Chapter III. Öræfajökull Volcano: Eruption Melting Scenarios

Total Page:16

File Type:pdf, Size:1020Kb

Chapter III. Öræfajökull Volcano: Eruption Melting Scenarios III. ÖRÆFAJÖKULL VOLCANO: ERUPTION MELTING SCENARIOS Magnús T. Gudmundsson *, Þórdís Högnadóttir *, Eyjólfur Magnússon * * Nordic Volcanological Centre, Institute of Earth Sciences, University of Iceland 1. Introduction associated with volcanic activity in Öræfajökull. The approach is therefore to Observations of recent volcanic unrest consider what can be defined as realistic demonstrate that melting of ice in eruptions worst case scenarios. This needs to be kept in within glaciers can be extremely fast. The mind when considering the results. The best documented cases have occurred in the scenarios with the highest probability are less last quarter of a century in Grímsvötn, Gjálp, extreme. Three types of eruptions/events are Eyjafjallajökull and Redoubt in Alaska (e.g. considered. (1) Eruptions within the caldera Gudmundsson et al., 1997, 2004; Gud- of Öræfajökull (thick ice), (2) eruptions on mundsson, 2005; Magnússon et al., 2012a; the flanks (thin ice), and (3) pyroclastic Waythomas et al., 2013) and some earlier density currents (PDCs). The values of events such as the Katla 1918 eruption various parameters used in calculations and (Tómasson, 1996; Björnsson, 2003) and the definitions of terms are listed in Table III-1. eruptions of Mount St. Helens in 1980–1983 In this chapter a short overview of the area (Pierson, 1999), Nevado del Ruiz in 1985 being considered is given in Section 2 while (Pierson et al., 1990) and Redoubt in 1989– the magnitudes of eruptions that occur in 90 (Dorava and Meyer, 1994; Trabant et al., Iceland are reviewed briefly in Section 3. In 1994). For eruptions observed in Iceland, the Section 4, calorimetric considerations on the highest rates of heat transfer and melting various types of volcanic events are presented occur in the early, fully subglacial phases of and empirical data used to constrain explosive eruptions where the magma is efficiencies of processes. The jökulhlaups, fragmented into glass particles, typically in their entrainment of volcanic material and the the size range 0.01–1 mm (e.g. Gud- onset times are considered in Section 5. It is mundsson, 2003). More gradual melting is assumed that a flood breaks through the ice expected to occur when heat transfer takes and starts to cascade downslope mostly on the place largely by free convection of water surface and along the margins of outlet above rapidly cooled lava under ice (e.g. glaciers where ice on the slopes is shallow as Höskuldsson and Sparks, 1997; Gud- on Öræfajökull. This behaviour was for mundsson, 2003; Woodcock et al., 2012, example observed in Eyjafjallajökull in 2010 2014). Thus, because of their greater potential (Magnússon et al., 2012a). The propagation to melt large amounts of ice in a short period of the flood once it has reached the upper of time, eruptions where fragmentation is parts of the outlets is not considered further dominant are more dangerous. The analysis here since it is dealt with in Chapter IV presented here is therefore mostly con- (Helgadóttir et al., 2015). The results for the centrated on eruptions dominated by fra- various catchments and outlet glaciers for the gmentation and their consequences. three types of events considered are presented The purpose of the present work is to estimate in Section 6. the potential hazard due to jökulhlaups Öræfajökull Volcano: Eruption melting scenarios 45 Table III-1: List of symbols, abbreviations and numerical values of parameters. Symbol definition Unit PDC Pyroclastic density current - MER Mass eruption rate kg/s EOT Eruption onset time min STT Subglacial transport time min FTT Flank transit time min dE Rate of heat transfer / energy flux W dt Ep Energy available to melt snow and ice in a PDC J f Efficiency of heat transfer (0–100%, in reality fmax~80–90%) Dimensionless χ Fraction of tephra entrained in phoenix cloud during PDC formation Dimensionless 휉 Fraction of PDC flowing over a particular catchment Dimensionless 3 Qm Volumetric flow rate of magma m /s 푀̇ 푚 Mass eruption rate kg/s 푚̇ Mass eruption rate per unit length of volcanic fissure (kg/s)/m Mass generation rate of pyroclastic material at eruption site (usually equal to 푀̇ kg/s 푝 mass eruption rate) 푀̇ 푤 Mass generation rate of meltwater at eruption site kg/s Q , Q , 1 2 Rate of liquid water generation by ice melting m3/s Qw 3 QT Discharge of jökulhlaup (liquid water + entrained ice and pyroclasts) m /s 3 m Magma density kg/m 3 g Tephra kg/m 3 i Density of ice kg/m 3 w Density of liquid water kg/m Ti, Tf, T Temperature, i: initial, f: final, T: temperature difference °C Te Emplacement temperature of pyroclastic density current °C T0 Ambient air/snow temperature (~0°C) °C 5 Li Latent heat of solidification of ice, Li = 3.34x10 J/kg J/kg Cg Specific heat capacity of fresh volcanic glass J/(kg °C) Cp Specific heat capacity of pyroclastic material in collapse J/(kg °C) l Length – used here for volcanic fissure at base of glacier m x Length m 2 q Rate of meltwater production per unit length of fissure m /s 3 Vi Volume of ice m Mp Massi of pyroclastic material kg Mg Mass of pyroclasts interacting with glacier/snow in pyroclastic density current kg 46 Öræfajökull Volcano: Eruption melting scenarios Symbol definition Unit Duration of plume collapse forming pyroclastic density current. s trun Period it takes a ground hugging PDC to flow over snow/ice and release heat s 휑 Static fluid potential of water flow under ice Pa g Acceleration due to gravity g = 9.82 m/s2 m/s2 zb Height of glacier bed (usually above sea level) m zs Height of glacier surface (usually above sea level) m 2. Öræfajökull and its iv) Rótarfjallshnjúkur-Hnappur and glaciers to the south of these nunataks: The upper potential to generate boundary of this segment is the southern jökulhlaups caldera rim. Can be affected by flank eruptions and pyroclastic density currents. The height and overall morphology of v) Kvíárjökull: This includes a large part of Öræfajökull with an ice-filled caldera and ice the caldera, the slopes of Kvíárjökull and its covered upper slopes makes jökulhlaups an lower part. Can be affected by caldera almost inevitable consequence of eruptions eruptions, flank eruptions and pyroclastic on the upper parts of the volcano. The two density currents. historical examples of 1362 and 1727 demonstrate this, as shown by Thorarinsson vi) Eastern flank of Öræfajökull north of (1958) and Roberts and Gudmundsson (2015; Kvíárjökull: The upper slopes are similar to this volume, chapter II). The part of the those on the west side and can be affected by mountain massif considered here is the flank eruptions and possibly pyroclastic presently active volcano south of density currents. However, since the Svínafellsjökull and Hermannaskarð (Figures inundation area of jökulhlaups is not III-1 and III-2). The ice-covered part of the inhabited, this segment is not considered in volcano has recently been mapped with radio- the same way as those on the west and south echo soundings (Magnússon et al., 2012b). side. For the jökulhlaup hazard, the following water catchment basins were considered: 3. Magma discharge in i) The southern catchment of Svínafellsjökull: Only considered here as a potential source of eruptions jökulhlaups caused by pyroclastic density Models exist that relate magma flow rate in currents. an explosive eruption with eruption plume ii) Virkisjökull-Falljökull: This includes a height (Sparks et al., 1997; Mastin et al., section of the caldera and the flanks north of 2009; Woodhouse et al., 2013; Degruyter and Sandfell. Can be affected by caldera Bonadonna, 2012). These equations, how- eruptions, flank eruptions and pyroclastic ever, are very sensitive to the plume height, density currents. This also includes the plume height is related to both magma Grænafjallsgljúfur, to the south of Falljökull. flow rate and wind speed and discrepancies between predicted and observed flow rate iii) Kotárjökull: This catchment reaches the may be as much as a factor of 3–4 (Oddsson caldera rim but is mainly confined to the et al., 2012). These equations are not used slopes. Flank eruptions can occur here and the here. flanks of the catchment can be affected by pyroclastic density currents. In Table III-2 the estimated magma flow rate of several Icelandic eruptions are given Öræfajökull Volcano: Eruption melting scenarios 47 together with known fissure lengths. In most However, the peak values may well have cases the numbers in the table are mean been 2–3 times higher in some cases and for values over some interval during the most the largest ones 푀̇ may have reached or powerful phase of the eruption. exceeded 108 kg/s. Figure III-1: Öræfajökull and surroundings, Surface topography and ice catchment basins. The main pathways of the jökulhlaups of 1362 and 1727 were down Falljökull and Kotárjökull. 48 Öræfajökull Volcano: Eruption melting scenarios Figure III-2: Bedrock topography of Öræfajökull (after Magnússon et al. 2012b). The bottom of the caldera is an enclosed depression that would collect water if it were not ice-filled. 4. Models of ice melting in Magma fragmentation within a fissure through ice, with rapid initial widening of the eruptions fissure through melting. This model applies The conceptual models of magma melting where rapid opening to the ice surface takes considered here concur with the highest place and ice deformation is small in relation melting rates observed at certain ice to vertical ice melting rates. This applies to thicknesses and eruption rates (Figure III-3): relatively thin ice, but the thickness at which this occurs is expected to depend on the Magma fragmentation under thick ice intensity of the eruption.
Recommended publications
  • PDF Available Here
    Edinburgh Research Explorer Vegetational response to tephra deposition and land-use change in Iceland: a modern analogue and multiple working hypothesis approach to tephropalynology Citation for published version: Edwards, KJ, Dugmore, AJ & Blackford, JJ 2004, 'Vegetational response to tephra deposition and land-use change in Iceland: a modern analogue and multiple working hypothesis approach to tephropalynology', Polar Record, vol. 40, no. 213, pp. 113-120. https://doi.org/10.1017/S0032247403003000 Digital Object Identifier (DOI): 10.1017/S0032247403003000 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Polar Record Publisher Rights Statement: Published in Polar Record by Cambridge University Press (2004) General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Polar Record 40 (213): 113–120 (2004). Printed in the United Kingdom. DOI: 10.1017/S0032247403003000 113 Vegetational response to tephra deposition and land-use change in Iceland: a modern analogue and multiple working hypothesis approach to tephropalynology Kevin J.
    [Show full text]
  • Heat Transfer and Melting in Subglacial Basaltic Volcanic Eruptions: Implications for Volcanic Deposit Morphology and Meltwater Volumes
    Downloaded from http://sp.lyellcollection.org/ by guest on September 26, 2021 Heat transfer and melting in subglacial basaltic volcanic eruptions: implications for volcanic deposit morphology and meltwater volumes LIONEL WILSON 1'2 & JAMES W. HEAD, III 2 1 Department of Environmental Science, Lancaster University, Lancaster LA1 4YQ, UK (e-mail: L. [email protected]) 2 Department of Geological Sciences, Brown University, Providence, RI 02912, USA Abstract: Subglacial volcanic eruptions can generate large volumes of meltwater that is stored and transported beneath glaciers and released catastrophically in j6kulhlaups. At typical basaltic dyke propagation speeds, the high strain rate at a dyke tip causes ice to behave as a brittle solid; dykes can overshoot a rock-ice interface to intrude through 20-30% of the thickness of the overlying ice. The very large surface area of the dyke sides causes rapid melting of ice and subsequent collapse of the dyke to form a basal rubble pile. Magma can also be intruded at the substrate-ice interface as a sill, spreading sideways more efficiently than a subaerial flow, and also producing efficient and widespread heat transfer. Both intrusion mechanisms may lead to the early abundance of meltwater sometimes observed in Icelandic subglacial eruptions. If meltwater is retained above a sill, continuous melting of adjacent and overlying ice by hot convecting meltwater occurs. At typical sill pressures under more than 300 m ice thickness, magmatic CO2 gas bubbles form c. 25 vol% of the pressurized magma. If water drains and contact with the atmosphere is established, the pressure decreases dramatically unless the overlying ice subsides rapidly into the vacated space.
    [Show full text]
  • The Hyaloclastite Ridge Formed in the Subglacial 1996 Eruption in Gjfilp, Vatnaj6kull, Iceland: Present Day Shape and Future Preservation
    The hyaloclastite ridge formed in the subglacial 1996 eruption in Gjfilp, Vatnaj6kull, Iceland: present day shape and future preservation M. T. GUDMUNDSSON, F. PALSSON, H. BJORNSSON & ~. HOGNADOTTIR Science Institute, University of Iceland, Hofsvallag6tu 53, 107 Reykjavik, Iceland (e-mail: [email protected]) Abstract: In the Gjfilp eruption in 1996, a subglacial hyaloclastite ridge was formed over a volcanic fissure beneath the Vatnaj6kull ice cap in Iceland. The initial ice thickness along the 6 km-long fissure varied from 550 m to 750 m greatest in the northern part but least in the central part where a subaerial crater was active during the eruption. The shape of the subglacial ridge has been mapped, using direct observations of the top of the edifice in 1997, radio echo soundings and gravity surveying. The subglacial edifice is remarkably varied in shape and height. The southern part is low and narrow whereas the central part is the highest, rising 450 m above the pre-eruption bedrock. In the northern part the ridge is only 150-200m high but up to 2kin wide, suggesting that lateral spreading of the erupted material occurred during the latter stages of the eruption. The total volume of erupted material in Gj~tlp was about 0.8 km 3, mainly volcanic glass. The edifice has a volume of about 0.7 km 3 and a volume of 0.07 km 3 was transported with the meltwater from Gj~lp and accumulated in the Grimsv6tn caldera, where the subglacial lake acted as a trap for the sediments. This meltwater-transported material was removed from the southern part of the edifice during the eruption.
    [Show full text]
  • Frozen Cayuga & Seneca Lakes Article with Picture
    When Cayuga Lake and Seneca Lake Have Frozen Over by Walt Gable, Seneca County Historian, Feb. 2009 Whenever we have a good “old-fashioned” winter, it is easy for Seneca County residents to begin to speculate if ‘the lake might soon freeze over.” The odds, while not great, are better that it could happen to Cayuga Lake than Seneca Lake. This is because Cayuga Lake has frozen over several more times in recorded history than has Seneca Lake. Cayuga Lake also froze over more recently (1979) than Seneca Lake (1912). This 1927 picture shows a frozen Cayuga Lake near the village of Cayuga. The infrequent freezing of Seneca Lake has led to a joke that people should put Seneca Lake water in their car’s radiator because this water never freezes. Apparently this comment was frequently mentioned to the trainees at Sampson Naval Station during World War II.1 Arch Merrill in his 1951 book Slim Finger Beckon makes reference to this “modern legend.” Some Basic Information Before going any further in this discussion, there needs to be clarification as to just what constitutes a “frozen over lake.” For our purposes in this article, “frozen over lake” will mean a lake whose surface is virtually entirely frozen over—allowing for some isolated “air holes” and/or areas nearer to shore where there is some “open water,” perhaps because of warm water being discharged. In other words, we will use “frozen over” to mean the same as “virtually completely frozen over.” If a portion of either Cayuga or Seneca Lake has ice extending from some place on the eastern shoreline to the western shoreline, when other parts of the lake are not frozen from shore to shore, this will not be considered as completely frozen over.
    [Show full text]
  • Ice Core Drilling and Subglacial Lake Studies on the Temperate Ice Caps in Iceland
    Ice core drilling and subglacial lake studies on the temperate ice caps in Iceland Iceland astride the Mid-Atlantic ridge Lecture # 36 Astrobiology Winter School Ice drilling projects in Iceland University of Hawaii, Jan. 2005 Thorsteinn Thorsteinsson ([email protected]) National Energy Authority Ice cover during the late glacial period. Combination of hot spot volcanism, spreading on the Mid-Atlantic ridge and glaciation leads to unusual geology. From Thordarson and Höskuldsson (2003). Subglacial volcanism beneath an ice sheet creates unusual landforms: Tuyas (tablemountains) and ridges. Herðubreið, N-Iceland Submarine eruptions create similar formations. Biologicial colonization monitored from the beginning Surtsey eruption, S. of Iceland, 1963-1967. Recent subglacial eruption in Grímsvötn, Vatnajökull ice cap. Jökulsárgljúfur canyons, N. Iceland: Formed in a catastrophic flood from Vatnajökull 2500 years ago. Icelandic analogs to hillside gullies on Mars Mars Mars Iceland Iceland Iceland Temperate ice caps Hofsjökull, 890 km2 cover >10% of Iceland Vatnajökull 2 Langjökull 8000 km 2 920 km Max. thickness: 950 m Mýrdalsjökull 550 km2 - Dynamic ice caps in a maritime climate. - High accumulation rates (2-4 m w.eq. yr-1) - Extensive melting during summer, except at highest elevations (> 1800 m) - Mass balance of ice caps negative since 1995 1972: A 415 m ice core was drilled on the NW-part of Vatnajökull Activities not continued at that time, drill was discarded. Mass balance of Hofsjökull Ice Cap 4 2 0 Winter balance -2 Summer balance H2O Net balance m -4 Cumulative mass balance -6 -8 -10 1987 1992 1997 2002 Climate, Water, Energy: A research project investigating the effect of climate change on energy production in the Nordic countries Temperature increase 1990-2050 °C CWE uses IPCC data to create scenarios for temperature and precipitation change in the Nordic region in the future Modelled change in volume of Hofsjökull ice cap 2000-2002, Modelled glacial meltwater using four different dT and dP discharge (run-off) 2000-2200.
    [Show full text]
  • Evidence for Extending Anomalous Miocene Volcanism at the Edge of The
    1 Evidence for Extending Anomalous Miocene Volcanism at the Edge of the 2 East Antarctic Craton 3 4 K. J. Licht1, T. Groth1, J. P. Townsend2, A. J. Hennessy1, S. R. Hemming3, T. P. Flood4, and M. 5 Studinger5 6 1Department of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 7 USA, 2HEDP Theory Department, Sandia National Laboratories, Albuquerque, NM, USA, 3Department of 8 Earth and Environmental Sciences, Columbia University, Lamont-Doherty Earth Observatory, Palisades, 9 NY, USA, 4Geology Department, St. Norbert College, DePere, WI, USA, 5NASA Goddard Space Flight 10 Center, Greenbelt, MD, USA 11 12 Corresponding author: Kathy Licht ([email protected]) 13 14 Key Points: 15 x Olivine basalt, hyaloclastite erratics and detrital zircon at Earth’s southernmost moraine 16 (Mt. Howe) indicate magmatic activity 17- 25 Ma. 17 x The source, indicated by a magnetic anomaly (-740 nT) ~400 km inland from the West 18 Antarctic Rift margin, expands extent of Miocene lavas. 19 x Data corroborate lithospheric foundering beneath southern Transantarctic Mountains based 20 on location of volcanism (duration < 5 my). 21 22 Abstract 23 Using field observations followed by petrological, geochemical, geochronological, and 24 geophysical data we infer the presence of a previously unknown Miocene subglacial volcanic 25 center ~230 km from the South Pole. Evidence of volcanism is from boulders of olivine-bearing 26 amygdaloidal/vesicular basalt and hyaloclastite deposited in a moraine in the southern 27 Transantarctic Mountains. 40Ar/39Ar ages from five specimens plus U-Pb ages of detrital zircon 28 from glacial till indicate igneous activity 25-17 Ma.
    [Show full text]
  • EGU2015-13634-4, 2015 EGU General Assembly 2015 © Author(S) 2015
    Geophysical Research Abstracts Vol. 17, EGU2015-13634-4, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License. High-precision mapping of seismicity in the 2014 Bárdarbunga volcanic episode Kristín S. Vogfjörd, Martin Hensch, Gunnar B. Gudmundsson, and Kristín Jónsdóttir Icelandic Meteorological Office, Reykjavik, Iceland ([email protected]) The Bárdarbunga volcano and its associated fissure swarm in Iceland’s Eastern volcanic zone is a highly active system with over 20 eruptions in the last 11 centuries. The location of this active volcano and much of the fissure swarm under several hundred metres thick ice gives rise to multiple hazards, including explosive, subglacial eruptions and associated subglacial floods (jökulhlaups), as well as fissure eruptions extruding large volumes of lava. After a decade of increasing seismic activity, volcanic unrest at Bárdarbunga suddenly escalated into a minor subglacial eruption on 16 August 2014. In the following weeks seismic activity soared and surface defor- mation of tens of cm were observed, caused by rifting and a dyke intrusion, which propagated 48 km northward from the central volcano (Sigmundsson et al., 2014). The dyke propagation stopped just outside the glacial margin and ended in a fissure eruption at Holuhraun at the end of August. At the time of writing the eruption is ongoing, having extruded a lava volume of over 1 km3 and released high rates of SO2 into the atmosphere. Over twenty thousand microearthquakes have been recorded. Initially most were in the dyke, but after the first two weeks the activity around the caldera rim increased and over 70 shallow earthquakes with MW > 5 have been located along the caldera rim accompanied by caldera subsidence.
    [Show full text]
  • Subglacial to Emergent Volcanism at Shield Nunatak, Mt. Melbourne Volcanic Field, Antarctica
    Polarforschung 57 1/2: 27-41, 1987 Subglacial to Emergent Volcanism at Shield Nunatak, Mt. Melbourne Volcanic Field, Antarctica By G. Wörner and L. Viereck* Summary: Sections through Shield Nunatak vo1cano, an alkali basaltic subglacial table-mountain from the Mt. Melbourne Volcanic Field, are descrlbed. Resting on a base of older lava flows and a fossile tillite iayer, the volcano is formed mainly by massive ash and lapilli (mass flow) deposits while pillow lavas are absent. The recurrent stage of emergence from subglacial to subaerial conditions is characterized by de­ velopment of tuff rings from explosive interaction between magma and melt water, complex ash- and lapilli deposits, including lava flows brecciated by water-interaction and a subaerial basaltie ash-flow deposit. The sequence is capped by subaerial tuff rings, lava flows, scoria cones and reworked tephra. Available data on subaquatlc explosive voJcanism indicate that early Shield Nunatak basaltic lavas erupted un­ der less than 300 m of ice cover: later Iavas erupted under shallow-water and subaerial conditions. Shield Nunatak probably formed during a glacial period (possibly the last) when the ice thtckness in the Mt. Melbourne area must have been at least 200 m greater than at present. The volcano has suffered only minor glacial erosion and still almost has its original shape. Zusammenfassung: Es werden Profile beschrieben durch einen alkalibasaltischen subglazialen Vulkan (Shield Nunatak) im Mt. Melbourne Vulkanfeld. Die Unterlage des Vulkans wird von einer Serie subaerischer Lavaströme intermediärer Zusammensetzung (Mugearit) gebildet. Über einer Lage von Paleo-Till bilden massive Aschenablagerungen die Basis der subglazialen Sequenz. Kissenlaven fehlen.
    [Show full text]
  • Monitoring Volcanoes in Iceland and Their Current Status
    Monitoring volcanoes in Iceland and their current status Sara Barsotti Coordinator for Volcanic Hazards, [email protected] Overview • Volcanoes and volcanic eruption styles in Iceland • Monitoring volcanoes and volcanic eruptions • Current status at • Hekla • Katla • Bárðarbunga • Grímsvötn • Öræfajökull 2 The catalogue of Icelandic Volcanoes – icelandicvolcanoes.is It includes historical activity, current seismicity, possible hazards and scenarios, GIS-based map layers to visualize eruption product extensions (lava flows, ash deposits) – ICAO project 3 Explosive vs. Effusive eruption Eyjafjallajökull 2010 Bárðarbunga - Holuhraun 2014-2015 • Volcanic cloud (possibly up to • Lava flow the stratosphere) • Volcanic gas into the • Tephra fallout atmosphere (hardly higher • Lightning than the tropopause) • Floods (if from ice-capped volcano) • Pyroclastic flows 4 Volcanic ash hazards from Icelandic volcanoes All these volcanoes have volcanic ash as one of the principal hazards 5 Eruption in Iceland since 1913 Year Volcano VEI Note Stile of activity 2014 Holuhraun (Bárðarbunga) 1 Effusive 2011 Grímsvötn 4 Ice Explosive 2010 Eyjafjallajökull 3 Ice Explosive/effusive 2004 Grímsvötn 3 Ice Explosive 2000 Hekla 3 Effusive/explosive 1998 Grímsvötn 3 Ice Explosive 1996 Gjálp (Grímsvötn) 3 Ice Subglacial-explosive 1991 Hekla 3 Effusive/explosive 1983 Grímsvötn 2 Ice Explosive 1980-81 Hekla 3 Effusive/explosive 1975-84 Krafla fires (9 eruptions) 1 Effusive 1973 Heimaey 2 Effusive/explosive 1970 Hekla 3 Effusive/explosive Instrumental monitoring 1963-67
    [Show full text]
  • Recognizing Ice-Contact Trachyte-Phonolite Lavas at The
    RECOGNIZING ICE-CONTACT TRACHYTE-PHONOLITE LAVAS AT THE MOUNT EDZIZA VOLCANIC COMPLEX, BRITISH COLUMBIA, CANADA by Kristen A. LaMoreaux B.S., Kent State University, 2002 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH ARTS AND SCIENCES This thesis was presented by Kristen A. LaMoreaux It was defended on June 17, 2008 and approved by Dr. Michael Ramsey Dr. Thomas Anderson Thesis Director: Dr. Ian Skilling ii Copyright © by Kristen A. LaMoreaux 2008 iii RECOGNIZING ICE-CONTACT TRACHYTE-PHONOLITE LAVAS AT THE MOUNT EDZIZA VOLCANIC COMPLEX, BRITISH COLUMBIA, CANADA Kristen A. LaMoreaux, M.S. University of Pittsburgh, 2008 Mount Edziza Volcanic Complex (MEVC) lies within the Northern Cordilleran Volcanic Province (NCVP), in northwest British Columbia, Canada. The eruption products have been emplaced in a variety of subaerial, sub-ice and subaqueous environments from about 8Ma to less than 2000 y.b.p. (Souther, 1992). Ice Peak Formation (IPF) trachyte lava flows of approximately 1Ma age (Souther, 1992) are exposed at Ornostay Bluff (OB) and Koosick Bluff (KB). These flows comprise basal flow breccias overlain by massive conchoidally-fractured lava with large, poorly-developed columns, and local flow banding. Edziza Formation (EF) approximately 1Ma (Souther, 1992) phonolite is exposed at Triangle Dome (TD). TD can broadly be divided into an upper and lower zone. The upper zone comprises poorly-developed columns in addition to prominent jointing. In the lower zone the columns are planar and 75cm- 3m-wide in the interior of the complex grading into fan-like and curved subhorizontal columns <75cm-wide in the outer margins of the lower zone.
    [Show full text]
  • Timeline Reconstruction of Holocene Jökulhlaups Along the Jökulsá Á
    Copyright by Greta Hoe Wells 2016 The Thesis Committee for Greta Hoe Wells Certifies that this is the approved version of the following thesis: Timeline Reconstruction of Holocene Jökulhlaups along the Jökulsá á Fjöllum Channel, Iceland APPROVED BY SUPERVISING COMMITTEE: Supervisor: Sheryl Luzzadder-Beach Timothy P. Beach Daene C. McKinney Timeline Reconstruction of Holocene Jökulhlaups along the Jökulsá á Fjöllum Channel, Iceland by Greta Hoe Wells, B.A. Thesis Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Arts The University of Texas at Austin May 2016 Abstract Timeline Reconstruction of Holocene Jökulhlaups along the Jökulsá á Fjöllum Channel, Iceland Greta Hoe Wells, M.A. The University of Texas at Austin, 2016 Supervisor: Sheryl Luzzadder-Beach The Jökulsá á Fjöllum is Iceland’s second longest river, draining from the Vatnajökull ice cap and winding for over 200 km through the eastern highlands before emptying into the Arctic Ocean. Hydrothermal activity and subglacial eruptions beneath Vatnajökull generate enormous quantities of meltwater, which can drain catastrophically in outburst floods, known as jökulhlaups. Jökulhlaups have flowed through the Jökulsá á Fjöllum channel throughout the Holocene, but intense debate exists over their timing and magnitude. While previous studies report a peak flood discharge of 0.9 x 106 m3 s-1, Howard et al. (2012) found evidence of a peak discharge of 2.2 x 107 m3 s-1, which would make this the largest known flood on Earth. This project seeks to test Howard et al.’s (2012) hypothesis and, more broadly, to reconstruct a timeline of Holocene jökulhlaups iv along the Jökulsá á Fjöllum.
    [Show full text]
  • The Eyjafjallajokull Eruption of March-May 2010
    The Eyjafjallajokull eruption of March-May 2010 Kathryn Goodenough, British Geological Survey, West Mains Road, Edinburgh EH9 3LA Abstract The March-May 2010 volcanic eruption in southern Iceland brought volcanoes to the attention of the general public, as north-westerly winds carried a cloud of volcanic ash across Europe and caused major disruption to air travel. This article describes that eruption, looks at the historical background, and asks what whether we can expect to see more such disruption in the future. Introduction On the 20th of March 2010, a volcanic eruption began in the area of Fimmvörðuháls in southern Iceland, with lava erupting from fissures in spectacular ‘fire fountains’. By Icelandic standards, this was not particularly unusual; in fact, it was considered a welcome tourist attraction, attracting thousands of visitors a day, as described by the Iceland Review Online (www.icelandreview.com). Then, on the 14th of April, the site of the eruption abruptly moved from its first, ice-free location, to the ice-capped central crater of nearby Eyjafjallajökull volcano. Here, when the magma rising up beneath the volcano reached the surface, it melted the ice in the crater. The interaction of the hot magma with ice-cold water caused a reaction rather like that between hot oil and water; it exploded, throwing a column of volcanic ash and steam almost ten kilometres into the air. At the time, the prevailing winds were north-westerly, and so they carried the ash south-eastwards over Europe, where it caused widespread disruption to flights for several weeks, and stranded thousands of people away from home.
    [Show full text]