Supplementary Material

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Material SUPPLEMENTARY MATERIAL Transcriptomics supports local sensory regulation in the antennae of the kissing bug Rhodnius prolixus Jose Manuel Latorre-Estivalis; Marcos Sterkel; Sheila Ons; and Marcelo Gustavo Lorenzo DATABASES Database S1 – Protein sequences of all target genes in fasta format. Database S2 – Edited Generic Feature Format (GFF) file of the R. prolixus genome used for read mapping and gene expression analysis. Database S3 - FPKM values of target genes in the three libraries. Database S4 – Fasta sequences from different insects used in the CT/DH – CRF/DH and nuclear receptor phylogenetic analyses. FIGURES Figure S1 - Molecular phylogenetic analyses of calcitonin diuretic (CT) and corticotropin-releasing factor- related (CRF) like diuretic hormone (DH) receptors of R. prolixus and other insects. The evolutionary history of R. prolixus CT/DH and CRF/DH receptors was inferred by using the Maximum Likelihood method in PhyML v3.0. The support values on the bipartitions correspond to SH-like P values, which were calculated by means of aLRT SH-like test. The CT/DH receptor 3 clade was highlighted in red. The CT/DH and CRF/DH R. prolixus receptors were displayed in blue. The LG substitution amino-acid model was used. Species abbreviations: Dmel, Drosophila melanogaster; Aaeg, Aedes aegytpi; Agam, Anopheles gambiae; Clec, Cimex lecturiaus; Hhal, Halomorpha halys; Rpro, Rhodnius prolixus; Amel, Apis mellifera, Acyrthosiphon pisum; and Tcas, Tribolium castaneum. The glutamate receptor sequence from the D. melanogaster (FlyBase Acc. N° GC11144) was used as an out-group. The sequences used from other insects are in Supplementary Database S4). Figure S2 – Molecular phylogenetic analysis of nuclear receptor genes of R. prolixus and other insects. The evolutionary history of R. prolixus nuclear receptors was inferred by using the Maximum Likelihood method in PhyML v3.0. The support values on the bipartitions correspond to SH-like P values, which were calculated by means of aLRT SH-like test. The R. prolixus nuclear receptors were displayed in blue. LG substitution amino-acid model was used. Drosophila melanogaster sequences were obtained from Velarde et al. (2006); and subsequently used as query in BLASTp searches against P. humanus and C. lecticularius transcript databases from VectorBase. Species abbreviations: Dmel, Drosophila melanogaster; Phum, Pediculus humanus; Clec, Cimex lectularius. The RproEip75b sequence used was from isoform B (from our antennal transcriptome) because the sequence of isoform A is considered incomplete. The sequences used from other insects are in Supplementary Database S4). Figure S3 - Alignment of R. prolixus takeout protein sequences. Sequences were aligned with CLUSTAL X v2.0 (Thompson et al., 1997). Asterisks indicate identical amino-acids, double points show conserved exchanges and single points show homologous amino acids. The Drosophila melanogaster takeout protein sequence was obtained from Justice et al. (2003). The two conserved cysteine residues defining the Takeout family in many insects (Touhara et al., 1993) are marked with white boxes. The position of the conserved motifs 1 and 2 (So et al., 2000) is indicated with grey boxes. Predicted signal peptides are underlined. Species abbreviations: Rpro, Rhodnius prolixus; and Dmel, Drosophila melanogaster. Figure S4 – Structure and organization of takeout gene clusters Scaffold IDs are presented on the left. White arrows represent each Takeout gene and its position on the scaffold. Table S1. Details of neuropeptide and neurohormone precursor genes. Columns are: Gene – the gene and protein name we are assigning; VectorBase code – the official gene number in the RproC3 genome assembly, prefix is RPRC; Scaffold – the RproC3.3 genome assembly supercontig ID; AAs – number of encoded amino acids in the protein; Comments – comments on the OGS gene model and repairs performed in the genome assembly based on Blast against de novo antennal assemblies. NTE: Amino terminal region; CTE: Carboxyl terminal region; VB: VectorBase; GB: GenBank. Hit against Gene VectoBase Gene Scaffold Isoforms Aas. the antennal de Comments symbol code novo assemblies Adipokinetic New gene model created based on GB sequence Acc. N° hormone/corazonin-related ACP - KQ035347 - 126 Yes KM975505 (Zandawala et al., 2015a) peptide VectorBase prediction identical to GB sequence Acc. N° A 71 No KM283242 (Zandawala et al., 2015b) Adipokinetic hormone AKH RPRC000416 KQ034546 New isoform identified based on antennal assemblies and B 70 Yes included in the edited genome GFF New gene model created based on GB sequences Acc. N° AstA AstA - KQ034293 - 203 Yes GQ856315 and JN559385 (Ons et al., 2011) Allatostatin B MIP - KQ034158 - 254 Yes New gene model created based on Ons et al. 2011 Allatostatin CC AstCC RPRC000300 KQ034374 - 117 Yes No changes in VB prediction New gene model was created based on Ons et. Al. 2011 Allatostatin CCC AstCCC - KQ034609 - 100 No Previously, it was annotated as AstC New gene model created was created based on GB sequence Allatotropin AT - KQ034313 - 119 Yes Acc. N° GQ162783 (Ons et al., 2011) Bursicon alpha Burs-alfa RPRC000797 KQ034200 - 169 Partial No changes in VB prediction Identified in this work using T. castaneum GB sequence Acc. N° Bursicon beta Burs-beta - KQ034059 - 107 No NM_001114308.1 as query. Identical to GB sequences Acc. N° GQ856316 and AEA51300 A 146 Yes (Ons et al., 2011). Last 42 amino acids are located in the KQ034472 (5´UTR); KQ037272 supercontig KQ034594 (rest of the gene Diuretic hormone 31 Dh31 RPRC000977 Identical to GB sequences Acc. N° GQ856317 and AEA51301 model) and KQ037272 (last B 109 No (Ons et al., 2011) exon) Identical to GB sequence Acc. N° HM030714.1 (Zandawala et C 206 Yes al., 2011) VB prediction identical to GB sequence Acc. N° ABS17680 RPRC000639 KQ034830 A 158 No Cardioacceleratory peptide (Paluzzi et al., 2008). In VB classified as non-translating CDS CAPA (CAPA/CAP2b) VB prediction was identical to GB sequence Acc. N° ACH70295. RPRC000563 KQ034830 B 158 No In VB classified as non-translating CDS Hit against Gene VectoBase Gene Scaffold Isoforms Aas. the antennal de novo Comments symbol code assemblies VB prediction was identical to GB sequence Acc. N° GQ888668 Crustacean cardiactive peptide CCAP RPRC000466 KQ034330 - 129 Yes (Ons et al., 2011) New gene model created based Ons et al. 2011 and CCHamide peptide CCHa - KQ034137 - 104 Partial included in the edited genome GFF CNMamide peptide CNMa RPRC010893 KQ034609 - 150 No No changes in VB prediction New gene model created based on Ons et al. 2011 and included Corazonin CZ - KQ034239 - No in the edited genome GFF No changes in VB prediction, which is identical to GB sequence Diuretic hormone 44 Dh44 RPRC000596 KQ034102 - 151 Yes Acc. N° HM153808 (Te Brugge et al., 2011b), annotated as corticotropin releasing factor-like protein Eclosion hormone EH RPRC014242 KQ034677 - 241 No Partial sequence. Initial methionine is still missed Elevenin-1 Elevin-1 RPRC003083 KQ034317 - 66 No No changes in VB prediction Elevenin-2 Elevin-2 RPRC003084 KQ034317 - 87 Yes No changes in VB prediction Ecdysis triggering hormone ETH RPRC014486 KQ034462 - 146 Yes No changes in VB prediction FLP FMRFamida RPRC014988 KQ035274 - 273 Partial No changes in VB prediction Glycoprotein hormone alpha 2 GPA2 RPRC007092 KQ034094 - 122 Partial No changes in VB prediction New gene model was created based on C. lectularius sequence Glycoprotein hormone beta 5 GPB5 - KQ034094 - 156 No XP_014244389.1. Methionine is missed. VB prediction was identical to GB Kinin RPRC000022 KQ034106 - 398 Yes sequence Acc. N° BK007870 (Te Brugge et al., 2011a) IDLSRF-like peptide - RPRC000351 KQ034112 - 168 Yes No changes in VB prediction VB prediction was identical to GB sequence Acc. N° Insulin-like peptide Ilp RPRC007020 KQ034142 - 126 Yes AMS34841.1 (Defferrari et al., 2016) New gene model created based on Ons et. al 2011 and included ITG-like - - KQ034255 - 214 Yes in the edited genome GFF Annotated as sulfakinin (GB sequence Acc. N° GQ2539210). Last A 111 No 33 amino acids are not in the genome Ion transport peptide ITP RPRC000519 KQ034208 VB prediction was identical to GB sequence Acc. N° GU207866 B 117 Yes (Ons et al., 2011) Gene Hit against the antennal Gene VectoBase code Scaffold Isoforms Aas. Comments symbol de novo assemblies VB prediction extended in NTE region and initial methionine Long Neuropeptide F LNPF RPRC008107 KQ034255 No 105 Yes fixed according to GB sequence Acc. N° KT898124.1 (Sedra and Lange, 2016) VB prediction was identical to Myosuppressin Ms RPRC000203 KQ034384 No 88 Yes GB sequence Acc. N° GQ344501 (Ons et al., 2011) Natalisin NTL RPRC003680 KQ034106 - 196 Partial No changes in VB prediction VB prediction was identical to Neuroparsin NP RPRC002095 Q034340 113 Yes GB sequence Acc. N° GU207864 (Ons et al., 2011) VB prediction was identical Neuropeptide like precursor 1 NPLP1 RPRC011668 KQ034238 - 454 Yes to GB sequence Acc. N° GU207865 (Ons et al., 2011) VB prediction was shorter in NTE and CTE regions. Impossible NVP-like PH2 RPRC003052 ACPB03040762 - 299 Yes to fix the genome model due to problem in the genome assembly. One exon added in NTE region of VB prediction based on GB A 165 Yes sequence Acc. N° FJ167860 Only first 52 amino acids present in the genome. Sequence Orcokinin OK RPRC014678 KQ034149 B 392 Yes identical to GB sequence Acc. N° FJ761320 (Sterkel et al., 2012) Same problem as mentioned for isoform B. Sequence C 422 No identical to GB sequence Acc. N° KF179047 New gene model created based on Ons et al. 2011 and Pigment dispersing factor PDF - KQ034061 - 48 Yes included in the edited genome GFF VB prediction was identical to GB sequence Acc. N° Proctolin Proc RPRC000390 KQ034188 - 97 No JN543225 (Orchard et al., 2011) New gene model created based on GB sequence GU230851 Pyrokinin PK-PBAN - KQ034521 - 122 Yes and included in the edited genome GFF Initial methionine of VB model was fixed according to RYamide RYa RPRC000461 KQ035177 - 107 Yes antennal assemblies New gene model created based on GB sequence Acc.
Recommended publications
  • The ELIXIR Core Data Resources: ​Fundamental Infrastructure for The
    Supplementary Data: The ELIXIR Core Data Resources: fundamental infrastructure ​ for the life sciences The “Supporting Material” referred to within this Supplementary Data can be found in the Supporting.Material.CDR.infrastructure file, DOI: 10.5281/zenodo.2625247 (https://zenodo.org/record/2625247). ​ ​ Figure 1. Scale of the Core Data Resources Table S1. Data from which Figure 1 is derived: Year 2013 2014 2015 2016 2017 Data entries 765881651 997794559 1726529931 1853429002 2715599247 Monthly user/IP addresses 1700660 2109586 2413724 2502617 2867265 FTEs 270 292.65 295.65 289.7 311.2 Figure 1 includes data from the following Core Data Resources: ArrayExpress, BRENDA, CATH, ChEBI, ChEMBL, EGA, ENA, Ensembl, Ensembl Genomes, EuropePMC, HPA, IntAct /MINT , InterPro, PDBe, PRIDE, SILVA, STRING, UniProt ● Note that Ensembl’s compute infrastructure physically relocated in 2016, so “Users/IP address” data are not available for that year. In this case, the 2015 numbers were rolled forward to 2016. ● Note that STRING makes only minor releases in 2014 and 2016, in that the interactions are re-computed, but the number of “Data entries” remains unchanged. The major releases that change the number of “Data entries” happened in 2013 and 2015. So, for “Data entries” , the number for 2013 was rolled forward to 2014, and the number for 2015 was rolled forward to 2016. The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences ​ 1 Figure 2: Usage of Core Data Resources in research The following steps were taken: 1. API calls were run on open access full text articles in Europe PMC to identify articles that ​ ​ mention Core Data Resource by name or include specific data record accession numbers.
    [Show full text]
  • A Beginner's Guide to Eukaryotic Genome Annotation
    REVIEWS STUDY DESIGNS A beginner’s guide to eukaryotic genome annotation Mark Yandell and Daniel Ence Abstract | The falling cost of genome sequencing is having a marked impact on the research community with respect to which genomes are sequenced and how and where they are annotated. Genome annotation projects have generally become small-scale affairs that are often carried out by an individual laboratory. Although annotating a eukaryotic genome assembly is now within the reach of non-experts, it remains a challenging task. Here we provide an overview of the genome annotation process and the available tools and describe some best-practice approaches. Genome annotation Sequencing costs have fallen so dramatically that a sin- with some basic UNIX skills, ‘do-it-yourself’ genome A term used to describe two gle laboratory can now afford to sequence large, even annotation projects are quite feasible using present- distinct processes. ‘Structural’ human-sized, genomes. Ironically, although sequencing day tools. Here we provide an overview of the eukary- genome annotation is the has become easy, in many ways, genome annotation has otic genome annotation process, describe the available process of identifying genes and their intron–exon become more challenging. Several factors are respon- toolsets and outline some best-practice approaches. structures. ‘Functional’ genome sible for this. First, the shorter read lengths of second- annotation is the process of generation sequencing platforms mean that current Assembly and annotation: an overview attaching meta-data such as genome assemblies rarely attain the contiguity of the Assembly. The first step towards the successful annota- gene ontology terms to classic shotgun assemblies of the Drosophila mela- tion of any genome is determining whether its assem- structural annotations.
    [Show full text]
  • Downloaded from the National Center for Cide Resistance Mechanisms
    Zhou et al. Parasites & Vectors (2018) 11:32 DOI 10.1186/s13071-017-2584-8 RESEARCH Open Access ASGDB: a specialised genomic resource for interpreting Anopheles sinensis insecticide resistance Dan Zhou, Yang Xu, Cheng Zhang, Meng-Xue Hu, Yun Huang, Yan Sun, Lei Ma, Bo Shen* and Chang-Liang Zhu Abstract Background: Anopheles sinensis is an important malaria vector in Southeast Asia. The widespread emergence of insecticide resistance in this mosquito species poses a serious threat to the efficacy of malaria control measures, particularly in China. Recently, the whole-genome sequencing and de novo assembly of An. sinensis (China strain) has been finished. A series of insecticide-resistant studies in An. sinensis have also been reported. There is a growing need to integrate these valuable data to provide a comprehensive database for further studies on insecticide-resistant management of An. sinensis. Results: A bioinformatics database named An. sinensis genome database (ASGDB) was built. In addition to being a searchable database of published An. sinensis genome sequences and annotation, ASGDB provides in-depth analytical platforms for further understanding of the genomic and genetic data, including visualization of genomic data, orthologous relationship analysis, GO analysis, pathway analysis, expression analysis and resistance-related gene analysis. Moreover, ASGDB provides a panoramic view of insecticide resistance studies in An. sinensis in China. In total, 551 insecticide-resistant phenotypic and genotypic reports on An. sinensis distributed in Chinese malaria- endemic areas since the mid-1980s have been collected, manually edited in the same format and integrated into OpenLayers map-based interface, which allows the international community to assess and exploit the high volume of scattered data much easier.
    [Show full text]
  • Annual Scientific Report 2013 on the Cover Structure 3Fof in the Protein Data Bank, Determined by Laponogov, I
    EMBL-European Bioinformatics Institute Annual Scientific Report 2013 On the cover Structure 3fof in the Protein Data Bank, determined by Laponogov, I. et al. (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nature Structural & Molecular Biology 16, 667-669. © 2014 European Molecular Biology Laboratory This publication was produced by the External Relations team at the European Bioinformatics Institute (EMBL-EBI) A digital version of the brochure can be found at www.ebi.ac.uk/about/brochures For more information about EMBL-EBI please contact: [email protected] Contents Introduction & overview 3 Services 8 Genes, genomes and variation 8 Molecular atlas 12 Proteins and protein families 14 Molecular and cellular structures 18 Chemical biology 20 Molecular systems 22 Cross-domain tools and resources 24 Research 26 Support 32 ELIXIR 36 Facts and figures 38 Funding & resource allocation 38 Growth of core resources 40 Collaborations 42 Our staff in 2013 44 Scientific advisory committees 46 Major database collaborations 50 Publications 52 Organisation of EMBL-EBI leadership 61 2013 EMBL-EBI Annual Scientific Report 1 Foreword Welcome to EMBL-EBI’s 2013 Annual Scientific Report. Here we look back on our major achievements during the year, reflecting on the delivery of our world-class services, research, training, industry collaboration and European coordination of life-science data. The past year has been one full of exciting changes, both scientifically and organisationally. We unveiled a new website that helps users explore our resources more seamlessly, saw the publication of ground-breaking work in data storage and synthetic biology, joined the global alliance for global health, built important new relationships with our partners in industry and celebrated the launch of ELIXIR.
    [Show full text]
  • An Integrated Mosquito Small RNA Genomics Resource Reveals
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.061598; this version posted April 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 An integrated mosquito small RNA genomics resource reveals 4 dynamic evolution and host responses to viruses and transposons. 5 6 7 Qicheng Ma1† Satyam P. Srivastav1†, Stephanie Gamez2†, Fabiana Feitosa-Suntheimer3, 8 Edward I. Patterson4, Rebecca M. Johnson5, Erik R. Matson1, Alexander S. Gold3, Douglas E. 9 Brackney6, John H. Connor3, Tonya M. Colpitts3, Grant L. Hughes4, Jason L. Rasgon5, Tony 10 Nolan4, Omar S. Akbari2, and Nelson C. Lau1,7* 11 1. Boston University School of Medicine, Department of Biochemistry 12 2. University of California San Diego, Division of Biological Sciences, Section of Cell and 13 Developmental Biology, La Jolla, CA 92093-0335, USA. 14 3. Boston University School of Medicine, Department of Microbiology and the National 15 Emerging Infectious Disease Laboratory 16 4. Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical 17 Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK 18 5. Pennsylvania State University, Department of Entomology, Center for Infectious Disease 19 Dynamics, and the Huck Institutes for the Life Sciences 20 6. Department of Environmental Sciences, The Connecticut Agricultural Experiment Station 21 7. Boston University Genome Science Institute 22 23 * Corresponding author: NCL: [email protected] 24 † These authors contributed equally to this study. 25 26 27 28 Running title: Mosquito small RNA genomics 29 30 Keywords: mosquitoes, small RNAs, piRNAs, viruses, transposons microRNAs, siRNAs 31 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.061598; this version posted April 27, 2020.
    [Show full text]
  • Biocuration 2016 - Posters
    Biocuration 2016 - Posters Source: http://www.sib.swiss/events/biocuration2016/posters 1 RAM: A standards-based database for extracting and analyzing disease-specified concepts from the multitude of biomedical resources Jinmeng Jia and Tieliu Shi Each year, millions of people around world suffer from the consequence of the misdiagnosis and ineffective treatment of various disease, especially those intractable diseases and rare diseases. Integration of various data related to human diseases help us not only for identifying drug targets, connecting genetic variations of phenotypes and understanding molecular pathways relevant to novel treatment, but also for coupling clinical care and biomedical researches. To this end, we built the Rare disease Annotation & Medicine (RAM) standards-based database which can provide reference to map and extract disease-specified information from multitude of biomedical resources such as free text articles in MEDLINE and Electronic Medical Records (EMRs). RAM integrates disease-specified concepts from ICD-9, ICD-10, SNOMED-CT and MeSH (http://www.nlm.nih.gov/mesh/MBrowser.html) extracted from the Unified Medical Language System (UMLS) based on the UMLS Concept Unique Identifiers for each Disease Term. We also integrated phenotypes from OMIM for each disease term, which link underlying mechanisms and clinical observation. Moreover, we used disease-manifestation (D-M) pairs from existing biomedical ontologies as prior knowledge to automatically recognize D-M-specific syntactic patterns from full text articles in MEDLINE. Considering that most of the record-based disease information in public databases are textual format, we extracted disease terms and their related biomedical descriptive phrases from Online Mendelian Inheritance in Man (OMIM), National Organization for Rare Disorders (NORD) and Orphanet using UMLS Thesaurus.
    [Show full text]
  • Improved Aedes Aegypti Mosquito Reference Genome Assembly Enables Biological Discovery and Vector Control
    bioRxiv preprint doi: https://doi.org/10.1101/240747; this version posted December 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Improved Aedes aegypti mosquito reference genome assembly enables biological discovery and vector control Benjamin J. Matthews1-3*, Olga Dudchenko4-7*, Sarah Kingan8*, Sergey Koren9, Igor Antoshechkin10, Jacob E. Crawford11, William J. Glassford12, Margaret Herre1,3, Seth N. Redmond13,14, Noah H. Rose15, Gareth D. Weedall16,17, Yang Wu18,19, Sanjit S. Batra4-6, Carlos A. Brito-Sierra20,21, Steven D. Buckingham22, Corey L Campbell23, Saki Chan24, Eric Cox25, Benjamin R. Evans26, Thanyalak Fansiri27, Igor Filipović28, Albin Fontaine29-32, Andrea Gloria-Soria26, Richard Hall8, Vinita S. Joardar25, Andrew K. Jones33, Raissa G.G. Kay34, Vamsi K. Kodali25, Joyce Lee24, Gareth J. Lycett16, Sara N. Mitchell11, Jill Muehling8, Michael R. Murphy25, Arina D. Omer4-6, Frederick A. Partridge22, Paul Peluso8, Aviva Presser Aiden4,5,35,36, Vidya Ramasamy33, Gordana Rašić28, Sourav Roy37, Karla Saavedra-Rodriguez23, Shruti Sharan20,21, Atashi Sharma38, Melissa Laird Smith8, Joe Turner39, Allison M. Weakley11, Zhilei Zhao15, Omar S. Akbari40, William C. Black IV23, Han Cao24, Alistair C. Darby39, Catherine Hill20,21, J. Spencer Johnston41, Terence D. Murphy25, Alexander S. Raikhel37, David B. Sattelle22, Igor V. Sharakhov38,42, Bradley J. White11, Li Zhao43, Erez Lieberman Aiden4-7,13, Richard S. Mann12, Louis Lambrechts29,31, Jeffrey R. Powell26, Maria V. Sharakhova38,42, Zhijian Tu19, Hugh M.
    [Show full text]
  • A High-Quality De Novo Genome Assembly from a Single Mosquito Using Pacbio Sequencing
    G C A T T A C G G C A T genes Article A High-Quality De novo Genome Assembly from a Single Mosquito Using PacBio Sequencing Sarah B. Kingan 1,† , Haynes Heaton 2,† , Juliana Cudini 2, Christine C. Lambert 1, Primo Baybayan 1, Brendan D. Galvin 1, Richard Durbin 3 , Jonas Korlach 1,* and Mara K. N. Lawniczak 2,* 1 Pacific Biosciences, 1305 O’Brien Drive, Menlo Park, CA 94025, USA; [email protected] (S.B.K.); [email protected] (C.C.L.); [email protected] (P.B.); [email protected] (B.D.G.) 2 Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; [email protected] (H.H.); [email protected] (J.C.) 3 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK; [email protected] * Correspondence: [email protected] (J.K.); [email protected] (M.K.N.L.) † These authors contributed equally to this work. Received: 18 December 2018; Accepted: 15 January 2019; Published: 18 January 2019 Abstract: A high-quality reference genome is a fundamental resource for functional genetics, comparative genomics, and population genomics, and is increasingly important for conservation biology. PacBio Single Molecule, Real-Time (SMRT) sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. Improvements in throughput and concomitant reductions in cost have made PacBio an attractive core technology for many large genome initiatives, however, relatively high DNA input requirements (~5 µg for standard library protocol) have placed PacBio out of reach for many projects on small organisms that have lower DNA content, or on projects with limited input DNA for other reasons.
    [Show full text]
  • Quantification of Ortholog Losses in Insects and Vertebrates Stefan Wyder*†, Evgenia V Kriventseva‡†, Reinhard Schröder§, Tatsuhiko Kadowaki¶ and Evgeny M Zdobnov*†¥
    Open Access Research2007WyderetVolume al. 8, Issue 11, Article R242 Quantification of ortholog losses in insects and vertebrates Stefan Wyder*†, Evgenia V Kriventseva‡†, Reinhard Schröder§, Tatsuhiko Kadowaki¶ and Evgeny M Zdobnov*†¥ Addresses: *Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland. †Swiss Institute of Bioinformatics, rue Michel-Servet, 1211 Geneva, Switzerland. ‡Department of Structural Biology and Bioinformatics, University of Geneva Medical School, rue Michel-Servet, 1211 Geneva, Switzerland. §Interf. Institut für Zellbiologie, Abt. Genetik der Tiere, Universität Tübingen, 72076 Tübingen, Germany. ¶Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan. ¥Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Correspondence: Evgeny M Zdobnov. Email: [email protected] Published: 16 November 2007 Received: 30 June 2007 Revised: 4 October 2007 Genome Biology 2007, 8:R242 (doi:10.1186/gb-2007-8-11-r242) Accepted: 16 November 2007 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2007/8/11/R242 © 2007 Wyder et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ortholog<p>Comparisonof molecular
    [Show full text]
  • Annual Scientific Report 2011 Annual Scientific Report 2011 Designed and Produced by Pickeringhutchins Ltd
    European Bioinformatics Institute EMBL-EBI Annual Scientific Report 2011 Annual Scientific Report 2011 Designed and Produced by PickeringHutchins Ltd www.pickeringhutchins.com EMBL member states: Austria, Croatia, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom. Associate member state: Australia EMBL-EBI is a part of the European Molecular Biology Laboratory (EMBL) EMBL-EBI EMBL-EBI EMBL-EBI EMBL-European Bioinformatics Institute Wellcome Trust Genome Campus, Hinxton Cambridge CB10 1SD United Kingdom Tel. +44 (0)1223 494 444, Fax +44 (0)1223 494 468 www.ebi.ac.uk EMBL Heidelberg Meyerhofstraße 1 69117 Heidelberg Germany Tel. +49 (0)6221 3870, Fax +49 (0)6221 387 8306 www.embl.org [email protected] EMBL Grenoble 6, rue Jules Horowitz, BP181 38042 Grenoble, Cedex 9 France Tel. +33 (0)476 20 7269, Fax +33 (0)476 20 2199 EMBL Hamburg c/o DESY Notkestraße 85 22603 Hamburg Germany Tel. +49 (0)4089 902 110, Fax +49 (0)4089 902 149 EMBL Monterotondo Adriano Buzzati-Traverso Campus Via Ramarini, 32 00015 Monterotondo (Rome) Italy Tel. +39 (0)6900 91402, Fax +39 (0)6900 91406 © 2012 EMBL-European Bioinformatics Institute All texts written by EBI-EMBL Group and Team Leaders. This publication was produced by the EBI’s Outreach and Training Programme. Contents Introduction Foreword 2 Major Achievements 2011 4 Services Rolf Apweiler and Ewan Birney: Protein and nucleotide data 10 Guy Cochrane: The European Nucleotide Archive 14 Paul Flicek:
    [Show full text]
  • Uniprot.Ws: R Interface to Uniprot Web Services
    Package ‘UniProt.ws’ September 26, 2021 Type Package Title R Interface to UniProt Web Services Version 2.33.0 Depends methods, utils, RSQLite, RCurl, BiocGenerics (>= 0.13.8) Imports AnnotationDbi, BiocFileCache, rappdirs Suggests RUnit, BiocStyle, knitr Description A collection of functions for retrieving, processing and repackaging the UniProt web services. Collate AllGenerics.R AllClasses.R getFunctions.R methods-select.R utilities.R License Artistic License 2.0 biocViews Annotation, Infrastructure, GO, KEGG, BioCarta VignetteBuilder knitr LazyLoad yes git_url https://git.bioconductor.org/packages/UniProt.ws git_branch master git_last_commit 5062003 git_last_commit_date 2021-05-19 Date/Publication 2021-09-26 Author Marc Carlson [aut], Csaba Ortutay [ctb], Bioconductor Package Maintainer [aut, cre] Maintainer Bioconductor Package Maintainer <[email protected]> R topics documented: UniProt.ws-objects . .2 UNIPROTKB . .4 utilities . .8 Index 11 1 2 UniProt.ws-objects UniProt.ws-objects UniProt.ws objects and their related methods and functions Description UniProt.ws is the base class for interacting with the Uniprot web services from Bioconductor. In much the same way as an AnnotationDb object allows acces to select for many other annotation packages, UniProt.ws is meant to allow usage of select methods and other supporting methods to enable the easy extraction of data from the Uniprot web services. select, columns and keys are used together to extract data via an UniProt.ws object. columns shows which kinds of data can be returned for the UniProt.ws object. keytypes allows the user to discover which keytypes can be passed in to select or keys via the keytype argument. keys returns keys for the database contained in the UniProt.ws object .
    [Show full text]
  • Orthodb V8: Update of the Hierarchical Catalog of Orthologs and the Underlying Free Software Evgenia V
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library D250–D256 Nucleic Acids Research, 2015, Vol. 43, Database issue Published online 26 November 2014 doi: 10.1093/nar/gku1220 OrthoDB v8: update of the hierarchical catalog of orthologs and the underlying free software Evgenia V. Kriventseva1,2,*, Fredrik Tegenfeldt1,2, Tom J. Petty1,2, Robert M. Waterhouse1,2, Felipe A. Simao˜ 1,2, Igor A. Pozdnyakov1,2, Panagiotis Ioannidis1,2 and Evgeny M. Zdobnov1,2,* 1Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland and 2Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland Received October 07, 2014; Revised November 06, 2014; Accepted November 07, 2014 ABSTRACT data from a large variety of species is growing quickly, and the gap between such sequence data and the experimental Orthology, refining the concept of homology, is the functional data is widening. The evolutionary relatedness of cornerstone of evolutionary comparative studies. genes, termed homology, can be asserted by sequence anal- With the ever-increasing availability of genomic data, ysis, providing the means to formulate working hypotheses inference of orthology has become instrumental for on gene functions from experimentation on model organ- generating hypotheses about gene functions crucial isms. In turn, homologs referencing a particular ancestor to many studies. This update of the OrthoDB hierar- have been termed orthologs (1–3). Such genes originating chical catalog of orthologs (http://www.orthodb.org) by speciation from an ancestral gene are most likely to re- covers 3027 complete genomes, including the most tain the ancestral function (4), making orthology the most comprehensive set of 87 arthropods, 61 vertebrates, precise way to link gene functional knowledge to a much 227 fungi and 2627 bacteria (sampling the most com- wider genomics space.
    [Show full text]