Response of Eyjafjallajo¨ Kull, Torfajo¨ Kull and Tindfjallajo¨ Kull Ice Caps In

Total Page:16

File Type:pdf, Size:1020Kb

Response of Eyjafjallajo¨ Kull, Torfajo¨ Kull and Tindfjallajo¨ Kull Ice Caps In RESEARCH/REVIEW ARTICLE Response of Eyjafjallajo¨ kull, Torfajo¨ kull and Tindfjallajo¨ kull ice caps in Iceland to regional warming, deduced by remote sensing Sverrir Gudmundsson,1 Helgi Bjo¨ rnsson,1 Eyjo´ lfur Magnu´ sson,1 Etienne Berthier,2 Finnur Pa´ lsson,1 Magnu´ s Tumi Gudmundsson,1 Tho´ rdı´s Ho¨ gnado´ ttir1 & Jørgen Dall3 1 Institute of Earth Sciences, University of Iceland, Sturlugata 7, Askja, Reykjavı´k IS-101, Iceland 2 Centre National de la Recherche Scientifique, Universite´ de Toulouse, Laboratoire d’Etudes en Ge´ ophysique et Oce´ anographie Spatiale, Universite´ de Toulouse, 14 Avenue Edouard Belin, Toulouse FR-31400, France 3 National Space Institute, Technical University of Denmark, Lyngby DK-2800, Denmark Keywords Abstract Remote sensing; glacier mass balance; regional warming; Eyjafjallajo¨ kull; We assess the volume change and mass balance of three ice caps in southern Torfajo¨ kull; Tindfjallajo¨ kull. Iceland for two periods, 1979Á1984 to 1998 and 1998 to 2004, by comparing digital elevation models (DEMs). The ice caps are Eyjafjallajo¨ kull (ca. 81 km2), Correspondence Tindfjallajo¨kull (ca. 15 km2) and Torfajo¨kull (ca. 14 km2). The DEMs were Sverrir Gudmundsson, Institute of Earth compiled using aerial photographs from 1979 to 1984, airborne Synthetic Sciences, University of Iceland, Sturlugata Aperture Radar (SAR) images obtained in 1998 and two image pairs from the 7, Askja, Reykjavı´k IS-101, Iceland. E-mail [email protected] SPOT 5 satellite’s high-resolution stereoscopic (HRS) instrument acquired in 2004. The ice-free part of the accurate DEM from 1998 was used as a reference map for co-registration and correction of the vertical offset of the other DEMs. The average specific mass balance was estimated from the mean elevation difference between glaciated areas of the DEMs. The glacier mass balance declined significantly between the two periods: from 0.2 to 0.2 m yr1 w. eq. during the earlier period (1980s through 1998) to 1.8 to 1.5 m yr1 w. eq. for the more recent period (1998Á2004). The declin- ing mass balance is consistent with increased temperature over the two periods. The low mass balance and the small accumulation area ratio of Tindfjallajo¨kull and Torfajo¨ kull indicate that they will disappear if the present- day climate continues. The future lowering rate of Eyjafjallajo¨ kull will, however, be influenced by the 2010 subglacial eruption in the Eyjafjallajo¨ kull volcano. Iceland is located in the North Atlantic Ocean (Fig. 1), runoff are important for the design and operation of at the confluence of air/water masses from the mid- power plants as well as for the constructions of roads and latitudes and from the Arctic. About 11% of Iceland is bridges. covered by glaciers, all of which are temperate, have a Icelandic glaciers are currently melting at a fast high annual mass turnover and are highly sensitive to rate. Over recent decades, annual mass balance field climate fluctuations (e.g., Bjo¨ rnsson 1979; Bjo¨ rnsson & observations on the three largest ice caps in Iceland* Pa´lsson 2008). Glacier meltwater is mainly delivered Langjo¨ kull (ca. 900 km2), Hofsjo¨ kull (ca. 890 km2) and directly to rivers but in places considerable volumes are Vatnajo¨kull (ca. 8100 km2)*show a declining specific delivered to groundwater aquifers. Glacier river discharge mass balance from about 0 m yr1 w. eq. on average provides a significant portion of the river water that is from 1980 to 1994 to 1to1.3 m yr1 w. eq. on harnessed by hydroelectric power plants. Changes in average after 1995 (Bjo¨rnsson et al. 2002; Sigurdsson Polar Research 2011. # 2011 S. Gudmundsson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 1 Unported License (http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Polar Research 2011, 30, 7282, DOI: 10.3402/polar.v30i0.7282 (page number not for citation purpose) Mass balance of three ice caps in southern Iceland S. Gudmundsson et al. Fig. 1 Eyjafjallajo¨ kull (E), Tindfjallajo¨ kull (Ti), Torfajo¨ kull (To) and My´ rdalsjo¨ kull (M) ice caps. The G´ıgjo¨ kull outlet glacier (G) of Eyjafjallajo¨ kull is also indicated. The inset map of Iceland shows the location of the study area as well as Langjo¨ kull (L), Hofsjo¨ kull (H) and Vatnajo¨ kull (Va) ice caps and these weather stations: Vı´k (V) in My´rdalur (15 m a.s.l., ca. 30 km south-east of Eyjafjallajo¨ kul), Hveravellir (Hv; 641 m a.s.l., ca. 100 km north of Tindfjallajo¨ kull and Torfajo¨ kull) and Ho´ lar (Ho) in Hornafjo¨ rdur (18 m a.s.l.). The plot shows the elevation distribution of the Eyjafjallajo¨ kull, Tindfjallajo¨ kull and Torfajo¨ kull ice caps as area (km2) per 10 m elevation interval. et al. 2004; Pa´lsson et al. 2007; Bjo¨ rnsson & Pa´lsson 2008; This approach provides results over large areas in cont- Gudmundsson et al. 2009). This is consistent with the rast to the few points that traditional mass balance warming in Iceland that has taken place since 1994 (e.g., observations yield. Bjo¨ rnsson et al. 2005; Jo´ hannesson et al. 2007). Model- In this paper we use multi-temporal digital elevation ling studies have shown that these large ice caps could models (DEMs; Fig. 2), obtained by both satellite and lose most of their mass within 200Á300 years (e.g., airborne remote sensors, to estimate changes in the Adalgeirsdo´ ttir et al. 2005; Adalgeirsdo´ ttir et al. 2006) volume and the specific mass balance of the Eyjafjallajo¨ - and the most recent model runs, using a revised climate kull, Torfajo¨ kull and Tindfjallajo¨ kull ice caps over two change scenario, predict that these ice caps will disappear periods, from 1979Á1984 to 1998 and from 1998 to 2004, even faster, within 150Á200 years (Gudmundsson et al. investigating a phase of climate-driven glacier changes 2009). prior to the 2010 subglacial eruption in the Eyjafjallajo¨ - Observations of mass balance and volume change kull volcano. No traditional mass balance observations commonly serve as key inputs in studies of glacier are available from these small ice caps that are located in response to present-day climate variations as well as to and close to the most maritime climate in Iceland. The ice calibrate models used to predict the future outlook of dynamics have not been studied but our reconnaissance glaciers. Annual mass balance observations at locations of flights over the last decades have not revealed any surges. stakes have been conducted on the three largest ice caps The three ice caps under consideration are all located in Iceland. Such observation methods are time consum- on active volcanoes. The most hazardous of those is the ing, expensive and infeasible for inaccessible or steep and central volcano underneath the Eyjafjallajo¨ kull ice cap crevassed mountain glaciers. For a more comprehensive that started erupting in April 2010 (Gudmundsson et al. view of glacier changes in Iceland, we aim at obtaining 2010). It is evident from field surveys, reconnaissance volume and mass balance changes by remote-sensing flights as well as aerial and satellite photographs that the methods, i.e., by comparing recent elevation maps glacier surfaces of Eyjafjallajo¨ kull and Tindfjallajo¨ kull produced from remote-sensing data to older available showed no evidence of active subglacial geothermal areas maps (e.g., Berthier et al. 2004; Magnu´ sson et al. 2005a). over the time period from the 1980s to 2004 and only 2 Citation: Polar Research 2011, 30, 7282, DOI: 10.3402/polar.v30i0.7282 (page number not for citation purpose) S. Gudmundsson et al. Mass balance of three ice caps in southern Iceland Fig. 2 Shaded relief images of the Eyjafjallajo¨ kull (E), Tindfjallajo¨ kull (Ti), Torfajo¨ kull (To) and My´rdalsjo¨ kull ice caps and surrounding glacier free areas, based on digital elevation maps derived from: (a) SPOT 5 high-resolution stereoscopic images from 5 October 2004; (b) SPOT 5 HRS from 14 August; (c) Electromagnetic Institute Synthetic Aperture Radar Sensor (EMISAR) images from 12 August 1998; and (d) aerial photographs from 1979 (Torfajo¨ kull), 1980 (Tindfjallajo¨ kull) and 1984 (Eyjafjallajo¨ kull). Gaps in (a) and (b) allocate uncorrelated parts of the SPOT 5 HRS image pairs. Red indicates (a) airborne radar altimetry observed seasonally from 2004 to 2007, (b) the line of seasonal Ice, Cloud, and Land Elevation Satellite (ICESat) laser elevation data used in this study, observed from 2004 to 2007 and (c) global positioning system (GPS) profiles and sparse GPS observations at ice-free areas. Blue in (aÁd) indicates the ice cap margins. small, localized geothermal areas have been identified photographs taken between 1979 and 1984 in south beneath Torfajo¨ kull. Hence, the influence of subglacial Iceland, airborne Synthetic Aperture Radar (SAR) images geothermal heat on the total mass balance from the obtained on 12 August 1998 by the Electromagnetic 1980s to 2004 is small and can be neglected. Knowledge Institute (EMI), Technical University of Denmark and of ice volume changes is important for estimating high-resolution stereoscopic (HRS) images taken by the pressure release on underlying volcanoes as well as to SPOT 5 satellite on 14 August and 5 October 2004 quantify the amount of ice available for hazardous floods (Fig. 2; e.g., Korona et al. 2009). Elevations of the ice during a subglacial eruption. Observations of ice volume caps and surrounding ice-free areas were used to con- changes are needed when interpreting long-term con- strain, correct and evaluate the elevation maps. The global tinuous tilting, global positioning system (GPS) levelling positioning system (GPS) profiles on roads (Fig.
Recommended publications
  • The Hyaloclastite Ridge Formed in the Subglacial 1996 Eruption in Gjfilp, Vatnaj6kull, Iceland: Present Day Shape and Future Preservation
    The hyaloclastite ridge formed in the subglacial 1996 eruption in Gjfilp, Vatnaj6kull, Iceland: present day shape and future preservation M. T. GUDMUNDSSON, F. PALSSON, H. BJORNSSON & ~. HOGNADOTTIR Science Institute, University of Iceland, Hofsvallag6tu 53, 107 Reykjavik, Iceland (e-mail: [email protected]) Abstract: In the Gjfilp eruption in 1996, a subglacial hyaloclastite ridge was formed over a volcanic fissure beneath the Vatnaj6kull ice cap in Iceland. The initial ice thickness along the 6 km-long fissure varied from 550 m to 750 m greatest in the northern part but least in the central part where a subaerial crater was active during the eruption. The shape of the subglacial ridge has been mapped, using direct observations of the top of the edifice in 1997, radio echo soundings and gravity surveying. The subglacial edifice is remarkably varied in shape and height. The southern part is low and narrow whereas the central part is the highest, rising 450 m above the pre-eruption bedrock. In the northern part the ridge is only 150-200m high but up to 2kin wide, suggesting that lateral spreading of the erupted material occurred during the latter stages of the eruption. The total volume of erupted material in Gj~tlp was about 0.8 km 3, mainly volcanic glass. The edifice has a volume of about 0.7 km 3 and a volume of 0.07 km 3 was transported with the meltwater from Gj~lp and accumulated in the Grimsv6tn caldera, where the subglacial lake acted as a trap for the sediments. This meltwater-transported material was removed from the southern part of the edifice during the eruption.
    [Show full text]
  • Ice Core Drilling and Subglacial Lake Studies on the Temperate Ice Caps in Iceland
    Ice core drilling and subglacial lake studies on the temperate ice caps in Iceland Iceland astride the Mid-Atlantic ridge Lecture # 36 Astrobiology Winter School Ice drilling projects in Iceland University of Hawaii, Jan. 2005 Thorsteinn Thorsteinsson ([email protected]) National Energy Authority Ice cover during the late glacial period. Combination of hot spot volcanism, spreading on the Mid-Atlantic ridge and glaciation leads to unusual geology. From Thordarson and Höskuldsson (2003). Subglacial volcanism beneath an ice sheet creates unusual landforms: Tuyas (tablemountains) and ridges. Herðubreið, N-Iceland Submarine eruptions create similar formations. Biologicial colonization monitored from the beginning Surtsey eruption, S. of Iceland, 1963-1967. Recent subglacial eruption in Grímsvötn, Vatnajökull ice cap. Jökulsárgljúfur canyons, N. Iceland: Formed in a catastrophic flood from Vatnajökull 2500 years ago. Icelandic analogs to hillside gullies on Mars Mars Mars Iceland Iceland Iceland Temperate ice caps Hofsjökull, 890 km2 cover >10% of Iceland Vatnajökull 2 Langjökull 8000 km 2 920 km Max. thickness: 950 m Mýrdalsjökull 550 km2 - Dynamic ice caps in a maritime climate. - High accumulation rates (2-4 m w.eq. yr-1) - Extensive melting during summer, except at highest elevations (> 1800 m) - Mass balance of ice caps negative since 1995 1972: A 415 m ice core was drilled on the NW-part of Vatnajökull Activities not continued at that time, drill was discarded. Mass balance of Hofsjökull Ice Cap 4 2 0 Winter balance -2 Summer balance H2O Net balance m -4 Cumulative mass balance -6 -8 -10 1987 1992 1997 2002 Climate, Water, Energy: A research project investigating the effect of climate change on energy production in the Nordic countries Temperature increase 1990-2050 °C CWE uses IPCC data to create scenarios for temperature and precipitation change in the Nordic region in the future Modelled change in volume of Hofsjökull ice cap 2000-2002, Modelled glacial meltwater using four different dT and dP discharge (run-off) 2000-2200.
    [Show full text]
  • Evidence for Extending Anomalous Miocene Volcanism at the Edge of The
    1 Evidence for Extending Anomalous Miocene Volcanism at the Edge of the 2 East Antarctic Craton 3 4 K. J. Licht1, T. Groth1, J. P. Townsend2, A. J. Hennessy1, S. R. Hemming3, T. P. Flood4, and M. 5 Studinger5 6 1Department of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 7 USA, 2HEDP Theory Department, Sandia National Laboratories, Albuquerque, NM, USA, 3Department of 8 Earth and Environmental Sciences, Columbia University, Lamont-Doherty Earth Observatory, Palisades, 9 NY, USA, 4Geology Department, St. Norbert College, DePere, WI, USA, 5NASA Goddard Space Flight 10 Center, Greenbelt, MD, USA 11 12 Corresponding author: Kathy Licht ([email protected]) 13 14 Key Points: 15 x Olivine basalt, hyaloclastite erratics and detrital zircon at Earth’s southernmost moraine 16 (Mt. Howe) indicate magmatic activity 17- 25 Ma. 17 x The source, indicated by a magnetic anomaly (-740 nT) ~400 km inland from the West 18 Antarctic Rift margin, expands extent of Miocene lavas. 19 x Data corroborate lithospheric foundering beneath southern Transantarctic Mountains based 20 on location of volcanism (duration < 5 my). 21 22 Abstract 23 Using field observations followed by petrological, geochemical, geochronological, and 24 geophysical data we infer the presence of a previously unknown Miocene subglacial volcanic 25 center ~230 km from the South Pole. Evidence of volcanism is from boulders of olivine-bearing 26 amygdaloidal/vesicular basalt and hyaloclastite deposited in a moraine in the southern 27 Transantarctic Mountains. 40Ar/39Ar ages from five specimens plus U-Pb ages of detrital zircon 28 from glacial till indicate igneous activity 25-17 Ma.
    [Show full text]
  • EGU2015-13634-4, 2015 EGU General Assembly 2015 © Author(S) 2015
    Geophysical Research Abstracts Vol. 17, EGU2015-13634-4, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License. High-precision mapping of seismicity in the 2014 Bárdarbunga volcanic episode Kristín S. Vogfjörd, Martin Hensch, Gunnar B. Gudmundsson, and Kristín Jónsdóttir Icelandic Meteorological Office, Reykjavik, Iceland ([email protected]) The Bárdarbunga volcano and its associated fissure swarm in Iceland’s Eastern volcanic zone is a highly active system with over 20 eruptions in the last 11 centuries. The location of this active volcano and much of the fissure swarm under several hundred metres thick ice gives rise to multiple hazards, including explosive, subglacial eruptions and associated subglacial floods (jökulhlaups), as well as fissure eruptions extruding large volumes of lava. After a decade of increasing seismic activity, volcanic unrest at Bárdarbunga suddenly escalated into a minor subglacial eruption on 16 August 2014. In the following weeks seismic activity soared and surface defor- mation of tens of cm were observed, caused by rifting and a dyke intrusion, which propagated 48 km northward from the central volcano (Sigmundsson et al., 2014). The dyke propagation stopped just outside the glacial margin and ended in a fissure eruption at Holuhraun at the end of August. At the time of writing the eruption is ongoing, having extruded a lava volume of over 1 km3 and released high rates of SO2 into the atmosphere. Over twenty thousand microearthquakes have been recorded. Initially most were in the dyke, but after the first two weeks the activity around the caldera rim increased and over 70 shallow earthquakes with MW > 5 have been located along the caldera rim accompanied by caldera subsidence.
    [Show full text]
  • Subglacial to Emergent Volcanism at Shield Nunatak, Mt. Melbourne Volcanic Field, Antarctica
    Polarforschung 57 1/2: 27-41, 1987 Subglacial to Emergent Volcanism at Shield Nunatak, Mt. Melbourne Volcanic Field, Antarctica By G. Wörner and L. Viereck* Summary: Sections through Shield Nunatak vo1cano, an alkali basaltic subglacial table-mountain from the Mt. Melbourne Volcanic Field, are descrlbed. Resting on a base of older lava flows and a fossile tillite iayer, the volcano is formed mainly by massive ash and lapilli (mass flow) deposits while pillow lavas are absent. The recurrent stage of emergence from subglacial to subaerial conditions is characterized by de­ velopment of tuff rings from explosive interaction between magma and melt water, complex ash- and lapilli deposits, including lava flows brecciated by water-interaction and a subaerial basaltie ash-flow deposit. The sequence is capped by subaerial tuff rings, lava flows, scoria cones and reworked tephra. Available data on subaquatlc explosive voJcanism indicate that early Shield Nunatak basaltic lavas erupted un­ der less than 300 m of ice cover: later Iavas erupted under shallow-water and subaerial conditions. Shield Nunatak probably formed during a glacial period (possibly the last) when the ice thtckness in the Mt. Melbourne area must have been at least 200 m greater than at present. The volcano has suffered only minor glacial erosion and still almost has its original shape. Zusammenfassung: Es werden Profile beschrieben durch einen alkalibasaltischen subglazialen Vulkan (Shield Nunatak) im Mt. Melbourne Vulkanfeld. Die Unterlage des Vulkans wird von einer Serie subaerischer Lavaströme intermediärer Zusammensetzung (Mugearit) gebildet. Über einer Lage von Paleo-Till bilden massive Aschenablagerungen die Basis der subglazialen Sequenz. Kissenlaven fehlen.
    [Show full text]
  • Timeline Reconstruction of Holocene Jökulhlaups Along the Jökulsá Á
    Copyright by Greta Hoe Wells 2016 The Thesis Committee for Greta Hoe Wells Certifies that this is the approved version of the following thesis: Timeline Reconstruction of Holocene Jökulhlaups along the Jökulsá á Fjöllum Channel, Iceland APPROVED BY SUPERVISING COMMITTEE: Supervisor: Sheryl Luzzadder-Beach Timothy P. Beach Daene C. McKinney Timeline Reconstruction of Holocene Jökulhlaups along the Jökulsá á Fjöllum Channel, Iceland by Greta Hoe Wells, B.A. Thesis Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Arts The University of Texas at Austin May 2016 Abstract Timeline Reconstruction of Holocene Jökulhlaups along the Jökulsá á Fjöllum Channel, Iceland Greta Hoe Wells, M.A. The University of Texas at Austin, 2016 Supervisor: Sheryl Luzzadder-Beach The Jökulsá á Fjöllum is Iceland’s second longest river, draining from the Vatnajökull ice cap and winding for over 200 km through the eastern highlands before emptying into the Arctic Ocean. Hydrothermal activity and subglacial eruptions beneath Vatnajökull generate enormous quantities of meltwater, which can drain catastrophically in outburst floods, known as jökulhlaups. Jökulhlaups have flowed through the Jökulsá á Fjöllum channel throughout the Holocene, but intense debate exists over their timing and magnitude. While previous studies report a peak flood discharge of 0.9 x 106 m3 s-1, Howard et al. (2012) found evidence of a peak discharge of 2.2 x 107 m3 s-1, which would make this the largest known flood on Earth. This project seeks to test Howard et al.’s (2012) hypothesis and, more broadly, to reconstruct a timeline of Holocene jökulhlaups iv along the Jökulsá á Fjöllum.
    [Show full text]
  • The Mechanics of Subglacial Basaltic Lava Flow Emplacement: Inferring Paleo-Ice Conditions
    THE MECHANICS OF SUBGLACIAL BASALTIC LAVA FLOW EMPLACEMENT: INFERRING PALEO-ICE CONDITIONS by Jefferson D. G. Hungerford B. S. in Geology, University of Washington, 2002 Submitted to the Graduate Faculty of The Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2013 UNIVERSITY OF PITTSBURGH FACULTY OF THE KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Jefferson D. G. Hungerford It was defended on November 8, 2013 and approved by Dr. William Harbert, Professor, Department of Geology and Planetary Science Dr. Thomas A. Anderson, Professor Emeritus, Department of Geology and Planetary Science Dr. Daniel J. Bain, Assistant Professor, Department of Geology and Planetary Science Dr. Tracy K. P. Gregg, Associate Professor, Department of Geology, University at Buffalo Dissertation Advisor: Dr. Michael S. Ramsey, Professor, Department of Geology and Planetary Science ii Copyright © by Jefferson D. G. Hungerford 2013 iii THE MECHANICS OF SUBGLACIAL BASALTIC LAVA FLOW EMPLACEMENT: INFERRING PALEO-ICE CONDITIONS Jefferson D. G. Hungerford, PhD University of Pittsburgh, 2013 Recent studies of terrestrial glaciovolcanic terrains have elucidated the utility of volcanic deposits as recorders of ice conditions at the time of eruption. Practically all of these investigations, however, have focused upon the associations of volcaniclastic and coherent lava lithofacies at or proximal to the source vent. Very few studies have documented the emplacement of effusion-dominated, basaltic glaciovolcanic eruptions and their distal deposits that more accurately reveal paleo-ice conditions. Both Mauna Kea volcano, Hawaii and the Tennena volcanic center (TVC), on Mount Edziza, British Columbia, Canada, preserve records of interaction between coherent lavas and an ice sheet inferred to be associated with the last glacial maximum (LGM).
    [Show full text]
  • Origin Ofenigmatic Hills in the Ross Sea, Antarctica
    Origin ofEnigmatic Hills in the Ross Sea, Antarctica A Senior Thesis Submitted in Partial Fulfillment ofthe Requirements for graduation with a Bachelor ofScience in the School ofEarth Sciences at The Ohio State University by William R. Magee The Ohio State University June 2009 Project Advisor: Terry J. Wilson, School ofEarth Sciences Approved by Terry J. Wi son Acknowledgments I would like to thank Terry Wilson for her unprecedented guidance and advice throughout this entire research project. I give thanks to all ofwhom participated in the NBP04-01 geophysical research cruise. To my parents, brothers, and relatives who have always supported me during my entire undergraduate career. This work would also not be possible without the assistance of Stephanie Konfal, Cristina Millan, and Jamey Stutz. Table of Contents Introduction 1 Geologic Setting The Antarctic Plate........•.•.....•........•.•....•.•.......•....•.....••...•.....•......••.•.....2 West Antarctic Rift System 2 Rift Structure Beneath the Western Ross Sea...•..••............••........••..•...••.........4 Antarctic Plate Volcanic History 4 Erebus and Melbourne Volcanic Provinces in the Western Ross Sea Region 5 Ice Sheet History 10 Establishing the Origin of the Seafloor Hills Hypotheses for the Origin ofthe Enigmatic Seafloor Hills 12 Approach to Testing Hypothesis 12 Drumlin Morphology 14 Tuya Morphology 15 Summary 20 Bathymetric Data 21 Results Dimensions ofthe Seafloor Hills•....••......•........•.•...•••.........•........•..•......•.•.27 Shapes ofthe Seafloor Hills in Profile 30 Shapes ofthe Seafloor Hills in Map View 31 Discussion Seafloor Hills Origin 35 Ice Sheet History 36 Conclusions 40 References Introduction Antarctica is an isolated part of this planet, yet the history of this continent and its ice sheets is of global importance. The structural deformation, volcanism, and ice sheet history of the continent can be reconstructed through geological studies of surface topography and subsurface architecture.
    [Show full text]
  • World Heritage Volcanoes a Thematic Study
    World Heritage Convention IUCN World Heritage Studies 2009 Number 8 World Heritage Volcanoes A Thematic Study IUCN Programme on Protected Areas A Global Review of Volcanic World Heritage Properties: Present Situation, Future Prospects and Management Requirements IUCN, International Union for Conservation of Nature Founded in 1948, IUCN brings together States, government agencies and a diverse range of non-govern- mental organizations in a unique world partnership: over 1000 members in all spread across some 140 countries. As a Union, IUCN seeks to infl uence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. A central Secretariat coordinates the IUCN Programme and serves the Union membership, representing their views on the world stage and providing them with the strategies, services, scientifi c knowl- edge and technical support they need to achieve their goals. Through its six Commissions, IUCN draws together over 10,000 expert volunteers in project teams and ac- tion groups, focusing in particular on species and biodiversity conservation and the management of habitats and natural resources. The Union has helped many countries to prepare National Conservation Strategies, and demonstrates the application of its knowledge through the fi eld projects it supervises. Operations are increasingly decentralized and are carried forward by an expanding network of regional and country offi ces, located principally in developing countries. IUCN builds on the strengths of its members, networks and partners to enhance their capacity and to support global alliances to safeguard natural resources at local, regional and global levels.
    [Show full text]
  • Universities of Leeds, Sheffield and York
    promoting access to White Rose research papers Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ This is the author’s pre-print version of an article published in the Journal of Volcanology and Geothermal Research White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/id/eprint/76055 Published article: Cousins, CR, Crawford, IA, Harris, J, Carrivick, JL, Gunn, M, Kee, TP, Herschy, B, Karlsson, M, Carmody, L, Cockell, C and Joy, KH (2013) Glaciovolcanic hydrothermal environments in Iceland and implications for their detection on Mars. Journal of Volcanology and Geothermal Research, 256. 61 - 77. ISSN 0377-0273 http://dx.doi.org/10.1016/j.jvolgeores.2013.02.009 White Rose Research Online [email protected] Claire Cousins - BBK 14/08/12 Mars analogue volcano-ice hydrothermal environments at Kverkfjöll and Askja volcanoes, Iceland Cousins, C.R1,2., Gunn, M3., Crawford, I.A1,2., Carrivick, J.L4., Harris, J1,2., Kee, T.P5., Karlsson, M6., Thorsteinsson, T7., Carmody, L8., Herschy, B5., Ward, J.M9., Cockell, C10., Joy, K.H11., White, O.L12. 1Dept. Earth and Planetary Sciences, Birkbeck College, University of London, Malet Street, London, WC1E 6BT, UK. 2Centre for Planetary Sciences at UCL/Birkbeck, Gower Street, London, WC1E 6BT, UK. 3Institute for Mathematics and Physics, Aberystwyth University, Aberystwyth, SY23 3BZ, UK. 4School of Geography, Woodhouse Lane, University of Leeds, Leeds, LS2 9JT, UK. 5School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. 6Magnus? Iceland. 7Thorstein? Iceland. 8Planetary Geoscience Institute, Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, 37996, USA. 9Institute for Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
    [Show full text]
  • Forecasting and Monitoring a Subglacial Eruption in Iceland
    Eos, Vol. 86, No. 26, 28 June 2005 VOLUME 86 NUMBER 26 28 JUNE 2005 EOS, TRANSACTIONS, AMERICAN GEOPHYSICAL UNION PAGES 245–252 Monitoring Systems Forecasting and Monitoring a To monitor seismic and volcanic activity in Iceland, IMO operates a nationwide digital Subglacial Eruption in Iceland network of 44 seismic stations (network name: SIL) [Bödvarsson et al., 1999], six volumetric PAGES 245, 248 traveled ~50 km beneath the Skeidarárjökull borehole strain meters, and 16 continuous outlet glacier (Figure 1b). Jökulhlaups occur GPS stations (network name: ISGPS) (H. Geirs- The recognition of geophysical precursors there every 1–10 years and last from days to son et al., Current plate movements across to volcanic activity is a primary challenge weeks, each time releasing 0.4–4 km3 of water the Mid-Atlantic Ridge determined from 5 in volcano monitoring. That challenge was [Björnsson, 2002]. Volcanic eruptions in Gríms- years of continuous GPS measurements in successfully met by scientists at the Icelandic vötn often coincide with jökulhlaups. Iceland, submitted to Journal of Geophysical Meteorological Offi ce (IMO) before the 1 November 2004 eruption of Grímsvötn, a subglacial volcano beneath the Vatnajökull ice cap, Iceland (Figure 1). Seismic and geodetic precursors were prop- erly recognized, leading to a timely eruption forecast and warning announcements. During the eruption, IMO’s monitoring capability was greatly expanded by employing geophysical and meteorological observation tools, which enabled real-time hazard assessment. Hazards arising from subglacial volcanism are due mainly to the explosive effects of magma-ice interaction, which generates a tephra-laden plume of steam that ascends rap- idly into the upper atmosphere.
    [Show full text]
  • View Entire Issue
    Vol. 12, No. 1 A Publication of the Geological Society of America January 2002 Inside This Issue Eocene Meridional Weather Patterns Reflected in the Oxygen Isotopes of Arctic Fossil Wood A. Hope Jahren and Leonel Silveira Lobo Sternberg, p. 4 Section Meetings: North–Central and Southeastern, p. 20 South–Central, p. 26 Introducing the ZSX XRF Spectrometer Series from • Extra thin Rh end window tube for superior light element performance • 500 micron spot size • Mapping capabilities • Small sample analysis • Application wizards • X-Y sample stage For more information contact Rigaku at: 9009 New Trails Drive • The Woodlands, Texas 77381 Web: www.rigaku.com Phone: 281-363-1033 • Fax: 281-364-3628 E-mail: [email protected] Contents GSA TODAY (ISSN 1052-5173) is published monthly by The Geological Vol. 12, No. 1 January 2002 Society of America, Inc., with offices at 3300 Penrose Place, Boulder, Colorado. Mailing address: P.O. Box 9140, Boulder, CO 80301-9140, U.S.A. Periodicals postage paid at Boulder, Colorado, and at additional mailing science article offices. Postmaster: Send address changes to GSA Today, Member Services, P.O. Box 9140, Boulder, CO 80301-9140. Eocene Meridional Weather Patterns Reflected Copyright © 2002, The Geological Society of America, Inc. (GSA). All rights 4 reserved. Copyright not claimed on content prepared wholly by U.S. in the Oxygen Isotopes of Arctic Fossil Wood . government employees within scope of their employment. Individual scientists A. Hope Jahren and Leonel Silveira Lobo Sternberg are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in other subsequent works and to make unlimited photocopies of items in this journal for noncommercial use in classrooms to further education 10 and science.
    [Show full text]