data Act (GDA) of 2017 (S.1253) would set up a system of exclusionary procurement that would prevent most companies and organizations in the dynamic and rapidly growing GIS and mapping sector from receiving federal contracts for a very-wide range of activities, including GPS field data collection, GIS, internet mapping, geospatial analysis, location based services, remote sensing, academic research involving maps, and digital or manual map making or cartography of almost any type. Not only would this bill limit competition, innovation and free-market approaches for a crucial high-growth information technology (IT) sector of the U.S. economy, it also would cripple the current vibrant GIS industry and damage U.S. geographic information science, research capacity, and competitiveness. The proposed bill would also shackle government agencies, all of which depend upon the productivity, talent, scientific and technical skills, and the creativity and innovation that characterize the vast majority of the existing GIS and mapping workforce. The GDA bill focuses on a 1972 federal procurement law called the Brooks Act that reasonably limits federal contracts for specific, traditional architectural and engineering services to licensed A&E firms. We have no problem with that. However, if S.1253 were enacted, the purpose of the Brooks Act would be radically altered and its scope dramatically expanded by also including all mapping and GIS services as “A&E services” which would henceforth would be required to be procured under the exclusionary Brooks Act (accessible only to A&E firms) to the great detriment of the huge existing GIS IT sector and all other related companies and organizations which have long been engaged in cutting-edge GIS and mapping. -
Basic Science: Understanding Numbers
Document name: How to use infogr.am Document date: 2015 Copyright information: Content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence OpenLearn Study Unit: BASIC SCIENCE: UNDERSTANDING NUMBERS OpenLearn url: http://www.open.edu/openlearn/science-maths-technology/basic-science-understanding-numbers/content-section-overview Basic Science: Understanding Numbers Simon Kelly www.open.edu/openlearn 1 Basic Science: Understanding Numbers A guide to using infogr.am Infographics are friendly looking images and graphs which convey important information. In the past an infographic was the result of a long and painful process between designers and statisticians involving numerous meetings, data management and testing of designs and colour schemes. Nowadays they are much simpler to create. In fact, the company infogr.am has created a website that simplifies this process so that anyone can do it. The guidance below outlines a few simple instructions on how to use infogr.am to create the types of graphs discussed in this course. We will be using the data from the ‘Rainfall data PDF’. You should download the PDF before you start. Remember, you do not need to plot all the graph types or all the data. Simply pick two countries and compare their rainfall. This is a basic guide to Infogr.am; the site can do much more than what we describe below, so have a play and see what you find out! 1. Go to https://infogr.am/. 2. Select ‘Sign up now’ and create a username, enter your email address and choose a password (if you prefer, you can use your Facebook, Twitter or Google+ account to connect and log in).