<<

LA-UR-79-100

TITLE- LIMITS FOR THE HWRIAL OF THE DEPARTMlirr OF WKOGt TRAMSURAflC

WASTES

LA-UR—79-100 DE86 012182 AUTHOR(S): J- «• a«*iy "od J. c. Rod««rs

TABU oaoop

S. I. Au«rb«ch - Oak Ridc« Batlaoal Laboratory John Corvy- - SaTazmah RlT«r Laboratoxr J. 0. Daguld - Battalia Maiartal Institxxta (Colvoibua} Robert Oarrala - BoK'tLnaatam QalTarsity VlUlam Maraaian - Los Alaaoa Sclantlfic Laboratonr Brvkca Oiraa - Dow Chaaleal Corp. Ino. H. M. Parker - BMP Associates, Inc., Rlchl&od, UA C V. C. Ralnlg - SaTiimah Rirar Laboratory Roy C. Thompson - Pacific Borthwart Laboratory C O ir o 6 w cc Q _ John Adaa - Nuclear Rcgula.tory CosBlssioo K. R. BalLcr - DapartMOt of bcrsy o p Gordon Borlcy •• ftrrlroisMBtaXProtaetlo n Aitancy tu Jaaaa E. Dieckhonar - Dapartaant of Zaargy ~ a. o Bruce Vachholz - Dapartaeztt of Energy o w C .J o CO a DISCLAIMER f-. § & a o This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their CO employees, makes any warranty, express or implied, or assumes any legal liability or responsi­ o bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or f t process disclosed, or represents that its use would not infringe privately owned rights. Refer­ ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom­ mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the > United States Government or any agency thereof. January 15, 1979 ttfcSB 1^51LO S ALAMOS SCIENTIFIC LABORATORY Post Office Box 1663 Los Alamos. N«w Mexico 87545 An Afllrnwilve AcHon/Equti OpPOrturM/ Empioyw DiSTHreimoH OF TW3 DOOUMENT IS uNUNirno

i«3 ) U«MT«e STATES lam ocPi^WTWKMT or ««•••« T DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LEGIBILITY NOTICE

A major purpose of the Technical Infor­ mation Center is to provide the broadest possible dissemination of information con­ tained in DOE'S Research and Develop­ ment Reports to business, industry, the academic community, and federal, state, and local governments. Non-DOE originated information is also disseminated by the Technical Information Center to support ongoing DOE programs. Although large portions of this report are not reproducible, it is being made avail­ able only in paper copy form to facilitate the availability of those parts of the docu­ ment which are legible. Copies may be obtained from the National Technical Infor­ mation Service. Authorized recipients may obtain a copy directly from the Department of Energy's Technical Information Center. 3 ACKNOtfLEDGOffiNTS

The authors gratefully acknowledge the assistance given by members of the Task Group and members of their laboratories in both technical setters and in the insights on the problems. However, the authors take full responsibility for the contents of this report. We would also like to take this opportunity to thank all of those who reviewed the early draft and provided detailed comments that were so helpful in preparation of this report. Finally we wish to express our appreciation for the dedicated efforts of Edalia Lucero in typing this report as her first effort on a new word processor. TABLE OF oortnrrs

EXECOTIVK SOMMART I I. IHTRODOCTIOII "» II. THE DOE WASTES CONTAINING TRANSURANIUH BLEIONTS 6 A. DOB Sites, and Waste Quantities 7 B. Waste Hatrieea 8 C. Burial Practices 9 D. Radioactivity Characteristloa of the Transuranium Elements .... 9 E. The Model Burial Ground H III. CRITERU FOR RECOHMBNDATIOBS 12 A. Long-Term Conaidarations 12 B. Dosa Limitations 17 C. Costs 22 0. Criteria to be Uaed • 2« I¥. PATHWAY ANALYSES 26 A. Intake Limitations 26 1. Inhalation 26 2. Ingestion 3' 3. Derived Limit for Soils 3« a. Inhalation 35 b. Incmstlon 39 0. Dmnshtar Produots ^ B. Pathway Bstimatea for Shelter; ^rth Burial H 1. Broaioo with Tranaoort to Stream *8 a. Bro»l&<» *'4t»» H8 b. 5«4imaot Transpet^ 52 c. Drinktj^c the Water 53 4. Dsa of Watw for Irrlsatieo 56 e. E«tiag of Fish 57 f. Cuaversion to Was^ Concentration 58 2. Movement in Local Waters 59 a. Movement to and in Aquifer 60 b. Domestic Ose 66 c. Irrigation *. 67 d. Movemant from Aquifer to Stream 68 e. Convaraion to Average Concentration in Burial Ground ... 70 f. Seeps 71 3. Intrustlon into Waste Mass 71 1. Low Surface to Volume Ratio - Degradable or Contamination Inoorporated 7* b. High Surface to Volume Ratio Items 76 o. tastes in Non-Degradable Containers 79 4. Exposure of Wastes 8i 5. Othar Pathways 82 a. Optake by Vegetation 82 b. Burrowing Animals 8U c. Severe Events 85 C. Deep Earth Burial 86 D. Summary of Limits and Conversion to Operational Limits 6*7 1. Dilltion by Soils 8S 2. Dilution by Less Contaminated Wastes 89 3. Total Dilution Factors Q' 0. Conversion to Operational Limits and Summary 92

V. RECOmENDATIONS 92 A. Shallow Burial 92 B. Deep Burial 97

VI. DISCUSSION 98 A. Separate Limits for Nuclides 98 B. Measurements 99 C. Population Doses lOO D. Comparison with Natural Radioactivity 102 E. Estimates of Risk 106 F. Uncertainties 110 G. Possible Developments - 12 1

REFERENCES i?'

APPENDIX A. LETTER FROM ROBERTS TO LIVERMAN

APPENDIX B. DOE WASTES AND BURIAL SITES

APPCMDIX C. SUBSUSFACS MIGRATION OF TRANSURANIUM ELEMENTS FROM BURIED SOLID HASTE

APPENDIX D. TRANSURANIUM ELEMENT ABSORPTION FROM THE GI TRACT - A REVIEW

APPENDIX E. RESUSPENSIOH

APPENDIX F. ENVIRONMENTAL CHANGES IN THE UNITED STATES IN THE UST QUARTER MILLION TEARS

APPENDIX G. TRANSPORT OF TRANSURANICS BT SEDIMENTS IN SURFACE WATER

APPENDIX B. TRANSURANIC UPTAKE BT AQUATIC ORGANISMS

APPENDIX I. MODELING RADIONUCLIDE TRANSPORT THROUGH SOIL AND ROCKS BY SUBSURFACE WATER

APPENDIX J. TRU WASTE ASSAY INSTRUMENTATION

APPENDIX K. NATURAL ENVIRONMENTAL SOURCES OF ALPHA-EMITTING RADIONUCLIDES

APPENDIX L. TECHNICAL DEVELOPMENTS IN WASTE MANAGEMENT LIMITS FOR THE BURIAL OF THE DEPARTMENT OF ENERGY TRANSURANIC WASTES

by

J. W. Healy and J. C. Rodgera

EXECUTIVE SUtMARY

Racommaodad limits are derivad for tha burial of solid wastes contaminated with transuranium elements as ganeratad in Department of Energy facilities. The limiting exposure to future populations, used as a basis for the calculations, was 0.5 ram/year to the maximum exposed organ of the individual deemed to have the highest exposure to the transuranium elements for eaoh pathway. This dose rate, applied to the dose rata ooeurrlng during a 70 year lifetime of the maximum exposed individual, was derived as applieable after review of the recommendations of the National Council on Radiation Protection and Maaauremants, The Intammtlooal Counell on Rmdlologioal Protection, The Federal Radiation Council and Tha Enrlron—ntml Proteotlon Agency. Before the actual pathway analyses ware dona, oaloulatlons ware made of the dose to an individual from inhalation or ingestion of the transuranium elements and these values ware applied to obtain a soil limit based upon an individual living on the area. Tha Am limit la partloularly uncertain because of the lack of inforaatioc on the diet. We assumed that the ^"^Am uptake from the G: Tract was tan tlmas hl«bar than that of plutonlum and this resulted in ingestion being the oontrolling pathway. Major Pathways oonsiderad ware: 1) Erosion of tha wastes into a nearby stream after several thousands of yeara; 2) Leaching of the transuranic waste to an aquifer; 3) Intrusion into the waste mass; and *) Exposure of the wistes by erosion, or other mechanism, with peopl* living in the area. Other pethwaya reviewed, but not treated in such detail, were movement to the surface by plant uptake, movement to the surface by burrowing animals and severe events, such as flooding, meteor impact or glacial •'^tion. The intrusion pathway was calculated but firm recommendation^ ^^re not aad« on this pathway because of differences in the Task Group as to the propriety of considering intrusion as a valid source of exposure. This arises from feelings, on one hand, that warnings are adequate with anyone disregarding thea bringing the risk upon himself; and, on the other hand, a distrust of being able to maintain such warnings over centuries. It was the recommendation of the Group that the applicability of this pathway should be reviewed by the decislon-maksra, perhaps with the advice of individuals skilled in the legal, ethical and sociological aspects of the matter. The intrusion pathways ware oaloulatad to limit the doae rate to artifact hunters. In addition to the exposure during the digging in a search for artifacts, s«a*face contamination limits are derivad for solid objects, such as tools or glassware, and lower limits are derived for trash packaged in plaatic because of the evidence tl»t current plastics delay the degradation. This leaves the possibility that the intruder could oonslder the ba^ of waste as artifacts. Maximum limits, for individual packages of waste, ware derived for two major classes of waste; O those in which the contamination level of the individual items varies widely, with much of the wmste not oontaminated; and 2) those in which the contamination levels are reason^ly uniform. Examples of the first class are the routine trash or decommissioning waste and examples of the second class would be incinerator ash or sludges from the treatment of liquid waste. The differences in the two classes results from differences in the degree of self-dilution. For the first class, it was estimated that the average concentration in the waste was 51 of the maximum and an additional dilution of I/6th ocQura from the soil used in layering of waates and the soil between pita in the burial ground. For the second class, the average is close to the maxiauo and only tha soil dilution Is used. Because the exposure of the wastes and Intrusion ware the limiting pathways, consideration was given to the use of 'deep burial." This was not closely defined because of wide site differences, and it la recommended ".hat, i' this option is ahoser, the conditions for a particular site be defined by an analyais of erosion rates and othar factors with the goal of making the exposure of waates improbable. Limits derived in this report are given In Table I. It must be raoocnisad that the data available for predicting the doses upon which the proposed limits are based have many unoertaintles so that a corraspondii^ uncertainty occurs in the limit. We have examined the key unc«>r*taintiea in the last section of the report (pp. llO). (kte key uncertainty is the choice of the dose limit - 500 mrem/y to tha organ with the hlgheat dose rate at the end of the life-span of the maximia exposed individual. If it is 1iid«ed thAt A higher or lower doee rat* im analKieble. then the waste limits Ahftuirt hA flfitifTfi In nrftTnrtilrr

TABLE I

LZMITS DERIVED FOR TBB BURIAL OF SOUS HASTES CONTAKIIATED WITH TtANSORAIIUM ELEMENTS

239,2*0^ 2»t^ 2»2c Tvne ftf IJAAt^ 2»^ "'PU "*Ql

"^llfflf llurlil Class 1 (oCl/g)* 3 000 50 5 200 500 000 20 000 Claaa 2 (oCi/g)° 100 2 0.4 to 3D 000 900

Traah>«oadacr«dmbla packaclag {nCi/gT 15 3 3 100 3 000 1 000 Artifacts (pCl/cm*)* 300 60 60 2 000 10 000 20 000

D^o parUl Class \ (nCl/g) 5 000 800 100 * 000 1 000 000 300 000 Class 2 (oCl/g) 300 HO 5 200 50 000 10 000

^Contamination distributed with average 5f of maximum. Contamination uniform through waste. '^Not reoommanded until review Indlcatea applloabillty of the intruaion pathway. n)acradable waata packaged in non-degradable plastic. *Surfaoa oontaminatlcm-averaged over I m . LIMITS FOR THE BURIAL OF THE DBFARTMEHT OF ENERGY TRANSURANIC WASTES

by J. W. Healy and J. C. Rodders

ABSTRACT

Potential limits for tha shallow earth burial of transuranic alamants ware examined by simplified models of the individual pathways to man. Pathways examined included transport' to surface streams, transport to ground water, in­ trusion, and people living on the burial gro«aid area after the wastes have sorfacad. Limits are derived for each pathway and operational limits are suggested based upon a dose to the organ receiving the maximum dose rate of 0.5 rem/y after 70 yeara of exposure for the maximum exposed individual.

I. INTRODUCTION In the early days of the Manhattan Project, controlled shallow earth burial grounds were established at the individual sites for disposal of items which were contaminated with radioactive materials and were no longer useable. This %ias done initially for security reasons and was continued in order to isolate the wastes in a oon trolled area to avoid any potential hazard to the public that access to such landfills would entail. The burial practices have continued with improvements at many of the sites although those projects in more heavily populated areas have shipped their wastes to other plaoea for burial. In 1970, the Atomic Energy Commission (ABC) required that special consideration be given to wastes contaminated with transuranic elemeeta if the level exceeded 10 nCi per gram of waste. This level was derived by comparison 2 with the highest levels of radium In depoaits in the earth. In September 197», the Nuclear Regulatory Commission published a rulemaking,^ subsequ»rt:y withdrawn, whloh required ooameroial waatea greater than this level to be delivered to the Energy Research and Development Agency (ERDA) for placement in a repository. Essentially, these aotlona establlah an upper limit for transuranic elements on wastes that could be bu-^ied. In the early development by the ABC of the present Department of Energy (DOE) burial grounds there was a presumption that the area would be controlled by the Federal Government until the radioactive wastes had decayed to non-hazardous levels. For certain of the tranauranlo elements this would imply control for many thousands and tens of thousands of years. On September 29. 1975. Or. Richard W. Roberts, Assistant Administrator for Nuclear Energy in BROA, requaatad Or. J. L. Llverman, Aasistant Adainistrator for Environment and Safety in ERDA, to "...establish an official BRDA hSAllb UKI safety viewpoint identifying those TRU wastes that should hot be disposed of ty simple land burial and, therefore, would require long term control such as afforded by a Federal Repository." (Baphasla added.) The letter of request is reproduced as Appendix A. In response, the Los Alamos Scientific Laboratory was commissioned to perform the study with the assistance of a special Task Group composed of experts in a variety of fields. This tmak. droop consists of: S. I. Auerhach, Director, Environmental Sciences Division, Oak Ridge National Laboratory. John Corey, Savannah Rivar Laboratory. J. 0. Duguid, Environmental Sciences Division, Oak Ridge National Laboratory. (Now with Battelle - Coluabus) Robert Carrels, Department of (Seology, Northwestern University. *Wllllam Maraawn, Los Alamoa Scientific Laboratory. Herbert M. Parkar, Off Associates, Richland, Washington (Consultant to Battelle-Paciflc Northwest Laboratories). Relnlg, Savannah River. Roy Thompson, Biology Department, Battelle-Paciflc Northwest Laboratories. Bruce Owen, Dow Chemical USA. In addition, Bruce Wachholz, Environment and Safety, Department of Energy served as a main contact with the sponsors.

•Eldon Christenson from the Los Alamos Scientific Laboratory was i iual aember with Dr. Maraman until Illness required withdrawal. withdrawn, which required comaercial waatea great«r than this level to D« delivered to the Energy Research and Development Agency (ERDA) for placement m a repository. Essentially, these actions establlah an upper limit for transuranic elements on wastes that could be buried. In the early development by the AEC of the present Department of Energy (DOE) burial grounds there was a prestnption that the area would be controlled by the Federal Government until the radioactive wastes had decayed to non-hazardous levels. For certain of the transuranic elements this would imply control for many thousands and tens of thousanda of years. On Septetrt>er 29. 1975, Dr. Richard W. Roberta, Assistant Administrator for Nuclear Enarsy In ERDA, requested Dr. J. L. Llverman, Assistant Administrator for Environment and Safety in BRDA, to "...establish an official ERDA health and safety viewpoint identifying those TRU wastes that should not" be disposed of by simple land burial and, therefore, would require long term control such

•Eldon Christenson from the Los Alamos Scientific Laboratory was a iual aember with Dr. Maraman until Illness required withdrawal. considered here and the beta-gamma activity requires additional oonsideration as to shielding and leachablllty. This section is a brief discussion of the current wastes and waste handling aethods. A more detailed discussion Is given In Appendix B.

I L, PQS Sltga and Waatq QuantltlBa DOE sites where tiastes are generated and burled are listed In Table II. Of I these, the Rocky Flats Plant In Colorado, the Savannah River Pladt In South Carolina, the Mound Laboratory In Ohio, the Hanford Complex In Washington State, I and the Los Alamos Scientific Laboratory in New Mexico are the major places where TRU wastes are ganeratad. Tha others have smaller quantities incidental to their operation. Several of the other DOE facilities not mentioned In the table such as Ames Laboratory; Atomics International In Santa Susana, California; Bendix in Kansas City; Brookhaven National Laboratory, and others will have very small quantities of TRU contaminated wastes that are usually shipped to coaieroial burial grounds.

TABLB n

DOB SOLID WASTE GENBRATIVG AMD BIKtlAL SITES

fftMratlpg SlU Piapgaal

Western U.S. (r.*>nmr»\\^ Arld^ Hanford - Washington State Burled on Site Idaho National Engineering Burled on Site Laboratory - Idaho Rocky Flats - Colorado Shipped to Idaho Nevada Test Site, Nevada Burled on Site Lawrmnoa Livermore Lab. - Calif. Shipped to oommercial growtds Los Alamos Scientific Lab. - Buried on Site New Msxico

Mldyga^gm il.S. (Stgnlflsant RaUfall) Argonne National Lab. - Illinois Shipped to o rcial or Idaho EiaUrn U.Si (StgnlflQaot Rglnfail) Otik Ridge - Tenn. Burled on Site Mound Laboratory - Ohio Shipped to commercial or Idaho Savannah River Plant - Buried on Site South Carolina The total quantity of wastea containing traaauranium elementa at all levels generated at the DOB locationa is difficult to obtain because records differentiating these wastes from those oontaining other oootamlnaata have not been kept before 1970. bcv«v«r, the Panel on Land Burial of The National Academy of Solences - National Reaearch Council, Committee on Radioactive Waste Management notes that the 61 604 a-* of all waates, radioactive or suspected of being radioactive, produced at all ERDA sites In FY 197^, was about 401 of th« volume of solid waste producted annually In a ooll^a town with a population of 50 000 and a student population of 32 000. This comparison Is Intended to show that the land areas required are relatively modest and not to provide direct comparison with potential hazard.

&j WaatR Hatrieea The matrix for solid wastes is considered as the Item or material contaminated with the transuranic elements. Such items consist of everything that can be uaed in research and development, or proceasing, from wipes to glove boxes or from laboratory glassware to metal lathes. Other components of the waste arise from the prooasses thamaelvea, such as tha sludgaa resulting from tha purifioation of liquid wastaa, tha oUa uaad for lubrication and seals, or the fluorocarbona for dagraaaing. Tha latter itama are normally converted to solid waata by abaorblng them on a material auch aa vemiottlite. Items such as High Efficiency Particulate Abaorhii^ (HEPA) filters uaed la cleaning the air of the proceaalng building or the air from the process stream are important sources of waste. When a facility is decommissioned, there are large quantities of obsolete equipment and construction materials that are Included.

The Importance of eaoh of the possible matrices differs from one location to the next, depending upon the processes used at the site. Variations with time are to be expected as these processes change and decommissioning activities at a particular site occur. Wastes can originate in any area tMiere the transuranium elements ar« handled. It is general practice to consider any item that goes Into a room where these elements are used to be potentially oontaminated unless it can be shown that the probability of contacting any of the transiiranium elements is negligible. It is expected that this practice will continue in the futur- because of the difficulty and expense of measuring each Item to show that it i* not oontaminated. This results in a large quantity of ess^ntl^-.y unoontamlnated trash or equipment with levels well below any limit. Aa % result, the average concentration going to burial from the, room or fro^ decoamisslonli« of a facility, will be considerably lower than any maximum level established as a limit.

£.. Burial PracticRa At all ERDA sites the wastes are placed In pits or trenches in the ground and are covered by the material excavated from the pits. A summary of some of s the burial factors at each site is given in Table III. A review of the experience with shallow-earth burial sites, both DOE and commercial, is given in Appendix C.

Qji Radioaetlvltv Charaeteristlea of the Tranaurantua ElAaenta The transuranic elements discussed in this report are those that are of primary Interest to DOB In present and known future operatlooa. Emphasis is

TABLB III SOm BURIAL AND BURIAL SITS CHARACTBRISnCS AT IROA SITES

Distance Distance Inter­ Trench Betwaao Minimtai to Water posed C9T«E_ Tablfl. Sis« rua (m) (m) (m) (m) Savannah 6 wide - 1.2 10-20 Sand and River 6 deep clay variable length

Oak Ridge 3 wide 1.5 \ 2-5 Fractured 3-*.5 deep shale 15 long

Los Alamos 8-30 wide *.5 '.5 200-«00 Fractured 8 deep tuff 120-180 long

Idaho 2-30 wide - 1 60-300 Sand and 4 deep clay

Hanford 1.5-5 wide - 2.5 100 Sand and 4-8 deep clay variable length placed on the alpha emitting isotopea of plutonlum, ^^Pu, *^'Pu, **^Pu and 2U1 241 242 241 Am, a daughter of Pu. Cm and Qa are oonaidered only aa parents of Plutonium Isotopes while ^^ Is not Included becauae of the lack of known major plans for separation of this nuclide from Irradiated thorium. A discussion of the decay chalna for theae nuolldea Is Included in Appendix B. Table IV presents soaw of the characteristics of the Important nuclides considered here. The alpha emitting plutonlum Isotopes decay to uranium Isotopes that occur in nature. However, the half-llfes of tha daughters are long so that their concentrations are considerably lo%iar than the concentrations of the original plutonlum parents. The primary potential for exposure from daughters occurs in 2

TABLE IV"

DECAY CHARACTERISTICS

PABOT DAnGHTBR Ci Daughter Specific per laotooe Ibala^iQH iKtfifift (Years) (Ci/g) (Years)

238p^ 87.75 Alpha 17.1 23*u 2.445 xlO^ 3.6x10'* 235^ 23^Pu. 24 390 Alpha 0.0613 7.1x10^ 3.4x10"^ 236^ 2'*0pu 6 537 Alpha 0.0367 2.3415x10^ 2.8x10"*

^'"Pu 14.4 Beta 103 2'»^Am '«33 0.030

2*'A- 433 Alpha 3.«»3 23TMP 2.14x10^ 2.0x10'*

2*2c 0.45 Alpha 3 280 238pu 87.75 5.0x10"^

2'»''cm 18. n Alpha 80.9 ^^Opu 6 537 2.7x10"^

Values of constants taken from Reference 6.

At time of maxiaia ratio. Em ThA ModAl Burial Orfttinrt The actual burial grounds at DOB sites vary widely although the ourial practices are relatively the same at all sltea. Thua, the depth to the water table varies from about 300 meters at Los Alamos to several meters at Oak Ridge; the material In which burial occurs varies widely from oonsolldated tuff at Los Alamos to sandy soils with admixed clays at Hanford; and the excess of rainfall over evaporation varies from negative at Hanford and Los Alamos to high at Savannah River and Oak Ridge. As a result we have defined a model burial ground that combines many of the worst features of eaoh site for purposes of this generic study. Thus, the results of many of tha pathway analyses are expected to be conservative for many of tha sites but more realistic for others. In the derivation of the criteria to be used, we have defined two types of burial situations that will be considered In the derivation of limits - shallow earth burial and deep earth burial. The difference lies largely in the accessibility to exposure of the wastes by later intrusion or erosion. Present practice, with cover over the waste of about 2 m, is defined as shallow earth burial. Deep burial is defined aa burial at a depth auch that the wastes are not expected to be axpoaad by aroalon and tha probability of inadvertent intrusion is very low. The exact depth will depend, to acme degree, on the nature of the area and tha material in which the waatea are burled but would seem to be on the order of 10 metera or mora for moat plaoea. (Note that deeper depths, siich as could be obtained by mining or caves, would not be excluded. < The same basic model will be usad for both with the only difference being the depth of the top of the waste below the surface. The burial ground Is taken to be a sqtiara I 000 m on a side with an area of about 100 hectares. At a burial density of 3 500 m-* per acre , this would give a total capacity for the burial ground of about 860 000 a^ or about 30 000 000 cubic feet. The wastes at the bottom of the pits are assumed to lie immediately above the aquifer which Is 10 m deep with a bulk velocity In the aquifer of 30 om/day. Porosity of the aquifer will vaj-y. The pits are 4 s deep with spaces left between the pits so that, of the total volume of the burial ground, about 1/6th of the voliaie including the two meter cap. Is taken up by wastes. For sites where the water table is some distance below the burial oits especially if the intervening material has a high Ion exchange coefflci'sit ir iistrlbuted flow through soil particulates, the conservatism in the abov- aoy the absorption of transuranioa on tha aedimenta. If rainfall la Inaufficient to penetrate to the water table, even greater oonaervatlsa is present. Flow rates In aquifers lower than the 30 em/day do occur as well as rates considerably in excess of this. It may be noted that if the flow rata is considerably smaller, one possibility may be an indieatioo of low peraeability so that the development of wells to provide significant quantities of water may be more difficult. Overall, as a basis for developing generic limits applicable to present sites, tie believe the above simple model to be appropriate.

III. CRITERU FOR RECQNSNDATIONS The basic approach In this docuaent Is to use pathway analysis to eatlmate potential radiation doses to Individuals In future generations as a re&ult of postulated releases of transuranium elements from the burial ground. From these doses, estimates of limitations on quantities and/or concentrations of transuranium elements in the waste are derived. Oiteria are required for both the dose that could be permitted If the postulated scenarios develop and for the consideration to ba givmn to potential axpoauraa in tha far distant future from the longer-lived isotopes of certain of tha transuranium elements. The criteria to be used are discussed and derived in this section.

L^ Long-Tfln CQaaidtratlQoa 2'^q 240 The long half-lives of Pu and Pu result in quantities buried remaining In for thousands of years with a gradual decrease over periods of tens of thousands of years. The potential risk that these aaterials may Impose on people In future generations Is a central issue In the disposal of radioactive wastes and the same Issue will undoubtedly become of greater importance for non-radioactive wastes under the National Resources Recovery and Conservation Act. The National Environmental Policy Act of 1969 (MEPA) set forth a national goal to: "fulfill the responsibilities of each generation as trustees of the environment for succeeding generations". This phrase is sometimes quoted to Indicate that the Intent of Congress was to sake this responsibility a paramount objective. However, the Act also states that it is the policy of both government and private organizations "— to use ^H practicable aeans and measures - - - In a manner calculated to foster ina promote the general ifelfare, to oreate and maintain conditions under which un %nd nature can exist in produotive harmony, and fulfill the social, economic arva other requirements of present and future generations of Americana." (Emphasis added) It Is, then, specified that all preetleable means cooaistent with othe- conslderatlons of National Polloy shall be used to fulfill the responsibilities to future generations. It Is apparent that the Congress, in passing this Act, recognized the conflicts between present needs and desires and the responsibilities to the future, and Intended that the welfare of future generations be Included as a factor In making decisions hut that this was not to be an overriding goal. Thus, we cannot use NBPA as a basis for dacision, but can use it for general guidance. The question of risk to future generations, particularly those in the fir distant future. Is not resolvable by scientific reasoning and even logic ' s Halted In arriving at a decision because of the very large uncertainties as tc the future course of events. Instead it is a aocial question that aust be resolved by consideration of the resources that society wishes to allocate to this goal as opposed to othar national goals. Eventually tha principles derived for the handling of radioaotiva waatea may ba applied to othar non-dagradable toxic materlala. Thua, conaideration of tha Impact of criteria derived for these wastes may include Induatriea and activities far broader than the nuclear applications. The Environmental Protection Agency has recently proposed draft criteria 8 for discussion. A brief digest and discussion of these criteria as they apply to our problem follow. However, it must be remembered that these criteria are preliminary and were issued only for discussion. Criterion 1 "Radioactive material which has no designated resource or product value should be considered radioactive waste —". This criterion obviously applies to the transuranium element contaminated wastes that are the subject of this report, although we believe that additional effort is needed in process development to minimize both the quantity of transuranium elements in the waate and tha total volume of waatea. Criterion 2 "Environmental protection determinations for radioactive wastes should be based primarily on an assessment of risk to individuals and populations." The following factors should be examined in the assessment: "* the total amount of waste In a location and Its persistence —; o) "-"•- potential adverae health effeota on hiaMa individuala and populations for a reasonable range of future population sisas and distributlona and uaea of the land ; c) the projected effectiveneaa of alternative aethods of institutional, engineered and natural barrier controls ; d) the probabilities of releases of radioactive materials — through failures of natural or engineered barriers, loss of Institutional controls or Intrusion ; and e) the uncertainties In the risk assessments ." The use of risk estimates In arriving at limitations for radiation exposure is a polloy of the EPA. Such estimates are currently derived using the linear, no-threshold hypothesis from effects noted in humane, usually at relatively high doaes and doae ratea ao that conaiderabla unoartainty axiata in the result. In addition to this unoartainty a further difficulty arises in defiaing a risk that will be oonaidered as acceptable. Efforts to do this have frequently resulted in very low risks as compared to those encountered from other currently "acceptable" (or at least, accepted) practices because of the emotional nature of the responses and tha political need to gain acceptance of a proposal. While we will not use risk as a primary tool in the derivation of expoaure limits, we will uaa currently accepted mathoda tor aatlmating the riak to tha individuals involved in tba aoanario providing tha hlchaat teaa. Criterion ^ *Biak due to radioaotiva wastes should be deemed unacceptable unless it is Justified that more complete isolation is unreaaonable in view of economic, social and technical considerations; any potential risks to future generations should be no greater than that accepted by the current generation". The first part of this criterion essentially calls for a cost-benefit analysis to reduce the future exposure aa far as is reasonably practicable. For our study of an acceptable level on a generic basis, this criterion poses problems becauae such a study requires definition of a particular type of waste and site. However, we will provide a limit that is to be regarded as an upper limit with the coat-benefit analysis for further reduction to be provided with respect to the individual site. The second part of this criterion, dealing with the risk to future generations, is discussed in the body of tha EPA report only by the statement: "Beoauae of the long tera implications of many of the waste aaterials and the ethical responsibility to minimize Intergenerational risk tranafereoce, It is important that as a limiting case the risk imposed on future generations be no greater than those the producing generation is willing to accept, as expressed in its own public health protection standards and policies." This criterion seems to be an interpretation of NBPA whloh does not appear to take into account the requirement to "— fulfill the social, economic and other requirements of present and future generations of Americana." (Baphaaia added) Thus, some provision should be made to consider the other policies of the nation and the economic well-being of the preaent generation. We would believe that, under some conditions, it would not be advisable to conduct business ao as to leave a minimum-risk world to future generations regardless of coats, social disruptions or risks to present generations. In this context, there appears to be a feeling that future gaaerationa will be aimilar in their oharacterlatloa to ua. Soma apaoulatioa aa to the future of mankind and the reaulting impact of inherited riaka may be la order. We can postulate a number of possible soenarioa that will have-different apparent probabilities of occurrence to different people hut which are all possible. going into too auoh detail, wa shall consider three scenarios and address qualitatively the impact from the use of present risk standards. For the first scenario, technolocy and social behavior become more highly developed so that risks from disease, accidents and othar of tha ilia that man is heir to are dacraaaad. Thia will hmra two poasihla affacta. 1) Han will be acre risk a averaa bacauae tha risks that he is uaad to are lower. Thia maana that he will tolerata only risks at a lowar level than thoae wa now oonaider aceepUble. 2) Bowavar, ha will be better able to control thoae poaslble residual risks from the disposal of waste and, in fact, may find these residues of benefit to him in ways not now seen. On balance, we believe that the increase in ability to cope with risks of nature, or thoae preaented by wastes containing transuranlua elements, will overbalance tha increase in risk averalon. In other words, aan in this scenario, will be wall beyond ua in his ability to handle situations that the preaent generation may leave. In the aacond scenario, exactly the oppoalte occurs. That is, due to an increasing population, the depletion of resources, or war, aan reverts to a more primitive stage tAiere the diseases that are now under control increase to the point where, on a competitive basts, the risks from the radioactive waste become even smaller in comparison. In this case, again, one could Justify a higher risk because the overall impact of the radioactive risk on the total risk picture Is smaller.' In the third scenario. conditions remain tha same as they are at present for all future generatlona. In view of the rapid increase In technology and the social sciences In the past 50 to 100 yeara it appears unlikely that thia soenario will develop, but it appears to be the only one in lAiioh one oould Juatify using present resources to fully protect future generations. Criterion 4 "Controls should be applied with a goal of isolating redioactive wastes from the biosphere —. When Institutional control is the method chosen to provide environmental protection of radioactive wastes, no restrictions on customary uses of associated land areas and surface and ground waters should be required after 100 years; radioactive wastes that would require protection beyond 100 yeara should not be Isolated by institutional means, but rather by as many physical and natural barriers aa is practicable to minimize env ircnmantal Isipaet if one or more fails or is accidently or intentionally breached.* It la doubted that shallow land burial without oonslderable modification in installing barriers or going to greater depth could ever meet the goal of totally isolating the long-lived transuranium elements. Of course, if this goal is met, then all of the other criteria became redundant. We will proceed upon the assumption that this goal really means that burial shall only occur in areas which lave optimal characteristics in preventing migration. It is also noted that the 100 year time period is not necaaaarily an optimum period and that reaaons oould he given for a longwr time to permit the decay of in termed lata lived nuelidea or for a shorter time to minimize the period of control. In general the intent of thia criterion that control over many centuries should not be required for future burial grounds is a worthy one. Criteripp S "Locations for radioactive waste disposal should be chosen whenever practicable such that the action over time of natural forces — could be will projected to enhance, rather than reduce, environmental Isolation." This criterion speaks to the criteria for the burial site, which may be Influenced In DOE by the location of present facilities and the costs and potential risks of shipping the waste to a different site. Criterion 6 "Certain additional procedures and techniques should also be applied to waste disposal systems which otherwise satisfy these criteria if they provide a net Improvement In environmental and health protection; among these are: a) monitoring prior to completion of disposal to determine for timely any unanticipated effects which oould result In releases of radioactivity ; b/ procedures or techniques designed to enhance the retrievability of the waste; and c) passive methods of communicating to future people the potential hazar-ls that could result from an accidentlal or intentional disturbance of radioactive wastes." Experience in recovering lost articlea from burial sites indicate that retrievability can be accomplished, although at some expense and risk, along with a larger quantity of waste than was originally placed in the burial ground because of the aocoapanying soli. However, provisions for increased retrievability are frequently expensive and should not be necessary If proper burial grounds are used and limits are applied to tha quantltiea placed in the burial ground to limit exposure, even If leakage does occur. Methods of communicating to future people will require considerable study because of man's proven tendency to steal or badly deface any marker or monument. It should also be noted that, in the case of burial grounds, such marking will aarve to call attention to the fact that something is burled there and may, invite intrusion. On balance, however we believe that such marking would be useful if a aethod that is practical in costs, tamper-proof and potentially effective can be dev ised.

IJ T>nm> IilMlfaitilflnn Raoommandatlona for the limitation of radiation doaea have been made for eloae to 50 yeara by several organixationa: the International Coamisalon on Radiological Protection (ICRP) and the National Council

•^ a TAMJB V

VBioariNa FACTORS FOR QBQAM OR TISSOB DOSKS - ICKF-26'

Organ Walflitiog Factor

Lung 0.12 Bona Surface 0.03 Liver 0.06

*Rafareooa 10. factor. In praotioe thaaa wel(hting factors are aultiplied by the doae to the appropriate organ or tissue and suaaad. If tba sua is less than 0.5 (*••• P«r year, tbe doaaa are below tba limit. Tbia proridas an apparaot increase in organ llait siaoa the lung is now allonad 4.2 raaa per year and the bone sorfaoes ara allonad 16.7 raaa per yaar if no oUiar organ or tissue is Irradiated. Bowarar, suob organs or tlsaoas are rarely irradiated alofio so that oooaidaratloa of tb« doaa to all ortaaa «1I1 b«(lB to briag tbe values oloaer to those uaad fonaorly by tba IGKF and UMd oorrootly by other bodiaa. Ooa other obange froa past praetica in tha ICRF report IMM the uaa of a quality faotor of 20 for al^M partioloa rather than a value of 10. The wen? baa not systaaatloally avaluatad the internal eaitter position since tha Hating of MFC's aaa issued in 1959.'^ However, they did review the 12 basic criteria fbr radiation protection la t971. Uhile tbey did not provide specific llaits for organs as did the ICRF, they did provide a llait, for the critical organs («hole«body) of an iodlTldual In tha population, of 0.5 rea in any ooa year In addition to natural radlatioo moA aodioal and dental expoaure. That thay iataodad this valus to ba used for individual organs tAierever possible is indicated by a portion of their disouasica. *To have no organ or tissue exceed 0.5 raa per yaar is a raaaooable target, but it is arbitrary, of course, and aay not aluaya be aeblavable. At that llait, tba iacreaantal radUtioo received by any ladiTldual is at aoat aoaa four to five tiaas tbe natural radiation, and la leaa than twice the oxlstlng background la soaa regions. Vith an intended llait of 0.5 rea per year for aost, if not all, situations, tb« average inoreaantal dose to population groups froa radiation plants and 1? installations would probably easily stay below 0. I rea per year - - -. It should be aaphasized here thst the llait of 0.5 rea per year applies to the integration of contributions froa all sources, excluding natural radiation and aedical radiation. Obviously, the contribution froa any one radiation plant or installation should be a saall fraction of this to avoid tbe need for specific dose allocation." 12 The Federal Radiation Council ^ coined several definitions that arc currently in wide uae, particularly in tbe O.S. Tbe Radiation Protection Guide was defined as, "the radiation dose t^loh should not be exceeded without careful consideration of the reasons for doing so; ev«ry effort should be aad« to encourage the aaintenanoe of radiation doaes as far below this guide as practicable." This definition eaphasized the risk-benefit nature of an acceptable dose and was ooined to replace the tera "Naxiaua Peraisslble Dose." The Radioactivity Concentration Guide was defined as "the concentration of radioactivity in the eoviroaaent which is deterained to result in whole body or organ doses equal to the Radiation Protection Guide." For external whole body radiation they derived a value of 0.5 rem per year for individuals in the population above natural background and aadical uses of radiation. Frca this, tbey further derived a llait for the whole-body irradiation of population groups'^ as follows: "Qnder certain cooditioaa, such as widespread contaaination of the environaent, the only data available aay be related to average contaaination or exposure levels. Onder these circuastances, it is necessary to aaks assuaptions concerning the relationship between average and aaxlauB doses. Tbe Federal Radiation Council suggests the use of tbe arbitrary assuaptlon that tb» aajority of Individuals do not vary froa the average by a factor greater than three. Thus, we recoaaend tbe use of 0.17 rea for yearly whole-body exposure of average population groups. - - - It is critical that this guide be applied with reason and Judgeaent. Especially, it is noted that the use of the average figure, as a substitute for evidence concerning the dose to individuals, is peraisslble only when there is a probability of appreciable hoaogeneity concerning the distribution of the dose a population included in the average." While tbe value of 0.17 rea/year for population groups is the same as the one then in existence froa the NCRP and ICRP, it is of Interest that the FRC derivation is one of aonltorlng rather than estlaate of allowable dose. The FRC provided guides for '^'l, ^^•'^Sr and ^^Sa in Uras of intake." These were in the fora of three ranges with prescribed aonltorlng and actions for each of the ranges: \) well below the guide; 2) about at the guide; and 3) above the guide. It is also of Interest that In the derivation of the guiaes for radiua and strootlua they used values based upon a conclusion that activities could be carried out at this level rather than upon an acceptable risk. The EPA has provided several standards aiaed at particular operations or situations. Standards for envlrooaental radiation protection for nuclear power operations cover th» entire fuel cycle exclusive of tbe aining of uranlua or thorlua and waste disposal. ^ As a basis for tbe standard tbey chose to uae the total population dose coaaitaeat because "Tbe proposed expended development of tbe nuclear power induatry requirea - - the uae of a broader environaental perspective that acre spacifically considers the potential radiological iapact on hvaun populations of radioactive effluents froa this Industry, rather than just that on the aost exposed Individual". In addition, they exaained the feasibility and cost of restricting effluents and concluded that: "Thus, the standards generally represent tbe lowest radiation levels at which the Agency has deterained that the costs of control are Justified by the reduction in health risk*. Bowaver, in expressing the standards they changed to a basis of ladiTldual dose to aaabara of ths public or eaiaaico llalU becauae of the uncertaintiea in the aodals used aad tha difficulty io adaiaiatering controls based upon such aodala. The staadarda llait ths aoaual dose equivalent to the whole body to 25 areas, to the thyroid to 75 areas and to any other organ to 25 areas. In addition, the quantities of *^Er, '^^I and certain long-lived transxiranlc eleaents relea^d to the environaent per glgawatt-year of power produced by the entire fuel cycle are liaited to 50 000 curies, 5 aillicuries and 0.5 •illicuries respectively. Exceptions are aade for portions of the fuel cycle, however, in that radoe and Its daughter products and waste aanageaent activities are not included in this standard. Tbe basis for this action was a balancing of the estiaated risk against tbe benefit of the electricity produced as well as an appraisal of what they thought the Industry could do to llait radioactivity releases.

The EPA regulations for drinking water cover both aan-aade beta and photon ealtters and alpha eaitters. The beU and photon eaitters are liaited to a quantity that would deliver a dose equivalent of » area per year, or less, to the totsl body or to any organ. This was based upon the fact that present wat« supplies have less radioactive aaterials than would produce this dos

ZJ QflAluS. While we have not atteapted to provide a detailed cost analysis for -ach site in this generic analysis, we cannot eoapletely Ignore the potential for asking recoaaendatlons that are eoapletely unworkable beoause of the additional costs required. The only current alternative to burial appears to be that of placeaent of the wastes in the proposed repository. In order to ship th^ wastes and place tnea in the repository it currently appears that the following additional steps in waste handling will be required. 1) OxidaticQ of all ooobuatiblea to reaove aouroaa of fire aad gaa la tha rapoaltory; 2) Coapactiag or otberwiaa raduolag the voluae of the aetal or glass objects; 3) Fackagiag of the wastes to aeet DOT requlreaents; 4) Sbipaant to Uie rapoaltory; and 5) OnloadIng and placing the waataa ia the repoaitory. Ia addition to tha ooata of tbmm stapa, tba capital coata of the repository aad of say aacasaa(*y traataaat aad shipping equipaeat aust be laoludad. It ia poaaibla that the waataa oould ba shipped to tbe repository without treatsMCit aad a oaatral traataaat plsat at the repoaitory oould be uaad. Tbia would laoraaaa ^ippiag coata aad would require tba operatora of tbe repoaitory to traat waataa with which they have leas faailiarlty than the operators at ths geaaratlag locatico. Aa additioaal pcaaibility could be that the ooirt>ustibles are act oxidisad but ara placed directly ia tbe repository (pertaapa after ocapactioo). This would require tba abipaaat of a greater bulk of aaterial aad iapoaa aoaa (but poaaibly act vary great) uacertainty in the parfcraaaoa of the repoaitory. IS Tha Dautob laport (pp. 40 notas that tba coat of VOIOM raductica and disposal la aultabla daapar gaologlo fM^aatloa vUl cost about |60 pM* cubic foot aa coaparad to about 13 par eubio foot for tha praaaat oparatico of the burial grounda. Tbua, if it la aaauaad that 275 000 vatoia feat can be burled per acre, the altaraatlTa la aqulTalaat to a coat of up to 110 aillioa per acre. Table C-7 of tha Dautob Report'^ ladicatas that about 1.25 •illioo cubic feet of low-level waata ara gmaratad ia tha BOB par yaar plus, froa Table C-12, about 250 000 cubic feat of traaauraalo waata above 10 aCi/g. The cost for tbe traaauraaio waata placaaaat ia tha repository would be about 115 •illioo per yaar. Siaoa the low Ural waata ooataias aoaa waata ooataaiaated with traaauraniua eleaaata below 10 aCi/g, a aaxiaw coat to OOS for disposal of all wastes would ba about $90 aillico par yaar. It ahould be noted that these cost figures do act include cartaia eoaaarcial waataa that aay, in Uie future, be tranaferrad to WX baoauae thay coatala loag-livad radicnuclidaa. Thus, there sppaars to ba ao real coat rastriotioa iavolvad ia a liait as long as it is not too low. IL Criteria to be Heed The review of preaent reooaaeodatioos for dose lialtation and current regulations indicates a wide variation in the radiation doeea and corresponding risks peraitted for different situations. The propoeed EPA guidance for 17 transuranlcs in the environaent of I arad/yr to the luag and 3 arad/yr to the bone would appear, on the surface, to be relevant to our stv^y. This guidance, however, has not, as yet, been proaulgated and there is soae question as to whether it applies to waste aanageaent. Thus, the EPA coeslders only a depth in the soil of 1 oa in deriving a soil screening level aad, in the lapleeMOtation of tbe guidaace, they perait reatrictioaa to the uae of the area without consideration of the poaaibla expoaures at future tiaea. The BFA also peraits shallow burial of tba ooataainatioe raaoved duriog oleaaup at especially deslgaated locatioas on site. Froa this, it is apparent that this specific guidance is Inapplicable. Tbe pathways and scenarios postulated la this study are hypothetical in the sense that one cannot say with say certaiaty that tbsy will occur and, in general, ooaaervative assuaptions are used to estlaste the doee if they do occur. Ubile a realiatio analysis is preferable, the general level of uncertainty aa to Aiture ooodltiooa aa well aa tha uaoartaiaty ia asay of the paraaatara uaad la tbe pathway caleulatloaa aaka this cooaarTatisa prudent to assure that doaea coaaidarably higher thaa thoaa adopted in these criteria do not occur. Onder these conditions, a Halting whole body dose of 500 area/yr as applied to critical groups as reccaaeoded by the IGRF^ appears reasonable. However, tbe ICRP systea differs frca the VCRF lapllclt recoaaend at ion^ that any organ be liaited to 500 area/yr. For exaaple, calculations of the Inhalation of 1 ua AMAO particles of ^^^Pu indicate that tbe ICRP weighting factors for organ Irradiation would result In a peraisslble daily iahalatloo sows ten tiaes that required to liait the bone dose to 500 area/yr after 70 years. In view of the added coaplexity of applying tbe weighting factors to uncertain pathtMya, the uncertainty of tbe weighting factors, thaaaelvea, and tbe position of the NCR? as the national group for recoaseoding liaitations for ths conditions in the U.S.. we have chosen to utilise the llait of 500 area/yr to the aaxiaua organ after 70 years of exposure. It aay be noted thst this is essentially a dose coaaitaent calculation because the annual Inereaents of intake sua to a Halting dose rate at the end of life. Bowever, Insteed of the use of a fixed tlae ov«r which each Increoent acts, suoh aa 50 or 70 yeara, the llait expreaeed in the Banner of this report euas each increaent over the years of life left to the individual. In application of this dose rate criterion, we will consider it to apply to the individual having the estiaated aaxiaua exposure (aaxiaua exposed individual). This is doae becauae it ia poaaibla to define a reaaonable series of actions for this individual that will result in exposure. Alternative actions would be to apply the nu^ar to a "critical group* aa reccaaeoded by the FRC'^ and the ICRP^° or to foraulate an additioaal criterion besed upon population doae. Theaa actiooa were deeaad to be lapractical for lack of a olairvoyaat to predict tha aakaup of tba eritioal group or the slxe and distrlhution of the population aad the lapossibility of predictiag the actions of people that could result in exposure at tiaes fsr in ths future. It is apparent that control of the doae to the aaxiaua exposed individual will result In the average population doaa being lower than that to tbe aaxiaua exposed peraoo by soae faotor depending upoa tha pathway of exposure aad its degree of uniqueness to tba aaxiaua exposed individual. Oaa other criterica aaadad ia UM laagth of tiae over which control of the burial groimd la required. A raaaoaabla length of tiae after wbiob the survaillaaoa aad ooatrol of aocaaa caa ba ellalaated will alalaisa the burden of future axpaadlturaa by tbe cootrolliag orgaalsatico aad will assure resscoable safety ragardleaa of disruptioaa la recorda of govemaaats. Us bave arbitrarily chosaa a 200 yaar period of ooatrol for these governaent facilities, although surveillaoce caa be lowered at soae earlier tiae. The results of aost of the soenarioa are not greatly depaadeat upoa the period eboaen, the priaary difference being soae additional decay of ^'^Fu and ^*'la and additional tiae for the waste to settle. Vs coaaidar tbia period to start st the tiae thst the operations ia the burial ground stop. In suaaary, our criteria fbr these calculations will be a lialtation of the doae to the highest orgsn of s aaxiaua expoaed individual for eech of tht soenarioa and pathways oonaidared. Bowever, in deference to tbe ICRP weighting factors and the 8FA guidance for tranauranica, we will Include calculations of the lung dose so that eonvarslon to aa alternative baais is possible. ^ control period of 200 years ia assuaed following stoppage of use of the burial ground. V. PATHUAX AHALXSES Au. InUiCfl LiJiiUtlQM In order to slapllfy the presentation of the pethway analyses, quantities of the individual transuranlcs that can be taken in by inbalatioo or ingestion without exceeding tbe aaxiaua doae equivalent rate of 500 area/yeer are oaloulated in this section. Tbsy are, then, applied directly is the pathway analysis. It aay be noted that the tacit aaauaptlon is a^e thet the quantity calculated is actually taken in eech year, with no allowaooe for tiae apent elsewhere or accounting for the possibility that the individual will spend only a portioo of his lifetlae ia the aree. Aaaual average intakes are used aa the Halting oaae because tha priaary iapact ia tha loag-tera buildup la tbe organs and this will be affected only slightly by day-to-day varlatioos ia the latake.

1M Inbilatlcn Inhalation is noraally considered to be the aost laportant source of intake (possibly aside froa wounds la oooupatioaal expoaure) because of tbe relatively low absorption of aost of the actloides froa the QI Tract. Inhalation will result in a radiation dose to the luag frca the aotlaldes deposited io the pulaooary ragioa aa wall aa to other orgaaa, chiefly the booe aad liver, froa the actlaidas traaalooatad froa the luag to tha blood with dapoaitloo la other orgaaa. The ICRF ' has produced a luag aodel that deaoribea tbe deposition in the various regions of the lung aa a fuactico of tba aerodynaaic dlsaeter of the perticles. It also describes the retention and translocation to other organs as a function of tbe cheaical nature of tba inhaled aaterial. In this aodel three classes of solubility have been defined: Claaa T, in which the lung deerance tiae is of tbe order of years; Class W, la which ths clearance tiae is of the o(>der of weeks; and Class D, in which the clearance tiae is of the order of days. For plutoniua, tha usual coapouada expected are described by Class T 241 while for Aa the greater solubility of tbe •3 valence actloides lesds to the belief that it aay better be represented by Class W. Bowever, it is stressed that the asslgnaent of classes aust be ooasidered as uncertain, particularly where the actinides sre bound to soil partielea - the aost likely situation in this study. The transfer coefficients and deposition values used in this report are given in Table ?I along with the other values required for the calculation of dose. Values »iere calculated for three particle sizes, as well as for bet*" TABU fX

PARAWriRS OSBD FOR CALCOLATIOR OP IRBAUnOR 0038

1. Orgaa Taluaa MftjLgbJL

Luag 500g CUaa T 500d Claaa V 50d

Boaa 5 OOOg lOOy

Uvar 1 800g 40y

2. DapoalticB

Fartiole Sise Baaopharyagaal

0.1 ua O.oa 0.01 1 va 0.08 0.3 10 sa 0.08 0.9 3. Orgaa Traaafers Claaa T aaaa V

IF to Blood 0.01 0.1 TB to Blood 0.01 0.5 Luag tataatioa (Luag T.^) 0.6 0.6 Luag to Blood 0.05 0.15 Loag to Liaph 0.15 0.05 Lyaph to Blood 0.9 1

4. Radiological Taluaa

(kiallty Factor 10 1 ia Boaa 5

5. Alpha teargiaa*

««F« 5.5 Mav

239,240py 5.14 Mav

241^ 5.48 Hev

'Froa Refereaoe 6. Class T and Class U aaterials, to indicate the Influence of these peraaeters on the dose. The dose rates resulting froa the inhalation of I pCi/day are given in Table VII. It aay be noted that both ^ Im and ^^ Pu result in a pattern of dose such that the dose rate in the lung reaches a aaxiaua value in a tiae of 8-15 years. This results frca the radioactive decay of these two nuclides so that, for an initially oontaalnated area, the quantity of nuclide in the area decreases by a significant saount in 70 years (to 52f of the original quantity for ^ Pu and to 89t of the original quantity for Aa). The dose rates to bone and liver through a 20 year period are sbo%n in Figure 1 for the case of 0.1 ua partielea with Claaa T behavior in order to Illustrate this pattern. It 238 aay be noted that the bone doaa rate for ^ Pu also shows a decrease in the 2^q later years over that of -"Fu.

TABLE TII

DOSS RATES FROH IXHALATIOH OF 1 pCl/DAI AT TIME OF MAXIMaM DOSE OR 70 TEARS (CORRECTED FOR OBCAT OF THE NUCLIDB)

Bwa/Ttar MuQllde 0.1 wa 1 ua 10 ua

l-»ng Bone Liver t-upf Bone Liver l-»ing QQBA Liver

Class T

238pu 0.37* 0.47 0.20 0.19* 0.25 0.11 0.07* 0.14 0.06

239'2'«'pu 0.38 0.80 0.32 0.19 0.41 0.17 0.07 0.22 0.09

^-'A- 0.39'' 0.74 0.30 0.20*^ 0.40 0.16 0.07^' 0.22 0.09

Class W

258pu 0.04 0.75 0.30 0.02 0.64 0.26 0.01 0.79 0.32

^^^.Z^^Op^ 0.04 1.2 0.50 0.02 1.0 0.42 0.01 1.3 0.52

^••'Aa 0.04 1.3 0.50 0.02 1.1 0.42 0.01 1.3 0-52

*At 9 yesrs after Inhalation starts. At 12 years after inhalation starts. •

« 0.6-

s

Fig. 1: Aaaual doaaa to boaa and llrar froa ooatiaual lahalatioo of 1 pCi/day of 0.1 va partiola* of Claas I auolidaa.

Tbm total doaaa ia a 70 yaar parlod ara givaa la Table Till. Tbe total doaa froa ^"^^ ia lowest whUa ^^Fu aad ^^'i ara about ths 241, 241 Fa is act laoludad la thaaa doaa tables. Vhlla 2»1,F u will decay to raaoltiag la doaa to tha body if iahalod. 241 Fa has a balf-lifa of ooly 14.4 yaara ao that it will aaaaatially disappear before ooatrol is lost oo ths burial ground. For this raasoa, ' 'Po la aot oooaidarad saporataly but ia Halted by tha qoaatity of ^**Aa that will grow ia at Utar tlaaa. Tha paraaatara used for thaaa caleulatloaa ara thoaa for adulU even thov^i espoavra oaa oeeur ia obildbood. Thara ara aararal balaaoiog faaturas bare

29 TABLB Tin

TOTAL DOSKS TO 70 TBARS FIQH HHALATIOH OF I pCi/DAT (CORRBCTBD FOR DBCAI OF IBS BOCLIOS)

illBL HJLaM LIB ULRB Wuollde ymg BoBt, Liver ^nQg Bfwie Livar ygUI BfiDB Liver CliiR T 23«Fu 21 20 9.2 10 11 5.0 3.8 6.0 2.8 239.240p^ 26 27 12 13 15 6.7 4.6 8.1 3.7 24 Ij^ 26 rr 12 13 15 6.6 4.7 8.2 3.7

ClAltJl

23«Fu 2.2 34 16 1.1 29 «3 0.4 37 17 239,240p^ 2.6 46 21 1.3 39 18 0.5 49 22

2*'Aa 2.7 45 20 1.3 39 18 0.5 48 22

which have aot boaa waU axplorad. Tha Inhalation raU of ohildraa ia lower tbaa that of adulta but, at tba aaaa tlaa, tha walgfata of tha orgaaa are lower ao that a aaallar quaatlty will oaaaa a hl^iar doaa. Ia additioa, ohildraa are kaowB to ba aora aoacaptibla to aoaa foma of radiatioa to givaa orgaaa. In view of tha aaay other uaoartaiatiaa la this study, wa will coosider tbe doees calculated for adulta to ba appropriate. For later applloatioo la tha pathway atudiea, theae doaa ratea oaa be coavertad to allowable oooeaatratlooa ualag ataadard valuea of iataka of air aad a llaitiag doaa raU of 0.5 raas/yaar. Itt thia atudy ws used a total iataka of air of 20 a^/day^*. Tha plutoaliai ocapounda ware eooaidared to be Claaa T t«iile ^"^^Aa, a trivaleat aotiaide, waa coaaiderad to ba aaaa V. Ia all eaaaa, tbe boaa is ths llaitiag orgaa boeauaa it builda to tha blghaat doae raU ia the aaauaad 70 yaara lifetlae of ana. Oa thaaa aaaoaptioaa, tha air ooocaatratiooa ff aaiataiaed over tha lifetlae of aaa to raault la a doae rataa to boaa of 500 par yaar at aay tiae la bis life ara givaa In Table IX. A sUllsr ooacaatratioo llait is laoludad for luag baoauae preaeat iaforaatioa iodieataa I that luag aay have a higher riak per unit of doaa aad tbe EFA preliaiaary 30 I TABLB IX

AIR COMCENTRATIORS TO RSSOLT IB 500 KRBM/T ORGAN DOSE TO IMDITIOOAL BXP0S8D TO THS AIR FOR 70 TEARS (PLOTOHIOM CLASS T - AHBRICIUM CLASS U)

BCi/a3 Pirtlolt aiit t VB 10 )'•

l.unf Bene t-MT^P BSQ& LUBB pone 238pu 0.07 0.05 0.13 0.1 0.4 0.2 239p„ 0.07 0.03 0.13 0.06 0.4 0.1

2^'Aa 0.6 0.02 1.3 0.02 2.5 0.02

guidance for tranauranlos in sell Includes both bone and lung dose rate llBlUtloas. ''^ 241 The diaeontinulty in values between the plutoniua isotopes and Aa is due to ths uaa of differeat ICRP Task &^oap aolubility claaaaa. The uae of Class W for laariaiua aaphaaiaaa strongly tha boaa doaa at tha axpaaae of the lung doee. Thia raaulta froa tha high abaorptloa froa tha traobaobronahial, aaaophyraageal aad pulaooary ragioa fbr the (3.aaa V aaterial. If altuatlona ara found tMaere the ^*^tm b^MTlcr ia cloaar to Claaa T, the lung doae froa tbe concentrations given la thia ta^le will be taidereatiaated by about a factor of 10 while the bone doae will be overeatiaatad. Bowever, since tbe booe is tbe eritioal orgsn 241 in all classes, tbe use of Claaa U for ' Aa will be oonaervatlve in our eatlaataa.

21 TngiRtlop Wille iagaation is not noraally considered to be a controlling route for transuranica beoause of tha relatively low tranafer frca soils to plants to aeat to aaa or frca soils to plsats to asa, ths large quaatitiea of foodstuffs lagested caa, if eontaainatad. add to tha doae to tbe bone aad liver received froa lahalatioo of transuraniua eleaenta. The question of tbe ^sorption of ths tranauranica froa the 01 Tract to tb^ blood and then to other orgaaa baa been rsiaed lately beceuae of tbe high uptak* valuea used by the EPA in their proposed gnidanee on trvnaorenics in the environaent and the contention that plutoniua will be oxidised to the -t^ state In the chlorination of water with resultant high uptake froa the GI Trect.^^ As a result, a review of tbe data available en uptake froa the GI Tract was done and is given in Appendix D. In suaaary. It was found thst recent studies by 24 Sullivan showed that the previous dsta were faulty aad tbe newer data indicated little, if any, increased uptske for plutoniua in the •»4> state. The review in Appendix D indicated that the previous ICRP value of 3x10 for the CI absorption was reasonably good in light of present data, although values were derived of 5x10 for the transfer to bone and 1x10 to liver for plutoniua and —4 S 241 1x10 to bone and 5x10 ^ to liver for Aa. Following the preparation of Appendix D it was found that tbe ICRP "^ had decided to uae valuea for the GI -4 -5 absorption during occupational exposure of 10 for "soluble" plutoniua and 10 for "insoluble" plutoniua. For aaerlciua, the value used by the ICRP was 5x10 The distribution of 45% to bone and 45f to liver was retained. Since these values are in reasonable agreeaent with thoaa derived in Appendix 0, the ICRP nuabers for insoli^le plutonlva and aaerlciua were accepted for use in this study. Anothsr ^MStlon that arises is whether the GI uptake at very low plutoniua intakea is greater thaa thoaa at higher iatakaa uaed la aaay of tba experlaents 26 to deteralne uptake. In early studies oo uptake of plutoniua. Eats at al. and Weeks et sl.^ sdainistered chronic doses of ^Pu aad ^ Pu to rata over a nine oonth period. The total quantity of plutoniua ranged froa 0.0016 ug to 140 ug with no Indlcatlco of an increase in uptake with lower quaatitles sdainistered. Thus, it appears reasonable to believe that the effect of quantity taken into the body Is not of great laportanoe if it exists at all. Tbe possibility of enbaneed uptake froa transuraniua nuclides incorporated in foodstuffs because of their changed cheaical state and possible binding with protein or other eoaponents of Uie food Is now under investigation. It is a difficult question to study beosuse of tbe low uptake of plutoniua in foodstuffs and the low uptake froa tbe QI Tract resulting In difficulties in obtaining foodstuffs with sufficient activity to allow aaasurable quantities of the 28 transuraniua nuclide to be absorbed. Heely srbitrsrlly assuaed that incorporated plutoniua would be absorbed froa the GI Tract ten tiaea higher than unincorporated plutoniua. However, aoae data are now becoalng available froa the experlaents of Sullivan^^'^^'-'. These data are discussed in Appendix t) %»lth a suaaary of the ratios between the Ineorporated plutoniua and the controls

3.? given in Table D-XXXT of this Appendix. The reeults are scattered but th« only real indication of an Increased uptake occurs with tbe feeding of a 2 day old rat that had been adalnlstered plutoniua Intraperltooeally or the feeding of the ileum of a young rat that had previously been fed plutoniua. In view of the indication that the possible effeot is uncertsin, is of a relatively low aagnitude and the probability that a sizable portion of tbe plutoniua on foods (particularly plant foods thst are not protected by a shell or peel) is oo the surface and is not Ineorporated, we will not laereaae the uptake for the tranauranlua eleaents in foods. The quantity of a transuranlc eleaent in the bone or liver following constant adainistratieo of 1 pCi/day is:

q, Q,^^ u I ,A^t /I^-^BV (1)

where q « The quontity In the booe or liver (pCi); 0.45 s Fraotica of that entering tbe blood that goes to bona or liver; u m Uptake froa the GI Tract to the blood; I s Intake « 1 pCi/day; x. « Biological eliaiaation coostant in tbe liver or bene (days ); X- X Radioactive ellalnation constant of tbe nuclide (days ').

The dose in bone and liver was ealculsted using conventional equations with the radiological factors froa Table VI. Once again, the bone was Halting in teres of the 0.5 rea/year Halt chosen and doses were evsluated for this organ. The doses Increaaed continually thro\«bout life so thst tbe Halting dose is reached at the end of 70 years. These dose rates froa an intake of one pCi/day are given in Table X. TABU X

DOSB RATBS TO BOBB AFTER 70 TBARS OF CQRTUHSD IBQ8STI0B or 1 pa/BAT

lUSUdB (raao/y)

5.4x10"*

239,240p„ 8.7x10"*

241^, 4.2x10"^

Thaaa aay be coaverted to allowable iataka par day aot to axoaad 0.5 reas/y to ths boas by dividing ths calculated doaa rate into 0.5.' Thaaa results are given ia Table XI.

^. Perlved Lilt for Soils The potaatial for oootaalnatioa of aolla ia aa laportaat iateraadiate step la several of ths pathways froa tha burial aita to aaa. Va have, tbarafora, ehoaaa to ooaaldw this step ia OOSM detail ao that It eon be ineorporated late tbe analysis without repeatiag tha detail at aeoh poiat. Thaa, this derivation corraepoada to the air aad water derived llaltatloaa of the previoua aactioas, although tha aodala for oaloulatioa of tha dose free aoils ara aot as well developed ao that tha aatiaatas of dose raaultiag froa tha aoil to aaa are coaaidarably aora uutertaia. Tha two aaia aathods of aoveaeat of traasuraaiua eleaeats froa ths soil to ans ara lahalatioo aad iagaation. Abaorption through iataot akia appaara to be low aad doaa aot cootrlbuta algaifioaatly to Uw iataka, area though tbe ooataalaatica caa raaala oa tha akin for a loager period of tiae la the 32 eavironaeatal situatica aa coaparad to oooupatioaal expoaure. Houada, vhile a sigaifioaat acurca of axpoaora la oooupational aituatlons, do not poae a aigaifioaat problea la the envirooaeatal oaee becauae of the low oenoeatratiooa of tbe traaauraaloa elaaeat that ara allowed for other reasons. Thus, ths quantity of plutoniua that oaa eater a woond with tha aoil la aaall. Be will, therefore, coofiae o«n' attmitioe to the pathwaya of iahalatioa aad iagaation.

3i* TABU XI

ALLOHABU DAILX OR TIIRLX XBQISTIOB OP TBABSOiABIlM BOCLIOBS TO LINXT DQSl UTB AFTS 70 TBARS TO 0.5 tWOmUi

TntJlfR«Bfi1 fiBilX Teerte .23«p« 930 340 000

239.2'Wpu 570 210 000

2*'Aa 120 44 000

B« Tnhilitilfln Intake by iahalatioa cut occur through raeuspeaaioa of the aateriala oa tbe grouad to prodooe aa aeroeol. A diaoussion of ths reeuspension process aad aethoda of aodeliag it is givaa in Appaadlx B. Briefly, there ara three aathods for aodeliag; the resospensloa factor, tha resospsasion rate and aaaa leadiog. The resnspSBslon faotor Is egpressed as ttis ratio of the sir eenaantration at a refereaoe height to the qoantity of the ooataaisttt par «mlt area on ths soil. A asjorlty of psst aaaa ur mints hsre been expressed In thU onit but it ia difflottlt to extrapoUte thaee aaesuraaants to othsr areas teessaa of tha lack of detailed infor^tion ooneemlng the oharaotwdstlos of tha oontaalnated area and. tha aeteorologloal coaditions at the tiae of tha naasmasant. Tbe rasuspeasion rata ia expreaeed aa the fraotioa of ths ooataolaant raaored per unit tiae. Studies of tha eroalon of agrlealtarsl soils^ aad tha dust flux froa solls^^*^ have ladloated that tha rasuspansion raU la depeodeat upon a large nuaber of faetors ladludlas tba oharsoter of the soU, tha ralationabip between the oontaalaant partielea and the aoil partielea, tha wind apeed, aurfaoa roughness, the vegetativa coear of ths area, and othara. It doaa, therefore, tend to be aiU apeolfic. Bhlle pregreas ia naaaurlng raaospenaioe ratea (or dust fluxea) baa beea rapid la tha past few years, the relatiooahipe between the varUblea noted above and the reeuspension sre still tenooaa ao tbat it U difficult to asaign resuspensico rates to a given aree. Tha aass loading ap^'oaeh relates tha oooceatratlon of the oontaalaant on the dost ia the air u the ooaoeatratloa of the eoataaiaaat ia the soil.' *' Thus, If the 25 oonceotratioo in tha aoil aad the quaatity of dust ia tba air are taaowa, the conoentratioa of the oontaainant ia tha air eea be derived. The exaainatlon of theae aodeliag teobaiquae la Appendix R leeda to tha conoluaioo tbat tbe aaaa loading aetbod ia appropriate for a generlo atudy although ths rasuspeaaioa rate aethod aay be acre sppr^iata for a atudy of a apeoifie aita. Be will, therefore, uaa tba aaae loediag aodel, reoogaisiag that tha aetual auaerioal appllcatloo ia not, and can act be, appropriate for all aeotioaa of tbe country. One problea witb this, aa with aay other aodeliag teofaaique ia predicting I the soil frsetica that ia of iaportaace ia raauspansioa aad obtaining the conoentratioa of the oontaalaant ia tbia fraction. Thna, depending upoa the source of ths oontaalnatioa, tha oootealnsnt aay be in higbeet ooaeenUatioa ia a particular else raoga of tha partielea la tha aoU. If thia is ia tbe sise raage fouad aa duet la the air, thaa it baa beea poatulated that tba air cooceatratica will be higher thaa that predicted by asa'of the total aoil ooneeatratioa. Jofaaaca at al." bave aaaaured tha ooaoeatratloa of plutoniua in tha aoil fraotioa of leaa thaa 5 va, after breaklBg tba aggregatea, aad bave found tbat the ooooentration waa oooaiderably blgber thaa ia tha total soil saaple. This approach igaorea tha fact that aufaaloroaatar partielea axiat ia oaly vary aaall fraetlons In the netaal aoil because they aggregate with OMh other and with larger portlelee. ChepU^ has stated thst partlolss lass thsa 5 va do aot aatlst aa auoh ia ordlaary aolla aad baa dsaanatrated the large iacreasa la aaaller perticlea oaused by diaaggragatioa of tha aoil. ^ QilletU at al.^ acted that less thaa O.IS of tha aass of a aoil ooataiaiag 13.7t clay (< 1 ua ia also) was ia particle sixes betwe«i 0.3 aad 1 va agaia iadicatiag the laportaaoe of aggregatica ia tha real world. The IFA baa propoeed aa eariobaeat factor tbat uaee ths coaceotratico la else raagea ia the aoil aad tbe aaaa ia Uia a^ else raagea la tha air to deeoribe ths effect of changing ooaoeatratlooa ia particle alas fraotiona. In exaalnlng oontaalnated aoils froa several araaa, tha aaxiaua valua of thia eoriobaent faotor was found to be 1.5. Taaura baa propoeed a "aoil plutoniua index,* based upon partielea leaa than 100 ua, tbat aooounta for tha fraotioa of tha activity ia a given aaaa fraotioa, the lui« depoaltioa faotor for eech sise aad tha fraotioa of tba total aetivlty in the reauapeadible fraotioa. These approaobaa are baaed upon the assoaptlMi that tha duet in tha air at a givaa poiat is representstive of ths soils at that poiat. Ia fact, Gilletu^ has shown thst the dust flux arises froa the "aaadblaatiag" of the perticles in 36 r ths soil oauaing aggregatea to shsd onltipls partlelss. Qsee ia ths air ths partielae will diaperee downwiad with the distanee a fMMtion of the wind velooity, ttti^ulenoe, and the pertiole aiaa. The finer portlelee will travel for very loag diatanoaa. Tbua, tha particle aiaa dietribatioe ia the ataoaphere is s function of ths source of ths dust, ths distanee (or distanoea) of ita origin upwiad aad tha depoeitloa duriag travel to tha poiat of iatereet. In partioular, the aaaller particle aiaa diatribation will be diatorted by tbe "aortiog" of tha portiolaa by differential depoaltion ao tbat one espeote tbe aaaller partielea aocuaolated froa noocontaainated araaa upwiad to play a aajor role la tha freqnaaoy dlatributlon of oontaalnatioa oo varieua particle eisea. In other worda, aoat oontaalnated areas ars of Uaite4 sisa ao that all of the duet la tha air doee aot originate la the eontasinated area. This effeot will be aoot pronouaoed, whan wind reeuspension is involved, la the SMller pertiole aixea of intereet in inhalation. It ^peare probable, although detailed atudiea have not been done, that aeoh an effeot oould be of greater l^ortanoa for aeobenical diatarbanoae beoause of the potentially higher aass loading. 42 Aaspeugb at •!, '' have coaparad ealoulations o€ air oeneentratiena, ualag a •aaa loediag of 100 vg/^t vlth aaasurad ooaooatrations trcm srees eontsainetad with pltttooloB sad for aataral aueUdes. (TWbla B-If, Appawfii B). la gaaeral, tha Hraaaant oaa good with the exeeptioa of eas siiasi isinr. thst sea be explained by tbe dlatributlon of the eoataalnsnt sronad the point of aeaauraaant. Tbe aeasorad vslnas ware ssbient air and did not Inelude any ooatrlbatica froa a looal doat elond, cauaed by aotiona la tha aoil, la the vicialty of aa individual. Ia view of the potential influence of duat flroa aneontsainated araaa, particularly in tba aaaller particle aixea, aad tha feet tbat tha propoeed corrections have not been deaenstrated to be approprlata, we will net aaka oorreotloa for distributlco of oooteaiastion on partlele alas fraotiona in the eoll. Thia ia further Juatified by tha aaall aHBUnda of ths corractiooa propoeed. Tbeee ara on ths order of 1.5 to 2; faotora that are aaall coapered to other potantlal unoertaintiee. The eotual aass loading to use ia osloalatioaa requires soas eonsideratioo. Tha 100 vg/n^ value need by Anspeugh et al.*^, U a oooaervstiva vslos aa Judged by the iaforaatioa avail^le flroa the Bational Air aurveillanee Betwork. Bowever, tbia network aeasurea only aabient air, whieh aay alao ooataln particulates froa industrial aetivlty, and doaa aot iaolude aay allowaaee for 37 tba higher oonoeatratloas aeer aa iadlvltfnsl eausing s aaehanieal diaturbaaoa of a2 the aoil. Tbe agreaaeat fouad by Aaspeugb et al. betweeo the calculated conceatratioo, ualag 100 vg/n^, aad tha aeesufad alitsnr air raiaee a queetioo as to tbs applicability of thia valus ia deeoribiag total iahalatioa froa all oauaae. A further ooaplloatioa arieae free tha fact tbat people apend a sigaifioaat pert of their tiae iadoore. Banaoo et si. ^ eoaoloded that indoor ataoapherio particulate coneeotratiooa appear to be generally lower then outdoor coaoeatratloaa, eapecially at high outdoor oeneentratiena, and the partielea Indoore contain aora organic aaterial than thoaa outdoore. Tha latter finding would appear to indicate that a aignifleant fraotioa of the indoor duet aay originata froa aoureea other than tha eoll. In using tbeee obssrvatioas to derive a soil llait, wa will oonelder the aaaa loediag of 100 vg/a^ to be appropriate for aabient outdoor air, witb 50f of this valua, or 50 wg/a^ for tha coooentratioo of dust indoors derived froa the outdoor eoll. Be will ccnaiter our aaxians expoeed individual to work outdoora witb the average conoentratioa of 400 ug/a^ throughout a workiag year coaaisting of 50 weeks, 5 daya per weA aad 8 boura per day. Beta that thia U aa average value iaoladlag perloda of auoh higher eonoeatration aa wall aa lower ooaeeatratlona. Ha than ssoaaa that this mdlvidaal spaato tO hours per day indoors uaA tha raastnilar of tba tlaa outdoora. In order to aseotat for the bl^MT intake ot air daring work, we assoss that ha inhales 10 a' of air dwing tha eight boura of work and 10 ar of air during tbe raaaiadar of the tlaa. Frca Uteae aaauaptiooa, tha average ooaoeatratloa throughout the Tvil yeer ia 200 ug/s^. Wa have previously csloulated tha ooncentratloa to llait tha orgaa doae rata to 500 araa/y at aay tlaa la a lifetlae of 70 yeara (Table IX). ThU waa doae for three particle alsea froa 0.1 aa to 10 an« aad tha queetioe of the approprUte also to use for oaleuUtions srisss. Soae guidsnoe U available froa aaaaureaeata aade ia ooatealaated areea. Thna, TOlMwk et al. eatlaated tbat about 25t of ths plutoaius ia ths air at Rooky Flsta aaa respirable (i.e. would be depoaited io tha pulaooary ragioa) while SMsMd. ' neeaurad the reapirable fraotioa at a height of 2 a aa 201. Siaoa tha ICRF luag aotel prediota a depoaltioa of 25f ia tbe pulaonary region fbr a 1 va partlele, thia sise would appear to be appropriate f«* tbeee oooditiona. Inapeugh and Fhelpa^ aeasured the sise distribution of alrboms psrtielee st a eooteaiaated area in

38 the Revada Teat SiU aad found valuae of 3 aa AMU) for the plutooi« and 1.6 ua for the associated aoil. Froa theae atadUa of real aituatioaa, it appeere that a partUle aiaa of i ua will be reaaonable to uaa la predlotioaa. Aaeuaiag aa iahalatioa rate of 20 a^/day, the total duat iahalad per day will be 4 000 vg. Froa ths lahslstloo linita deeigaed to Halt the does ta 500 area/year (TiAU IX), tbs peraiaaible aoil ooaoeatratloa oaa ba obtaiaed by the ratio of the llaitiag ooneeatratioo to tba eatlaated soil aaae loediag. Tbeee valuee ara givaa la Table XII aloog with tbe eatlaated aariaiai doae reta to ttm lung.

The ingestion of tbe transuraaiua eleaenta la eoUs eea oeeur by several pathways, tha aost laportant of whioh appeere ta be food. JBeely' has reviewed the quaatioo of oesual Ingeatlon of eoll end pica in tiilldran (the eating of noo-food substaacae, la thU esse eoll) using dsta aeeaaalated froa atudiea wita lead and oonoludee that it oould be a potential problea for a few yeera but that control of ths soils for food produotioa would aialaiss thU problea.

TABLE XZI

SOIL LIMITS BASED OFOH BESOSFEBSIQB VITB A NAZIMOM DOSS RATB TO BORE OF 500 HRBtS/TI

lUSiijlg JAmit. DQli liBtt (pCi/g) (srea/y) 23«pu* 500 380

239p»« 300 230 24l^b 100 8

*ICRF asss T

'^ICRF Class V Treaaoreniua eleaeata can be treMsfarred to tba faedstsffa by the uptake froa the aoil or by cootsaination of the sorfeoe froa direet treoafer ta tbe eurface froa the aurroundlng aoil. Soae af tba tranaaraaiua eleaeet froa tbe latter eouroe will be raaoved by waahlng, peeling or ahalliag of the pleats before eatiag. Studiaa of the pleat uptake of treasursalos have iadieeted tbat there U a narked degree of dieorlaination egainat tha aoveaeat of tha traasoranloa into planta. Bowever, tbia dlsorialaatioo oaa be redaoed drastloslly by tba Incorporation of agenta, auoh aa ehelating agenta, Uto tba aoil, although Ballou et al.*^ bave ahown tbat tba obeUta U atable end tba additional plutoniai taken up by tba plant U not well retained In tba body span iageetion of tha plaat. There U a verUtioa U tbe uptehae aaasurad aita different plaata aad differeat eoUe oo that there U soae dlfflealty la aaaeaaiag a proper uptake faetar for oaloulatiooa. Thia U ooivoaBded by tha fbot tbat neaauraaanta are aot evailable on all food typee. S^ails^ eetee tbat aaaaured plutaniia coooentratioo ratloa (tha ratio between tbs oonoentratien in ths plsnt and ths ooooentration in tba aoil) beve varied froa 10'*^ ta 10"^ while saericiuB ratloa varied froa 10" ta 10 . The pertiole aisa and ooapoeition of the trananrsnloa eleaenta were eetlnsted to seooaat for a faotor of 10^ in tbeee ratloa idille tbe plsat part aad plaat speeies e«i eooooat fbr saotbsr faetor of 10^. Soil faotore, auoh as 9IL and orssnle astter, eea seeoqat for a faetor of 100, and obelatlon for at least a fhetor of KM. Another aouroe of varUtion U tbe difference in experiaental oonditiona, leading ta several ordara of aagnitude difference ia the reeult. The above valuae are for root uptake becauae tbe plaata ware growa in eootrolled oooditiona where foliage cootaainatico waa oegllgibU. In tbe field, foliar oontaalnatioa froa reeuepended aatariala depoaitiag oe the plaat U of Uportaaoe. Cataldo aad Taugtaaa*^ aota that eerly work on worldwide fallout and acre recent work 00 planta grown 00 oontaalnated aolla indieeta tbat folUr reteatioa aad abaorptico aay ta aa laportaat, and In aoaa oasae aora laportaat, aa root uptake. They alao nota tbat the leeching or reaoval of tha ooatealnent U a function of tha partioU else of tbs oontaainant. Thaa, roperta of rapid reaoval froa vegetatioa duriag fallout atodUa ware uadenbtedly dus ta ths large sixes of partiolee eacouatared. Ia acre recent work, the plotoBloi was ouch aore difficult ta dislodge by rain or weak acid leeching. ThU, of eourae, raises questioaa es to the fraotica rsaoved by waahiog.

-0 Data are available on the fallout plaftoaiua oeateat of Baw Tork fooda.*' Ooe eaaact olaU that tbe plutoalua arlsM ooopletaly fros tta aoils or resuspsoded eoataaiaaat oa tbe surface of the foods beoauss plutooius still exista io tbe staoaphere and a part of the food oeateat aay well ta due to direct depoaltioa on tha plaata. The uss of ooneentratioo ratloa derived free tbeee data U atcraotlve, however, beoauss thay include a wide variety of foodstaffs, iacludiag aeat aad allk, aad aay direet depositloa froe eurreot fallout will reeult U a conservative eetlasta of ths eonoeatration ratU. In the derivatUa of a ooooeatratUa ratio one aust slso have a valus for tba plutoniua in tha eoll at tha place where the food originated. Tbe depoaltion of plutoalua ovw tbe coootry U aooanifora wita values ranglag froa 0.7 aClAoB^ at Loa Ai«elee ta 2.5 aCi/ks^ U S. Dakota.^ Baw lerk baa a high 2 value of 2.4 aCi/ka . Since the food eeten U Bow Tork oeaes froa a large part of tha country, it U not deer exaotly abat valua ahould ta used. In average of tha 19 locationa aoroaa tba country reported U reference 50 ia 2 aCi/ka . In view of tbe wldespreed eouroe of the foods U Bsw Tork, thU value was oboseo. Ia order to ohtaU a aoil ooaeeatretUa eo tbat oenoentratioe ratloa could ta fialffwlated, it was sssoaed thst thU plotaelw U dlstrlbated ttareogh a 20-ca depta of aoil by eultlvatlaa sad tba eoaoantretlee ratloa fbr the various foodstttffb were oaloulated. The atasored plutonlna oeaosntrations aloog wita the eetlaated ooooMitratlon ratloa end tbe per oeplta aaraal Utafcs of ttat focdatuff ara given U Table ZXH. The uptake .of aawUiua froa tha aoil U leas wall known thu ttat of plutoniua. In a Worktitop on Envlrooaental Reeeeroh for transursniua eleaenta,^ held U Seattle Baahington U I9T5, a plant uptake penel, after review of tta theo availi^le data on atudles of uptake U planta grown U pota, eoneluded ttat aaerlciua U taken up by planta tOO-IOOO tlaee aore readily than U plutoniua. 4T Bowever, Shults ' noted thet a prevUua experlaent wita berley and soil froa tta Nevsda Teat Sita indlMted a ratU of only 8 tatween tha intake of aaerlciua and plutaalua. ScbreokhlM aad Cllae^ grew obeetgreae, peea, berley end alfalfa ia aaall outaoor lyalaetara and noted ttat the uptake of beta oMrUius and curlun waa 10«20 tUee that of plutonim. Bennett'^ has bean etadylag tta ^*^Mi and ^^^Fu content of the Bow Tork City diet. BhUe thia work ia Uooapleta, prelUinary indieationa ara ttat ttera U little or no prefereetial uptake of UM laeriolua OVM* the plutoniua originating froa fallout. TABLE XnX

PLOTORnm IB RSH TORK FOODS - 1972

Flutoniua rood itRB* Faotor Plntoalf (10"'^ Ci/kg) (kg/yr) do"'* Cl/yr) Plant-Derived Bakery Froducta 0.0085 1.3X10"^ 44 0.37 Whole OraU Froducta 0.0060 9.1x10"* 11 0.066 Freeh Fruit 0.0051 7.7X10"* 59 0.30 Dry Boons 0.00%9 7.4X10"* 3 0.015 Freeh Tegetablee 0.0043 6.5x10"* 48 0.21 Root fegetablee 0.0035 5.3x10"* 10 0.035 Flour 0.0028 4.2x10"* 34 0.095 Rice 0.0015 2.3x10"* 3 0.004 Potatoea 0.0013 2.0x10"* 38 0.048 Hacaroni 0.0012 1.8x10"* 3 0.004 Caaaed fegetablee 0.0009 1.4x10"* 22 0.019 FruU Joioe <0.0003 <5x10"' 26 <0.007 Caaaed Fmlt <0.0002 KSxIO"* -li_ Total Flant-Derlved Diet 0.003T^ 5.6x10"* 3« 1.17 - 1.18 Aaiaal.4)erived Poultry 0.0033 5x10~* 20 0.066 Meat 0.0026 3.9x10"* 79 0.20 Bgga 0.0012 1.8x10"* 15 0.019 MUk <0.0003 <5x10"* 2Q0 0.064 Total Aniaal.4>erlved Diet 0.0010** 1.5x10"* 314 0.29 - 0.35 Total Diet 1.5

Vood cetegoriee end quantitlM ara baeed oa Departaeat of Agriculture food purchase surveys. Nsluee are calcoUtad froa total per capita aimual Utato of food aad of plutoniua.

U2 TlMaa brlaf ai—aiUa iadioata tlw nida trarlabUltf la UM daU praaaatly •Yallabla. Partiapa tha datallad aaalysla of tlw dlat balat parforMd at tba SDvlrooMntal Maasoraaaata Laboratory niU, alMd Avtiwr Il

X(Cooo. Ratio X Sou Coae. z lataka) « pCl/day

or (2)

Sou COQO. a (Cono. ratio x dally lataka).

Tha approprUta fooda will dlffar dapaadli^ upoa Ow fooda tbat ara ooaaldarad to ba growa by tba aaxlaoa aarpoaad ladlTldaal. At tba praaaat tlaa, tha bulk of tha fooda aatao by aoat paopla ara groaa alaairtwra. Tbara la « aisaabia tMwbar of paopla, howavar, ubo aalataln boaa gardaaa for vagatablaa and • auob aaaUar auatoar who grow tha bulk of thair oan fOatt laoladli^ aaat. Soil llaita to provlda a Ualtlag doaa rata of 500 araa/y to tha boaa at aay tlaa in a 70 yaar llfatlaa for aararal aaawaad pattaraa of foad growtag la an araa ara flTan in Tabla XI. Tha lahalatloa llalt froa Tbbla XTT la laoludad for ooaparlaoo. Aa oaa ba aaao firoa Tabla ZIT, lagaatloa ooa ba a algnlftoant addition to tba doaa for plutonlua If a aajor portloo of tba food la groaa oa tba oootaalaatad araa. POr ^*W tha lagaatloa doaiaataa tha doaa uadar tba aaau^tloea uaad la tbaaa oaloulatloaa. Tba total doaa to wy ladlvldual wUl ba ooatrlbatad by botb patbaaya ao tbat a wal«htad i laaitloa of tha lahalatloa aad lataatlaa llaiU ara naadad. la Tlaw of tha anoartaia praotloaa to ba oarrlad oa la tha ftttara, wa bava eonaldarad tba lagaatloa llalt baaad upon tha total dlat to ba approprlata fOr our taypotbatloal aaxiauai axpoaad iodlTldttal. Tbla produoaa orarall aoU llaita I Of 350 pCl/g for *^Ptt aad 200 pCl/g for ^39,2*0,^^ j^ 2*1^ ^^ labalatloo ooapooaat la mull bat tha walgbtad llalt U U pCl/g. Thaaa llalU, alof« witb tba aaaooiatad lung doaa rataa ara glraa la Tabla XT.

TABLE ZXf

SOIL LIMITS BASED Oi SBTEEAL PATTBEBS OP OBOnBO P0008

"?Bl 239.2W^ 2*'l« Praab aad Boot Yagatablaa 8 600 5 300 no Abova • Prulta « 000 2 500 51 Abova • Poultry and Bgga 3 600 2 200 ii6 Abova • Maat, MUk, Potatoaa aad Drlad Baana 1 ^00 890 19 Total dlat 1 200 750 16 Vagatarlan* 9T0 600 13 Inhalation Ualta^ 500 300 too

'CalovUtad aa a 628 kg/y^total,t,tak a with a ooaoaatratloa ratio of 5.6x10 I for plutonlua aad 5.6x10'^ for ^Proa Tabla Til. | kk TABU If DIRIVBD son. LIMITS ABD ASSOCUTBD LOK DOSS lATCS

Soil Lung bl&Udft UBIL fi8IB.aBU (pCl/g) (araa/y) ^^*?u 350 270 "9.2Wp„ 200 «50 2«<. U I

AJ PgHgftttr PnadUBa Tba laaadlata daughtar prodoota of tha nuolldaa ooaaldarad in tbla atudy ara givao in Tabla IV of aaetlon n wbila tba oon^lata ohalna aad buildup ounraa for tha daugbtara ara giran in Appandlx B. All of tha plutoniiai iaotopaa daoay to aotlTltlaa of daugbtara that ara oo tha ordar of 10 to VT^ tlaaa thoaa of tba parant (with tha axoaptloo of ^*^Pu-^**Aa whlob ara traatad axplioltly). In gMaral, froa tha atadiaa arallabU thla daoraaaa la qaaaUty will ovarwal 2x10 for aaarloioa. (Corraotad for tba «5f dapoaitioa la tba akalatoa). In addition, Sebraekhiaa and aina^^ bar* notad plant uptakaa ranging froa 2 200 to t5 000 tlaaa that of plutonlua In obaatgraaa, paaa, barlay aad alfall^ Tha prodoet of thaaa two faetora IndioaUa that tha lagaation patbaay for ^^Bp ooald ba 2x10^ to 9x10 aora c 2t1 laportant tbaa for plutonlua or ttOO to 2x10^ aora laportant than for ta taaualng aqual doaa par unit of lataka. Slnoa tha qaantlty of ^ Bp la t/5000th TABU xn SEELBTAL OQBTBBT OP ^^Bp POLLOVIBQ IBTIAOASTBIC AOMIBISTUTIQB OP TEE VrmATE TO AOOLT KATS

Buabar Skalatal (S Ateialatar«l Doaa)

'' '' b 15 0.63Z 7 0.5V»

Hafaraeea 57. Nafaranea 58.

of tba ^^^Aa, tbaaa daU would ladioaU that a aat banrd graaUr UMW tbat of ^*^lm oould poaaibly raaolt wbao tha daoay of ^^^la la oeaplatad. Tbara ara, bowoTar, axpariaaata tbat ladloata tbat biologioally laoorporatad ^^BP la abanrbad by faetora of 10-20 aora poorly froa tha 01 Traet than tha aitrato.^ la addltloa, tha graatar aobUlty of tha ^Bp la tha aarlrooaaat wUl raaolt la aora rapid diapwrsloa ao that ooaoaatratloaa at aay glTon looation aay wall ba lowar thaa thoaa of tha paraat. Tbaaa daU ara aot adaquaU to paniit teUUad aooooatlag for thla nuolida 2tt and It doaa appear that tha doaaa wUl ba aoaaabat laaa than tboaa fbr Aa. Bowarw, tha doaaa aay axtaad orar parloda of allllooa of years ratbar tbaa tba tbouaaada of yaara flroa Aa.

Li p«fc*«»» K.fclMtBE fnr ahiUflw Ihrtti BITIB' Aa a praluda to tha dlaoaaaion of potantlal axpoaoraa ffoa botb ahallow aarth burial In thla aaotlon aad daapar aartb burial in tha aaxt aaotion it U wall to oonaidar tha obJaotlTa to ba aanrad by aueh aatlaataa. It la olaar that tha aoaaarloa uaad In tha oaloulatloaa ara dariaad and aay wall rapraaant altuationa tbat will not daralop at any glTon aiU. Eraa if thay do daralop, tha oondltlona at tha tlaa aay ba ao greatly diffaraot than wa anrialoa, tbat tha axpoauraa aay ba oonaidarably lo%iar or aligbtly higher than wa aatlaau. u6 Bowarer, wa bare v,ried to plok oritloal ooaffloleaU In a oooaarratlv* manner ao that the probabUity la that tha doeee wUl be lowar. Our goal uaa to provide reaaooable lialUtiona on the traaauraaloa plaoad la the grouad ao tbat future bara, if any, froa usee of thia ground will be alalaal aad tha area oould be uaad in a reaaonabla faabioo after the oontrol period. It is rooognlsed that there ere aany unoerUiatiee, Inoludlng aoae that wa aay not ba aware of, in both the future and in our preaent uadarataadlag of tha behaTlor of tha tranauraniua eleaenta in tha eoTlrooaent. Bowarer, there bare beea aany atudiee that tend to bolster our oonfidenoe in the latter faotor and wa beliere tbat tha approaoh of uaing the aaxiaua axpoaad ladlTldual aad axaalnatlon of a tturt>er of potential pathwaya to obtain the liaitiag one (or oaea), proridea roaaoaabla aaauranoe, that the llaita ao-darlTod will aeet their goal eraa though one oannot aaaura tbat tba Halting doaa uaad in tba oaloulatlona will be aet in every oonoelTable oaae. The qoaatioo ariaea of alte-speoific llaita baaed upon the oondltlona at a given aiU or, at least, liaiU aora apoolflo to a glTaa regloa aueh aa tha arid stappee or deaerta of the weat aa ooapared to the high rainfall areaa of tha Eaatem Qnitad SUtea. Slnoa wa are dealing, la aany of tha oaaea, witb very long-lived redionuolidea, it la not prudent to beliere tbat ourrent oooditlona wiU laat through tha effeotlTo life-tlae of theae aaterlaU. Appendix F ia * brief deaoription of the oooditlona that hsTa ooourred la tha Onlted StaUa owr the peat 250 000 yeara. Hera it is aoan that oliaatio ohaagea aoooapaniad tba ice agea Mith ohaogea in river couraea and even the ooeat linaa wsre aoaawhat different than at preaent. Alao, it ia noted froa tbe previoua oaloulatloaa of dose rates froa plutonlua in aoila, that the expoaurea to people aay not ba as greatly different in the arid and wet areaa aa la generally believed beoauae of tbe oootrlbutlon froa uptake in fooda and in Ingeatlon. For theae reeaona wa believe that a ganerio llalt for aU areaa la uaeful, altbougb it will be noted in tbe pethway atudlaa to follow that there aay be wide differenoes froa one site to tbe next for a partioular pathway. laplioit in the soenarioa uaad and the oaloulatlona of doae is tbe aaauaptioo tbat a "good" burial site ia used ia «U areaa. It is beyond tbe scope of this study to provide criteria for a good alU but it ia a preeiae of the study that such criteria will be developed and uaad for the DOT loeatlona. The scenarioa for estiaation of doae to aan and liaitatioo on quantities buried, cover several different aecbaniaas of escape of tbe trmnsuranua nuolldaa or axpoaara of ladlvldaala. Par ahaUow borlalt Uwy laelada eroeloo U uaoover the wastas with traaapert to a straaa aad aKpoaari froa aaa of the atreaa; eroaioa U oaoovar tba waataa with paopla tbaa taklag «p raaldaaee on the araa; aoveaaat of tha traaaaraalia alaaaaU to aa aqaifar aad than to a atraaa; aad latraaloa by iadlTlduala lata ttw waaU aaaa. It ilWBttf fcB BfltBtf tbat ttB BBttiBT flilBBliMflng III ttti iBoUfln ao BBt anr dUBtlBB fcT Uu QflBUBinatBd MiitiB ar loil la thoit ^*****^* "* ^*** awM'^— ijfimttmmtrm^An^. thla Waa doaa to siBpliry tha praaaaUtlon la UOa aaotloa. ApproprlaU Taluea wUl be laoludad bafara tha flaal raaoaaaatetioaa ara aade. Slallarly, tboae noelldea ahioh ara to ba UaSSad by tba SacroiMh of loagar-IlTad aualldaa, saah aa '*'pu or tba ouFiaa iaotopaa, will aot ba dlaaaaaad doriag tba oaloalatloas but wUl be iaoludad la tba raooaMadatioaa.

la thia aeaaario, wa will oooaidar tba aroslTa effaeU of wlad or aatar oa tha sarfaoa of tha barlal grooad with afraataal allalaatloa of tba aoU oofariag of tha aaataa. Ooattoaad aroatoa, oaoa the waaUa ara oaaevarad, wUl raaolt la raaaiu flrab driokiat of Cha Iwtar, aaa of ^w watar for tirtgaUoa aad aatlag of fish or otbar aqaatto Ufa raiaad ia tba watar. Tha altaraato peaalbUlty, that tba waatoa wUl ba borlad araa daapar, axisU bat this appears to be uallkaly for aoat of the DOB sltas baoaaaa thay ara loeatad la areas of oat eroaioa.

BaUa of aroaioo vary widely dapeadlag opoa tba ralafall, type of aoU, alopa of the grooad aad, in partlsular, oa boaaa aetlTltiaa. Por oroplaads la aldooatlaaat, aoU loaa with ruaoff aTan«aa 2-6 toaa par aore.'^ Soaa exaiwlea of eroaioa rataa aad ruaoff uadar diffareat ooaditloaa are glToa for agrioultoral flalda la Tbbla XPU.^ Thia table ladiaatoa a varUtloa U eroaioa rato by aavaral ordara of aacaitvAa frea tba olaaa tUlad fiaU to the fiald with doaaa oorwr. The U.S. Depertaaat of Agrlsaltare^* baa prorided aa equatloa for tbe eatiaaUQa of aoU loaaaa froa agrloaltaral fields «diloh I proTldos sooe iaAloatloo of tbe Influaaea of Tarlooo faetora. Balaftll is obTlooaly a faator aad tha araaloa loaa laeladaa tha oaaalatlTo effeou of the t U8 r TAtU XVIX AWMAL son. ABP NAtn IMME PBI ACU PMN PZfl HtPttf IgPUATtO Tim OP uae oon ooapmoBi OP otAa nuAoa AIB ants com OP noETATna*

aeea-tilled JBcsa lell, teeetlee Average aad yaara ef trMtatuilflt, (aa) (teaa) Sbalby silt laaa, •sthaay, M>, 1931-35. M 9.t9 9.10 Ilnrla fine aaaiy laaa, Tyler, Tl, l91l-)6. I.Tf' tT.99 t0.9t 8.11* 1.19 99 II 188 lemoa flea aaaiy leaa, Oatbrle, OK, 1910-3). M ir.T l«.tt e.on l.tl 98 98 188 NMrahaU ailt leaa, eiarlaAa, U. I9S1-S9. M 9.9 t8.lt 8.At 8.08 0.97 88 19 800 Caetl Cley leaa, tutea- ville, ae, 1931-35. m M.O 81.91 lO.tl 8.818 8.39 91 99 800

lU at the aaU sad witer rratlea espsrtaaat atatteee ef Ue OeU Csaeervattaa Oarriee. 'or Utai preeiptuttea. aany aoderaU-aise atoraa aa wall aa tha tffaoU of tha oooaaloaal very eevere onaa. The rainfall-eroaioa iadaa U tha produot of tha total kiaatlo eaargy of tba atora tlaaa tha aaxiaua 30-alauU Intenaity. An iao erodeat aap for the BaaUm 37 autea Indloatea thia faotor to vary froa 50 to 600. The asTtauaa ooQur aloog the Loulalana, Miaalaalppl and QeorgU ooaats. It ia aoted tbat In tha aoimUinoua aUtee, weat of the lOttb aerldlaa, the aporadle rainfall pa turn of tha aooaUlaa aakas geeerallsatloa diffloult. In tha Faolflo Borthweat aoowMlt oarrias a large part of the field eroaioa ao tbat the praotioal value of the ralafall-eroeloa equatioas baa aot beea eetahllahed for thla area. A aeooad faotor la tha aoU arodlbUity ahioh aoooaato far tbe faot that sooa aoUa erode aore raadUy thaa othara area with aU ether fhetora tba aaaa. Sou propertiea that laflaaaoe erodlbUlty by water are tboaa toat effect the infiltratloa raU, paraeabUity and total watar oapaolty «id tboaa tbat raaiat the diaperaloa, aplaahiag, ahraaioa aad traaaportlag fhroaa of tba ralafall and runoff. Tha aoU-orodahUity faotor variea froa 0.69 fOr a Doakirk sUt loaa to 0.03 for aa Albla graTally loaa. The woaloa raU alao dapaoda stroagly oa tba laaBtt of tha slope of the groaad aad tbe gradlaat of tba alopa. for a laoftb of 60 a (200 tmK) tba aoU-loaa ratio Torlaa froa about 0.3 at a 2f gradlaat to ahoot 6 at a slope of 209. The effect of orops oa tbe land is ooaplloatad aad aaat take lato aooount the oolnoidoooe between eroalTo rains and tha st^e of the orop at the tlae, aa wall as other orop aanageaent teobniques. Bowarer, with eatahllrtwd aaadowa of grass, alfalfa or olorar, tha soU loss rates are 0.8 to 29 of that frea fallow land. •Tbleraaoe* Taluaa for aoU loan bare also baaa aat by iudgaaat aa to effeoU of 80^ loaaaa oa tha loag-twa prodootlTlty of the aoila. Tba U.S. Depertaent of Agrioolture^* ladloaUa, that for the soUs In ths U.S., this raU ranges froa 1-5 toaa per aora per year dapeadlag upoa aoU propertiea, aoll depth, topography aad prior aroalon. A deep, aedlna taxtarod, aodarauiy peraeable aoU that baa auhaoU propertiea aultabla for plaat growth baa a toleranoa of 5 toos per aore per year. SoUa with a shallow root-soaa or with a high peroentage of ahale at the aurfaoa, baTo low toleraaoea. Saltb and 62 Steaey haTe glTon a ruige of 0.5 tons to 6 toos per aore per year depending upon whether tba aoU ia ahallow or deep. 50 Theae daU are all baaad upoa agrloaltaral aoUs abara eroaioa la laoreaaad by oroppii« prooeduraa. la aadiatorbad araaa, rataa of ragloaal eroalon have been eetlaated froa the voloae of dopoaits la eloaed aysteas. Theae oalouUtloaa^ ahow that for tha Appalaolsc regloa, tba paat rato for 125 alllloa yeara afaraged 6.2 oa per I 000 yr (0.78 toaa/aora anonally). Por the entira Hiaaiaaippi dralaata baaln tba past rato waa 8.6 oa par 1 000 yrs (uhUe the praaaat raU la 8.2 ea/1 000 yra). Biaad oa tba prodaaUoa of ^Ar la the ataoapbere froa '^t la tba omst, tba iwatbarlnB of Icoaoaa rook is estiMtad to bave baea prooeedii« at a rato of 0.66 oo/l 000 yra (0.982 teas of l^aoua rook per aora aaaaally). jodsoa^^ baa aotad that a aBClona rato of oroalea ia raartwd la areas of lUited ralafaU (<^25 oa/yr) with daoraaaad rates la aora boild as waU as In aore arid ollaaUa. Ba also sUtad tbat tha aotlTlties of-aaa oaa laeraaaa the regional eroaioa rates by larsa faetora. Bhile tbaaa eroaioa ratoa are low under aatoral ooaditloaa. tba qasatioo of tha effeot of later uae of the area for llTlag ariaas. tMaaisatioa sad tbe creatloa of roaidouta *»e ^s»n fousd to isoraaaa erosioa to ths axteat of 75-200 ^^tm^.-^^^ t^t yaar, rith ^a^tls if o>roalaa oa Fe«aBato of 3-6 oa.^ tr traaaltlon tnm ral«tiy«i7 atabiM r^f^ "^str^sir ^ m. ss»it^-«Uto B anrlroawaat aay take oaly frc« 2 yra to liD yra, liapsirtUt ea tba slas of tha draiaaga araa, tha lataaalty of ba«s ball4ii«, aad •SBMaoa of plsoaMat of atreaU, water aad sawai •fslaas, aad other otilitiaa.^ Qaoa ooaatK«ib&aa baa oeaaed there fsUowa a ataady daollae la eroaioa rato to lavala oftoa below tha prooooatruotioa rato.^' Thaa, tha oraraU iopaot of ut^ttiisatloa of a borUl alU aay be difficult to asaaaa: It ooald raaolt la aore rapid expoaure of buried waaU oador ooa aet of oiroosataiwaa, aad ooaalderahly delayed s^aore la otbara. Qwaa aevaraX aroaioa rataa ara w—irliiil la Thhle ^fHI. Aa oaa be aaea froa thla diaeoaaioa, araaloa rataa are highly Tsriabla wito a atroag Influaaoe baiag aaa* a aetlTltiaa. Oaa aoald axpaet (oUy foraatlon in diaturhad earth of the burial grouad to be laoraaaad la tbe yaara followiag the eaplaeeaeat of tbe waatoa. aowBTar. durtag this period, ths barlal growd will be aoaltored and aotiooa oaa he takaa to oorreot tba sitaaUoa. Ba feel that eroalon ooatrol should be a aajor faotor la '**>if*t1nt a barlal grooad aad tbat speoiflo stops to provlds a peraanent type of eroaioa ooatrol abaold to taken. Under tbaaa condltiooa, the oboloo of a apaoiflo oroslon value is diffloult. Booaaei, valoaa of 1 to 6 tons psr yaar woold aaea to to TABU Xflll

B80SIQB BATES OBDB f AEHBQ CQBDITIOBS

Sou or Book BaaartBtiaa Oaa , Iraalm laria (toa/aore per year) Igneous rook Qeologlo pest 0.08 Appalaolsa Itoaatolaa Osologle paat 0.7 Midooatiasat Typloal faraiag 0.5-6 faralaad (oUwr tbaa oleaa tUled) aeaa tUled 10-60 Orbea or suburben Oaring ooaatruotloa 70-200

approprlatoly oonaarTatlTe. If wa aasuae a bulk deaslty for soU of 1.5 g/oa t this would require froa 2 000 to 13 000 yeara to raaova Uw two aetera of cover froa the wasto pito with eroeloo oontlnuing for 8 000 to 25 000 yeara through tto waato aass.

Qaoa tbm oorar baa dlaappaarad, tha aadiaaat tnm tha wasto pito wlU waah dowa-alops to tha aaaraat strsM. It ia satioipatad that Uw traasaraaiaa eleoeato wlU to attaobed to tba aoU partiolee aad wiU be distributed oa the aorfaoe betweea tbe burial grooada aad Vtm streeas along Uw wosioa paUw. Tto dose to people froa tola interaedlato area wUl to Inoluded later in tto pethway of people UTlng on tto area. Bare wa are ooooemed with tto doee reaoltiog froa tranaport In tto atroM. Oaoa in tto straaa, tto oootaalnatad sadiasato wUl alagle with tto aedlaeato already praaaat aad wiU to aoTed dowaatraaa by sedlaeat trsasport. Suoh a aaobaalaa of aereaent ia different froa tto dUvtlon la tto uater and transport downstreea with tto water but is aore reallstlo idwa tto abaorptlTa oapaolty of tto aedlaeato is tsten into aoooant. A gaaerallsad aodel for sedlaent traasport U dereloped la Appendix 0, using daU priaarUy froa tto traasport of radloaotlTo aatarlals la Uw Coloabla, Teaaeaaee and Miaal RlTer systeaa aad soTorsl Atlaatie ooeat estoariee. Tto sadlaeat is transported as IndlTldoal partiolee, spending part of tto tlM toiag oarrled in water ourrento (auapaaded load) sad part of tto tlae

52 in tto aadiaanto oo tto bod of tto atraea (had load). Tto eatlre aaM of tto aediaeot oaa to treated as a alagle eatlty aoriag with Ito eharaeterUtlo velooity ead dispersloa. Tto reaalto of tto study ladlMto aa oapeaeetial deoreaae in ooooentratioa aa ooa progreaees dowastreaa froa tto aouroe. Bowever, tto rato of deoreaae ia graatar for tto Oolohbia Bivar than for tto Tennessee River with tto Tsnnessto rlrar alao abowiag to area alowar raU of deerease thaa ttot preaeat Initially bayoad ahoot 30 bSlM, prasaaably daa to tto eatoaaiTa systsa of daaa la tto lower raaohaa. Ito «adel predioto tto eedlaent ooaoentratlooa 30 aUes doaa-rlTar froa tto aeoree to to aboot If of ttot in tto aouroe ar« for tto ColaabU BlTor aad ahoot 209 for tto fenneaaee tlTor, indlaatlng Uw laflaaaoe of rlTor valooity aad ebaaaai. A aeooad pheaoaenon ooeara ia sedlaent transport — aortlag of tto eedlaeato by partiole also. Tto saaller sediaeat partiolea are aore easUy carried la auspeasioa thaa tto larger partlolM. Bbaa thato partiolea reaeh an area of low flow (aooh as tto upper reaotos of a daa) ttoy wUl depoalt in thia area. Siaoe aooh aaaUer partiolee bare a aneh larger aorfaoe area than tto larger oaee, ttoy bare a highor exotonge ooefflolent aad oaa oarry larger aaoaato of a ooataalaaat per oalt oalcht. Tbaa, a aeohanlaa for reooaoentratlng tto ooataalaaat oa a oalcht basis esiata ia saA pools. lb tto aodeliag, tto ratio of tto total sedlaent hoonil ooaooatratloa of tto ooatSBlaaat la areas of hi^ depositloa to Uw total anaaal raiaato of ooataaiaaat was used aa a paraaeter. A Taloa of 2 pCi/g par CX/jr ralaassd was aeaaidsrsd to to ap(M>opriato for oaloolatlotts of tto doss at Uw —»i«" poiat in tto straaa (ripiabaring Uwt tto sediaeat ooaoaatratloaa thea falls off with dlstaaoe eo ttot doeea fttrttor downatreaa will to lower).

While Uw groat aajority of Uw traaaoraaios are in tto ssdlaento, ttore U eoae laterobai«e totweea tto water aad tto aedlaeat. This aay aot to a true aolObUlty hot any aotually to due to aaaU partiolee. Tto aet result oould to slailsr, beoauae suoh soaU pertioles osa to dissolTod la body fluids sad oaa to abaorbed. We wUl uae two priaary earlrooaeatal sooroas of daU for this relstioo for plutoolua. logera,^ at Itooad Laboratory, aaasoi ad tto water ead aediaeot In tto rlTor, poada aad abeadoaed eenals nser tto Ibwid Laboratory. 2)8 Tto oontaainant In thia eaaa waa heat-aooroe platoaiaa ttot was aostly '^''Pa by

a activity. Bia aaasured Tsluae for tto ratios totwasa aetlTity psr ea^ of aaUr and aotlTlty per graa of aediaeot are glwea ia Table HI. Bakonaoa, et al.^ aeaaured tto aodlaoat ooaooatretloo ead we tor ooooentretioo during e runoff event la oaa of tto oaayoaa ttot has been used for dlapoeal of efflueot froa a li^iid uasto treataeat plaat at Loa Alsaos. Bis daU are glvea in Table ZZ. Ttoy alao aetod ttot about 1.59 of tto plotoaiua uaa la tto wator pbaae with tto reaalnder oarrlad by Uw aadlaaat. In thia cass, tto flow was Tsry torbolont with good alxiag hatweaa tto aadlaeat ead tto wator althoogh tto tlaa of Uw eatlro erent was relatlToly sasU. Prea theae daU, we wlU oooaidar a Talas of 5 a 10"^ g/oa^ to to repreeeaUtlT* of thia ratio. Thia U lower tbaa Uwt aaaaurad by Bakoaaoo la very turbuleat ooaditloaa, oaiag tto aadlaeat belag traasported aa the refereaoe, hot is soaswhst hl^tor thaa Boger'e Taloa la ralatively atagnant oooditlons using tottoa sedlaenU.

TABU ZIX BinO OP HATB TO •ttlllMIBI COBCEBIEATIOBS BttB MOOn UBOBAXQBX

MAtar tin naiHaanti fa/'Bii SedlBMt Sediaeat LQ<»tlon

South Pood 2 X lO"' <2 X 10-5 Berth Pood 2 X I0"5 a X 10-5 (fa*eat Misai RlTor 8 X 10"* Borth Caaal 7 X 10"* -1 X lO"* 2 X 10-5 Sooth Oaaal 8 X •0-5 Overflow Creek 1 X 10-5

5k TABU XZ

RATIO OF WATn TO SEDINEBT COBCEBTBATIQBS IB LQ8 ALAMOS CABTOB ROBOPP

Tlae After s^iHHqifL fg^if^

Min

5 7 X 10"5 5 X 10"* 160 8 X 10-5 1 X 10"* 260 2 X 10"* _

SiaUar daU ara oot aTailabla for irioioa althoogh it is, la geoerel, oonaidered to to aore aobUe in tto 66 ^ ironaeat than plutoaina. HarUU. for exaaple, poetulatea ttot this inoreased aohUity la aoils aay raaolt in aora rapid aovaaent froa tto root sons, ttereby alloTlatlng, aoaaidiat, lU greetor uptato la planU. This would iaply lower adaorptioa ca tto soils sad blgtor coaoentrations in tto uat«>. to will oooslder tto swsriolua to toTO e ratio of watar to aoU taa tlaaa that of plutoaiw or 5 x 10"* g/oo^. RroM this ratio, la Uw cagloa where Uw ssdiasnts oeataia 2 pCl/g. wa would aKpoot tbat tto water would ooatala aboot 1 x 10"* pCl/ea? of ploteeiaa or 1 X 10"^ pCl/cB^ of aoarioiaa. Proa tba earlier stady ea Ingestion, tto dsUy Intate OTor 70 yaara raqoired to oToatosUy deliTor 0.5 reaa per foar is 570 pCl for 239,280p^ and 120 pCi for ^*^ta. (Boto Uwt ^^Su wUl teTO disappeared by radioaotlTe decay before thla totbaay heoooea of lapm>taaoe.) Tto ICMf Referenoa Man.6 9' ^•OTldea estiaatoa of tto water latato for adult aaa aad wMwa aad a 10 year old ohild. Ttolr estlaato of tto ooaau^tlOB of tap water raages frea 100 to 200 oa'/day. BowsTor, a larger Taloe oooora uadar tto heeiling "other", abioh aoana aooh iteaa as soft drlnto or boor. Tto soa of tto tap wator aod "other* la 950 oa^/day for tto <^iUd, 1 200 oa^/day for tto adolt woaan, and I 650 ca^/day for tto adult aan. «a wiU oooaidar an Intato, aa water, or drink derlTod direoUy froa tto uater, of 1 650 ea^/day to to approprlato. Thla traaslatea to aa allowable ooooeotratloo of 0.35 pCi/ca^ for plateaiaa aad 0.073 pa/oa for *loiua if tto wator ia uaad exolualToly aad eoatiaoeoaly for 70 years. It la to to expected Uwt aoae of tto treaaoraaiua eleaeato would be ed In water treetaent prooeases tofore tto water U aaed to any extent by huaana. DataUed dau oo tto degree of reootal are aot STailtole bet it uould to expected tbat soas fraetioa woold to raoeesd to tto sludge by tto ourreot flocculatloa aad olarifloatloa prooeduraa. Bowarer,it ia lapoaelble to predict future prooeesee Uwt aay to uaad aad to predlot tto degree of tranauraniua eleaent raaoTal. Thus, sooh reaoral wUl aot to oooaidered. Ttoee ooooeatratioaa in tto water would, froa tto ratloe glTOO above, reeult froa 7000 pCl/g for 2^*2**^ and 150 pCl/g far **^Aa ia tto aedlaeato. Since eadi curie per year releaaed resulto in 2 pCi/g at sa lapooadaeot, tto allowable release to tto rlTor is 3500 Ci/yr of '3'*^*^ sad 75 Ci/yr of ^*^to.

la a aeooad pathway, tto OM of uatar for irrlgatloa wUl distorse tto eedlaeaU aad diaaolTod ooatsalnsnt crer agrieultural lead with SToatual buildup in tto soils untU aa aqoUlbriua In reaobed betweea tto OTorall raU of loss froa erosioa aad tto rato of spplloatioo. Tto faot Uwt Uw lead is Irrl^ted lapltoe ttot it is used for agrioultore with periodio ooltlTatloo ead alxiag of tto eoU. Be wiU aaaoaa a alxiag throogh 12*, or bboot 30 ea of aoU. Tto uae of two faot (60 oa) of uatar par yau>, with aa aaaoaad sadiasat eeateat of 1 g/L oentolninB t pCi/g woold add 0.06 g of aadtMot or 0.12 fCl per yaar to oaeh oa'^ or aboot 0.0027 pCl/g of aoU. Por aMrtntna, tto aottvlty added asy to assooisted with tto water to a graater degree Uwa for plotoaitw hot, upoo reaohiag Uw aoU, it wlU to raadaerbed ea tto soU to behBTe tto SSM aa tto aedjaeat. Ba wiU oooaidar tto eroaieo rato in this fisld to to tto saaa as for tto burial area or 6 tons per aore per year or eboot 0.09 oa/yr. This is toout 0.39 of tto aixed Uyer per year. At equillbrlaa, thea, tto soU woold oootain q/(0.003 • \) pCi/g abere q is tto annual rato of additioo sad X is tto decay ooastaat la yaara'* of tto iaotope. Thos, for tto loag-llTsd alpta aalttlag plotoaiua iaotopaa, tto equUlbriua ooaooatratloa la Uw Mil beooaea 0.9 pCi/g per Ci per yeer releaaed. POr ^**to, tto equUlbriua MU ooooeotretico la 0.59 pCi/g. Tto abora oaloulatloa of Uw MU ooateat waa baaed opoa a relaaaa of I Ci/yr to raaolt in 2 pCi/g la tto aedlwaato at tto Hodaaa loeatioa. Barller in thia ssotloo of tto report, we derlTOd llaito for MU, for aU oaea, of 200 pCi/g for 239,280p^ ^^ ^^ ^jy^ f^ 281^^ ^^^^^ ^^^ Taloes laoloded llTlag oa tto eroa, we oanaot preoluda a fara la tto aidat of oa Irrlcated eree end ws WiU use ttose waluee for oaloolatloa of tto diaobarBa rato. By direct ratio of 56 tto allowable ooaoeatratloo aad tto itratioa oaloolated to eaiat, wa arrive at pemiaalbla diaoharge ratio to tto of 220 Ci/yr for ^'^•**^pu mad 2* Ci/yr for '*'to.

« ««tiH> ttf riA A third pathway of laportaoee to tboae livlag la tto Tlolaity of tto river U tto lagaatloa of fish aad possibly otbar prodoeto obtalaed frea tto atreea. Aptoodix B provides a rariew of oorraat daU ea tto aptato of traaaaraaloa by the bloto in aa aqoatio aediua. Large ooaooatratloa ratios (ratto of ooooentratioa ia orgaaisa to ooaoentratioa la water) are aeasorad for algae aad plttktoa witb a geaeral deerease la ooaoaatratloa ratio as oae goea op tto trophlo otala. Bowerar, eraa for fish tto ooaooatratloa ratio oan Tary depending upon tto type of flab. Bottoa feeders, sooh as .osrp or euokere, are estiastod to toTO ooooentratioa ratloa of 250 for plotoaiiai aad 2 500 for aaerioiua. WOla aot ooaaidored aa aa edlhla fish by aoay people, there are thoaa ato do aet tbaa. U tto otter ead of tto raage, tboss fish ttot UTO by eating other fish bare ratloe oatlaatod at 5 for plotooiaa aad 50 for aaerlelua, or Sboot 50 ttooa lower thaa Uw tottoa faadara. Pbr tbaaa eatlaates ue wUl aaa a raUo of 25 f^ ^otoalM aad 250 for atortooB, reengnltlng that there aay to TsriabUity. Tbaaa ara talaa aa ooaooatratloa ratloa fbr Uw psrto aa oatoa, althoogh Uw daU m Appendix B are aot that alaar ea UHs poiat. Oaoo ^aia, tto latatoa to raaolt ia 500 orao/yr to Uw bOM are 570 pCl/da for 239.280p^ ^^ ^^0 pCi/da for ^**to. Tto dato pressatsd la ICaP-23^ indloato Uwt people la tto U.S. ato 22 g of fish aad aeafOod per day ia 1955. In other regiooa of tto world tto quantities eatea per day raaga frea 12 g in tto Bear Eaat to 38 8 la Eorope. ThU iaelodos toth seefood ead fish with tto TSluee for other regioos of tto world baaed vgoa "leaded" weight, Uws itaering tto waato. Tto quaatlty aotoaUy eaten by aa ladlTldoal wUl oadoobtedly depend upon opportunity as weU ss tasto. In regiooa abere fish ere svaUabla It la poaalble ttot tto eportsasa moA/ar Uw fbaUy oa a sabsistenee diet Ww oen catch ttolr own fish would eat aore. to wiU ooosidsr Uwt our aaxlaoa iadlTldoal wUl eat 100 greoa per day. Proa tto driakiiv aater ealeaUtioa, a releaae of 1 Ci/yr reeultlag la 2 pCi/g of aadlaeat woold prodoee I xlO"* pCi/ca^ of plotoaiua or i x lO"^ pCi/ea^ of aawrioioa la tto aater. This would rasolt la ooaeeatratiooa of 2.5 x 10"^ pCi/g for ^39.280^ ^ ^ 25 pCi/g for 281 Aa la t»a fish. Tto ratio of tto peralaaable daUy latato of tto aaelldoa to ttoee valuee, aultlpliad by tto daUy fiSh latato of 100 g/dsy provldee tto allowable releaaee of eeob nuclide. Ttose are 2300 Ci/yr for ^'^•2*^Pu and 5 Ci/yr for ^*'to. A altuatlon oan to poatulated ttot doee oot esiat at tto preaeat tlae. Thla la tto growth of algae or alaUar aateriala for OM aa a food aooroe. Bere ooooeotratioa ftotors are eetlaated to to 5 000 fOr plotoaiua aad 50 000 for aaerioiua or aoae 200 tSam tto Talua uaad for fish. Aos, laBSstioa of lOO g/day of sooh asterial would roault la greater dotos at tto dlMbsrge ratoe eetlaated. Since we bare w way of knowing ototbar this is a reel poeslhUity or of estlaatlag tto awMWto ttot wUl to li«eated by iadlTlduala, thia pathuay WlU aot to takan lato aoooosfc eaplioitly. Tto eatuary into uhlA tto rlTor oToatuaUy eapties wiU poM s slailar aituatioa with fiah to ttot of tto rlTor except ttot it aoif laTolToa aMuater. Proa Appaadlx B, tto dato ere oot adeqoato to diffareotlato totweea tto opt-ate In eeawater aad fresh wster M ttot tto ooaooatratloa ftotora ere t^EM as tto ssae aa for tto rlTor. There Is aoae coaoeatratloo of tto ssdlasato la oores or stiU araaa hot th«ra is alM aoae dooreoM la ooaoeatratloo wiUi diataaoe do«m tto rlTor. It aay to aotad ttot Doastar^^ deaorlbed Uw OM of aa edible saaaaad la areas aiaag Uw ooaat ia Uw wlolBlty of dlaatoria tnm Uw Biadaeale plaat. Proa a sorray la Uw recioa, ooaaoaptioa riagas wp to 172 E/aty. QbTloosly, if thia ware postalatod to oooar la Uw oova or aatosry, a aittotioa would to preaeated ubere tto greater optata froa tto watar by tto ssaweed oould lead to high ladlTldoal potaatlal dooM altbou^ Uw deeraaM In eedlaent ooooentratioa douo rlTw would aUoTlato thia sitoatioo if tto aooroe were 80 or acre aUee opatreea froa Uw eatuary.

r- ctm,^^^ to ifm^t^ riflrnifnfratlnm r Tto foragolag paUmay diaoaaslons oatlaatod tto rates of releaM to a rlTer ayatea with tto treaauraaioa oarrled oa ssdiawto. ThsM releaM ratoa osa to aM>roxiaatoly ooarerted to ooooentratioa in tto burial grooid by UM of an I eroaioa rato of six tons per sore per yeer as ased ia tto derlTatlon of tto aodlaoat aodel. Tto aodel barlal grooad bas aa ereataal aru of 10^ ai^ or about 250 aerea. Tto rato of eroeloo of 6 tons por Mrs per year predooee e total of 1500 teas of sediaeat per year. This prooMS wiU reqoire several thouMada of yaara for tto ooTer aaterlal to to eroded ead tto uastos to to reaobed. In 1000 yeara tto '**to wUl to redoeed to 22f of ito initial activity 58 aad in 2000 yeara to 59. Thua, at tto tlae ttot Mtoal releoM by eroeion ia postulated to atart, tto ^**ta wlU to redoeed to 59 of tto laltlal quantltly. Tto Halting quantity releaaed to tto rlTor per yeer oea to related to tto quantity In tto burial ground by aaaualag ttot tto releoM U aaaoelated with tto 1 500 toos per yeer eroeloo rato. Thla TSIM la glTaa ia oooTeatiooal O.S. tooe which aaounU to 1 360 aetrlo tooe. Tto average ooooeotratlon In tto burial grouad froa thia weight aad tto releoM reto in eurlae per yeer calculated earlier la giVM In TabU ZZI.

There are Uto aain typea of aoreswat to loeal waters oeaaidared aa laportaat la UWM etudlM. Tto firat la tto poulbillty of leaohiag of tto traosursnitw eleaento froa tto waatoa aad aoreaMt of ths through any loterToalag aedlaeato to ea aquifer oaderlylag tto horlal tto oootaaiaaot wUl aore doua-gradieat to areaa of poaalble aM. , then. arisM froa tto poaalble aeraaaat of watar la thia aqolfv to a reeoltlag la tto Introdaotioa of oeataaiaaato to this Tto lattor aofsaaat ia alallsr la raaolt to tto latrodasUaa by diraot lato tto atreea but ia itwlodad to aaaora Uwt it any aot to «f

TABU ZZI LUmiBO CQBCBBTRATIOBS OP 239,280p^ ^jp 281A a n TBE BQBXAL 080(08) BASED OB BEOSIQB TO STBEANS

23? 21 Anowahla Borlal Grooad Allowable Barlal Qroond fiUtOBZ Co^, (Cl/y) (aCi/g) (Cl/y) (nCl/g)

Drinking 3 500 2 600 75* 1 100 Irrlcatico 220 160 28* 180 Plah 2 300 1 700 5* 78

*TtoM valuee are Increaaed by a factor of 20 to allow for daoay in tto 2000 yeara tofore eroeloo of Uw waatoa atarto. A third oatbod of aeraaMt U to lOMl aeopa or sprigs if tto uaaua are burled In fractured, lapetnaable forastloaa la a regloa wlU high relafaU uhere tto leaototo oaa aoooaolato in tto waato aaaa aad thea pereolato through fractorM. This is dlMUssad but aot laoloded la tto liaiU boMUM It Is aasuaed ttot future burial oritorU wUl ellaiaato sooh oadeaireble ooaditioos.

8 111 I—lit Tfi 8IM1 til iniiir8i Tto grooad wator la asay arees of tto oouatry ia aa laportaat reeoorM ttot ia used for doaoetio, iaduatrial, aad agricultural purposM. A Tital aspMt of tto aanegeaMt of waatoa froa aU souroes, laolodiag aaalaar, is tto proTentloo of poUatioa that wiU degiato thia reeoorM. Por burled uaatoa, aay ooataalaaat aoat flad ito aay throogh tto earth aateriala betwoM tto borlal alto aad tto aqalfer oaderlyiag-tto OTM. Por aany DOB altoe tbla U aereral hoadreda of aetara, while for others tto bottoa of tto burial pit is within a faw aetera of tto aquifer (Appeodix B). Tto uaual drlTlag fbroe to aora Uw wastos into tto aqaifar ia paroolatioo of water froa tto swfaM through tto waatas sad lato tto groaad. Ia arid regioaa thia drlTlag fbraa ia low aiaoo oaly a soall fraetioa, if aay, of Uw ralafall paaetrataa aa fbr as a fbw aatara lato tto wnmA with tto aajority of tto wator reaoTod by eraporatioa. Bowerar, la Uwaa araaa aoreaMt aay ooour by uoMtoratad flow, a ptoiwaaaBB tbat ia little oaderatood. Sooh au>MWt wiU to oooaiderably alower tbaa Uwt la Mtarated aedla «id, beaaoM of tto look of adeqoato iaforaatioa and alow aoTaaeat by this aeobsaisa, it wiU oot to ooasidered f^ttor. BowoTor, tto following eaalyaea, baaed upoa tto tottoa of tto pit toiag eloM to tto top of tto aquifer, bypassM tto uoMturatsd flow queetloa la a wary ooaaanratiTe aannar. Tto typea of aatarlala latorTealac totweea Uw tottoa of tto uasto pit sad tto aquifer wiU Tary widely froa alto to alto. Ia aoae areas, sooh ss Baaford, tto uaatoa are buried la aediaMto of a relatlToly oaifora Mture, although aoae atratlfloatioo of peraeabUity oooure la tto layera of eedlaeat. totwoM tto pit and tto wator table, towerer, tto water flow through MU-llto MterUla. Ia otbar araaa, tto laterToaiag aateriala are Mild, with pMOOlatioa oooorlag aloog fiasores. Tto burial groonda at Los Alsaos, la Toloaaie taff, ead at Oak Ridge, la ehaU. are of thla Mtore, althoogh tto dietaoM to tto Mter tabU la Tsatly different in tto two ooMa. In areas idwre tto distaaM is large, partloularly if tto IntorTaaiag eedlanto hare a high etotoaga eapMlty, UWM 60 aateriala wUl delay aay leaototo froa reaohiag tto grooad water for aany bundreds or OTM ttaoosaads of yeara. BowoTor, this ftotor U aot tatoo lato aooooot la Uw foUowlag aaalyais. In order to arrlTO at an eatlaato of a geaerlo Halt M toTo uaed our elm>lified aodel of Uw burial frouad, ooaslstiag of a total arw of 1000 a x 1000 a, with tto tottoa of Uw wasto pito at tto top of tto aqalfer. Tto aquifer ooasisto of a uaifora bed of aedlaeato 10 a titiak ead offMtlToly Infinite in extent in the toritootal diaeaaioaa. As s baaia for tha caloulatioos ws ooosidsr Uwt tto leaototo is releaaed uaiforaly to tto wator table over Uw area of Uw burial groaad. Thia OMtaaiaaat is, ttoa, asauasd to alx throogh tto foU depth of Uw aqaifar. Sooh alxiag, of ooorM, wiU oot ooour uatil aoae dlstaaoe doeaatreaa, hot eqpalTaleat dUatloa wUl raaolt atoo tto water la puaped froa tto grooad throogb a weU perforated aloog tto full depth of tto aqoifer. Tto aoveaeat of water la tto aqalfer is asauaad to to at a rato of 30 ea/day perpeodloolar to one aide of tto barlal grooada, a value reasoaably repreaoatotlTo of tto slower aoveaMt at Uw BRDA altos. (See Appendix B.) Disperaioo ooefflcieato are aet iatrodaoad aad tto wator ooaooatratloa ia oaloalated at tto doeaflaw adBO of tto borlal groaad. Qfebsr aora raaUaUa aodbU darlTad flroa traaspart 8toory are arallbbie aad ooold to oaad la thla basla ooaflcaratlaa. Oaa Appeallx Z.) loosrar, tto lack of adaqtoto i^ot dato for aoat aitea aad tto uiawaifstlM of tto alapler aodel aiAn it attraotlTo for this gsaarlo oaloolatloa. Aa laportaat reaotioa la tto interaotioa totwoM a ooataalaaat la water and tto -MUS or Mdlasnto in tto aquifer U Uwt of loo exohaage. This reaalto In reaoring tto cootsainaat froa tto Mlotioa ontU tto awrfsM sitM oa tto MUS are Mtarated at tto reeoltlag ooaooatratloa. Thaa, tto ooatealaaat aoves throogh tto groaad at a slowsr rato tbaa tto watar sad alM lowsrs tto ooooentratioa at tto froot. Tto adaorptioa paraaeter ia aeraally axpreaMd aa C^, whlob ia expreeaed aa

"inntittT fi^ '^mrtJElrtrrr 'r XM arlUTm rf •"" (3) 'd Quaatlty of oootaalnaat in wator/oa^ of aater A dlstributioa ooeffieleat (E^) is a aaaaurad eaplrleal aorptioo ooefflolent need to expreee tto smrptioo relatiooship of a radloaoellda betweea tto aqueoue aod Mild pbaaea of e MU euapeaeioa. It Is oaaally expressed aa tto aotlTlty per grea of MU to tto eqailihrioa Mlotioo MtlTlty per M^ of eolutloo, thaa, tto uaite are ea^/g. Tto parpoM of deflaiag E^ WM to oMlgn a nuaerioal valw to tto aorptlTO otoraotsriatlos of a MU fbr a partioular radioeuolide. Thaa, K^ TSIOM MTO boM uaed axtaaalTely la aoMllag tto aoreaMt of radloanolldea throogb MUS aad poroos asdis. UafortOMtoly, C^ valuM totwoM ladlTldoal Mils sad radioaoolidM are aot ooaetaat. Sa faot, ttoy are highly T«rltole depeadlag oa tto pB, oeapeting utloaa, aad aetbod of aaaaoreaeat. Tto followiag ia aot tto roault of M eateaalTa ssareb for C^ Taluea for Pa aad to, but repreaeato aoae dato pobllsbed froa 1958 to 1977. Prout'^* aaasursd tto E^ of plutoaiua with s Sooth Carollm sObMll oooUining approxiaauiy 209 olay aad 809 aaad. Ba Mted tto differeooes ia l^ at TorlOM pB ToloM aad oxidatioo sUtes. Por Po(IIX), K^*s were gruter Uwn ) o lO-* at pB Taluea totwaon 8 aad 11. BawaTor, C^*s were aeaaared as low aa 10 for Ptt(III) at a pB lOM then 2. Por Po(If), tto deaiaaat eoidatlM sUU, tto C^*s were grMtar Uwa H)^ fbr pB TaloM langfng fToa I to 11. at pB ealaM grMter tbaa 5, Uw E^*a ware craotar tbaa 10^. Par taCfll, tto loaaaa E^ TaloM were obsM'Ted at pB TaLoM laaa thaa T{ thaM E^«s wore isaaraUy laaa Uwa Hr. At p8*s gTMter Uwa 7, E^** laoreaaad to a aaodato at fl 7.5 «a8 deerMaed to ap^>oxiaatoly 200 at pB 10. Bogara^ obaerrad a alallM' pB relatloaehlp totween ^30^'P^o an^^d a^4MUi . —Bowerer , *,,kttoA aaxiaa'- -a- wC ^ K.9of 10tn^5 was ohasrrsd bsttoM pB 5 oad 6 ratbar than betwoM 7 aad 8. Boadlatti et al.^ obaorTod E^ TalMa of approxlaatoly lo5 using Pu(If) with a Miaal aUt loaa, pB 6.5 ooaUlalag 5aM of oaloiaa in tto aqueoua ptaM. Oa aoataorUloalto ola^, Pu(IT) bad a I^ of to while Pu(fl) waa lower (10^). Approxlaataly 200 boora were required for equUlbriua of Pa-238 witb tbrM MUS.^ Tto E^«s after 200 hr were on tto order of 10* for Mutral baae-Mturated Mila froa Bashlagtto sad nilools but about too for tto acid base-uturatod MOdy Mil froa Sooth Carolina. Pranoia,^* uaii« tto saaa MU froa South CarollM and Po-237, found tto E^ In waUr-Mil suspeaaion to range froa 3 to 121 over a pB raaga of 3«3 to 7.8. Tto low K^ cbaerTod in thia MU U dM to tto soiabUiMtlM of MU orgaalo Mttor at pB*a p>Mtar tton aeToa. Ih tto preseaoe of 0.01 1 Oa, tto K^'a greater thM 10^ at pH valoM totweeo five aod aerw. OM sfaoald sppreeUU tto faot ttot K^ TalMa cannot to ladiaorialaately aMlgaed to MUa, but rather 62 »

atould to qualified aa to eoviroaaeatal ooaditloaa, sooh M pB, bSM Mturatioo, aoil-Mlution ratios, oooUot tlae, ead oaltatloo states of platooiua. There ie a Halted aaooot of data oa tto E^ of Aa wita Mils. ProbMly eoae of tto beat work is ttot of Bootsoo st al.''' por a bass-Mturated Waahlngtoa sUbMU, E^ TSIUM for la were greater thaa 1200 aad ladapeadMt of aodiua or oalolua ooaoeotratlooa in tto MU Mlotioa. Bowarer, tto B^*e for en acid South Carollm subMU wsre quito low, raaged froa 280 to 1. uA Mre fUBotiooa of sodlua aad oalolua ooaoeotratloas la tto MU solotloas. Oaaerally apMking, for Mutral baae-Mturated Mils, E^*s for plutoaiua sad aaariolM are « o uaually greator thaa 10'; howeTor, for Mid ssady MUS tto TSIOM OM oftM to M low ss 10, depeadlag oa tto pB aad MU aolotlM ooapesiUoo. Wa wUl oooaidar a TalM of 100 for aU traaaoraoloa, aa repressatatlTO of a reasooabla worat cass at tto pB*e aad ooapositloa of water expeoted la aoat aqoifere. Tto oaloolatloa of tto ground wator ooooeatratioa oea to aiaplifled by noting ttot at eqoUlhriua betwoM tto rato of addltloa of OMtaaioeat aad aoreaMt douagradieat, tto ooaoeatration at tto edge of tto borlal groood will to equal to ttot whioh would oMur if tto Mtire aaipage ooourred as a line eooroe along tto dow»-gradiaat edge of tto burial groaad. ThM, la oor OSM, wa aaaoaa m additioo of I Ci/yr or 2.78 x 10'^ Ci/day M a 11M seorM aloog a strip 1000 a wide or 2.78 x 10*^ Cl/dsy par oa laagtb of tto aeoTM. WbM dUoted la Uw full 10 a depth of tto aqolfsr, tbU is 2.78 x fO*** Ci/dsy per oa^ froot of tto total eqoifer. While tto iaitial ooaoMtrattea ia tto wator phSM WiU to grMtly redooed dM to adaorptioa oa tto MU, oootimwd additioo of fttrttor lacreaMto wUl result lo bulldap on tto moil mtil m equUibrlM is reached totweeo coooontration left la tto water and ttot oo tto MU. Thla oooditioo wUl to rMOtod When Uw ooaooatratloa la tto Mtor ia equal to tto ooooMtratioo la tto added iaoreaeot. Jo aaaeato, tto MU is aow Mtarated for tto exohaage at thia ooaoeatratloo aad aay aoreaeat of Uw oootaalamt froa water to MU is exactly belaaeed by tto rererM aovaaMt frea MU to Mter. Thua. aftor • lone tlwe tha mMoentratlon In tha water will net denand en the Tslue of "^d but only on tto rato of addition of traaaoraalo. In oor refereoM osM 2.78 X 10"^ Ci/day; tto aoveaMt, 30 oa/day; ead tto poroeity of tto aquifer. Tto tlae required to build to oquUlbriua, bowerar, wlU to grMter for blgtor E^*a aad for lowar valMa of Uw poroeity. At equUlbriua, thm, tto concentration la tto ground Mter wiU to eqMi to tto quantity aditod per day per aquare oMtlaetar of aqoifer depth dlTlded by C3 tto Toloae of water pesslng throogh tto sqoM

(E^*«)'

) 2 atore R is tto psroolatioo rato, or oa'' of Mter paasing throogh oMh M per day, 0 is tto MU dsosity, sod c is tto MU porosity. SlaM tto orM porosity is eqosl to tto Toluae poroeity,' tto Tolooity of Uw Mter, T^, in tto ground U glTM by R/c. Tto distsBM, x, trsreled by tto front la a glTM tlM, t, la

t T. (5) d***

TABU zzn

WATER COBCEBTBATIQBS IB MODEL CASE 1 Ci/day Additioo

Poroaitv (pCl/al) 0.1 9 0.2 5 0.3 3

ok Tto influeooe of E^ and porosity oa tto aoreaMt is Ulostreted la tto oaloulatloaa preeeated la Thhle ZZUI. TtoM resulto iadlMto ttot for E^ of lOO' or grMter tto distaaM of troTol in our aodel aquifer U aodeat OTM for rery long tioM. RadloMtlTe deuy toe oot bMo ftotored lato tto trenrel glToa. Uoager diataaees ooold to oorered in aroM wtore tto flow of water ia totweeo laperaeahle layera or fraeturee. Por exaaple, at tto Idaho borlal groood tto flow is throogh aediaMto totMao boMlt Uyere with tto hicteat peraeabUity at tto baaalt latarfMM.* EVM here. towoTor, tto ooooeatratioa wiU to Halted by loa exotonge ead tto total flow of tto aquifer uader tte borlal grooad. Tte qoaatity paaatratiat to tto Mter table rapraaMto Uwt uhieh U leached froa tto waatto aad peaetratM tto forMtioM oaderlyiag Uw borlal pit to tto Mtor table. Dato to eatlaato tto rato of loMhiag-froa Mtaal wMtoe are eoarM. To obtain M approKlaatioa M wlU OM tto data froa Maxey Plato.^*''' tore tto wastos wsre burled la M lopeaetrahU (OraatlM aad tto

Tttu zzxn mSTRBCBtV lB«fB. (la) OP OGBtAiaiATXOB PBQBT Bin BAXB VSUICZR OP 30 CM/B8Z

Tlae XltCft JL. IQ m. 1 oao jfljlQft c • 0.1 10 1 0.007 7 X 10-* 7 X io-» 7 X 10"* 100 10 0.07 7 X 10*3 7 X 10-* 7 X 10"5 1 000 100 0.7 7 X 10"* 7x 10-3 7 X 10"* 10 000 1 000 7 0.7 7 X 10-2 7 X 10-3 « • 0.3 10 1 0.02 2 X 10"3 2 X w-* 2 X 10-5 100 10 2 2 X 10-* 2 X 10-3 2 X 10-4 1 000 100 20 0.2 2 X 10-* 2 X 10*3 to 000 1 000 200 2 0,2 2 X 10-2

65 pita fUled with Mtor froa Uw roia. tte leeoteto fTM tto to pito waa collected la taato aad aaalyxed. of 217 dia/aia per of «Sa ead 10.2 dia/oia ea3 of ''•pa wita TalMa of 3290 dlsAila per oa^ aad 163 dis/aln per oa3 reapMtlTely. Tto larMtory la tto Mstos la UWM pito oaa oaly to obtoioed approxlaatoly bat la estltoted M 810 g or 18 000 a of *^Pa aad 28 kg or 1870 Ci of '39^. Qrer H)^ litere of leeetoto bsra beM Obtalaed aUwe poaptng started la aboot 1972 to rMoti Mtor that hod lafUtrated Uw treaob. Thla OMurred oeer a period of eboot tbrM yeere althoogh tto loittal poaping oadoobtedly reaofed leaototo ttot had accuaulated la tto traaebaa prior to thia tlae. PToa tto aTsrsgs TOISM, atout 1 Ci of ^^h* aad 0.05 Ci ef ^'^ ware aeotaaUted la tto leaototo or 0.0079 of tto 238pg iaveatory sad 0.0039 of tto *39p, mteatory. TtkiaE lato aooooot tto toMlbUity of a loegar Isaoh period Uwa tto poapiat 'torlod, this would iodioato a leaeh rato of U)-^ to 10*5 par yaer although tto TOIM is uaoertaia. This leaeh rato also rsproaoeto tto efftot of a loager tore of oootaot totweeo tto uastos and tto water Uwa would ooour la tto poMlng throogh of InfUtratlng wator aad, aa sooh, woold repressat a hl|^ TalM. Wa wUl aooept a TalM of 10"^ per year M tto baaia tbat tto Ikasy PUto ooaditioM aUoMd aooh aore leeohiag tbaa dbsoM aooor if proper drsliWB)* ^ prorldad. Tbara la M real rMato to dlffaraatiato bettoM tto leaohiag of plotooiaa and tto leaohlng of aaarloioa la aaob a sitMtloa, tiasMa tto uadotAtadly depeada aore opM tto stray ooostitoMta la tto wasto, eoaplexing egMto aad oaddaato, Uwa upoa tto streagUi of tto adsorption of tto traaauraaloa M tto wasto aatwial. to wiU, therefore, UM tto ssas TSIM for eeob. Tte potentially ooataalMtod Mter ia ooasidered to to seed for tM purpoMa: doaaatle water aad Irrlcatloa. This raqairM drlUiag of a waU or Mila la tto arM obero tto Mtor is oontsaliw».ed aad poaping of tto Mter to tto aurfoM. Tto probabUity of su^ sn ooourreaM aust to ooasidered u low beoauM tto arM InTolred wUl to aaaU. m a Mter table flowiag in ssdloMto, for exaaple. Table ZZZH ladiMtM Uwt tto STM wlU to up to ssreral kUoaetore la Uw diraotloa of flow aad oae kUoaotar wide after 10 000 yMre. BowoTor, tto poMlbUity of aovMeat to a poiat of UM oaaaot to exeluded.

Tto OM of tto doaoatlo uator ttot U of to tranauraniua 66 eleaent uptato is for drinking. Jo this COM M wUl iMlude ^'Su alttougb it toa decayed to only 209 of ito original aotlTlty in tto 200 yeer oMtrol period. Tto pr^MbUity of eivoaure to this iMtoM is OTOO sasUer Uwa for tto othere because tto aree of oontealnated water wUl to liaitad by tto radioaotlTe decay in tte yeara followiag tto oootrol period. In Table ZZII we establishsd wator ooooeo tret loos for differeot poroelties of soil for the addition of l Ci/day to the aqalfer. The allowable ooooeotratloo la chUiaed by dlTldiog tte llaiting latato froa Table ZI by tto daUy Intato of fluids, 1650 oa3/dsy. Tto ratio of tto sllowsble ooooeotratlon to tto ooooeotratloo reaulting froa a releaM of 1 Ci/yr proTldM tto alloMbla releoM to tto aquifer. Tte total qoaatity in tto borlal groood is thee obUined froa tto leaeh rato of 10 /yr. TboM oaloolatloaa are glToa la Tabla XZIT.

fij TrniRtlnn Per UM of tto wator for irri

TABU ZZI? ALLQWABU QOABTZTIB IB TBI BBBIAL QBOiaP POB DQMSnC OSS Of TBE AflUlPER

Ulowabla Allowable Quaatlty in

(Ci/yr) (CD 23Su 0.052 260 000° 239,280py^ 0.039 39 000 2*'to 0.0081 8 100

Vroa Table XI and intato of 1650 M/day. Proa Table ZZII and coltwn 2 using a poroeity of 0.1. ° Corrected by a factor of five for decay during tto oootrol period. 6- of aroaion to tto , rvsultiag in an aroaion aUainatloa rau froa tto -I aolla of 0.003 yr' Addltlooa, for tto 60 to of vatar par yaar and 1 Ci/yr ralaasa fk-on tto bwlnl groond mold to 60x9 (Tabia JOl tor a poroalty of 0. l) or 5M pCl par oa^ to raaolt In 12 pCi/g par yaar addad to tto «5 t of aoll banaatb a t on^ araa to tto aJxlng dapth of 30 QB. It U aaaunad bara ttat tto mollda in aolatlon In tto aoll will adaorb mpidly aad will to aixad by agrlooltaral pmotloaa tbroogh tto aoll. Tto oaloolatioo of tto allowabla quantity in tto burial grooBd la (iTao In Tabla XXT.

^ HnriMiit rirn Imilffcr tn ntmi la mmm oaaaa aa aqoifar ooold flow lato aurftoa atraaaa ttat ir« oloaa aaougb to tto diapoaal sit* ao ttat tto ooataaiaatioa Araat will raaah tto atraaa tofora radlonotlTa daoay radueaa tto ooaeaatratloB to inaicalfloant larala. Hhlla tbara nay to ratardatlon of tto flow dua to adaorptloo on aoils, whan tto front doaa raaoh tto atraaa, tto input to tto atrai will to tto aaaa aa tto input to tto aqnlfar if aUowaaoa is aada for radioaotlT* daoay. Thla ttot tto antlra aqulfar antara tto

TiBUI nf ALLOHABUi QOilTITIBS OT IHOTWilHW nBOIR USD OKI TRAISPB TO UHnWi VITB WLTBt OSD F« miSATIQi I Ulowabla* iQttUibrluB Ulowibla Ulowabla •uollda Uiat For Quantity In lalaaaa Quantity In Soil [ (pCl/g) (pCl/g) (Ci/yr) (CD

^^ 350 t too 0.32 1 600 000^ \

239.2*0^ 200 4 000 0.05 50 000 \ 2*'to 1« 2 600 0.005« 5 too 1

^Corraotad by fiotor of fitra for daeay during ooatrol parlod.

68 Oooa tto oontaalaatloa aatara UH atraaa, it will to adaortod oa aadiaaota with totovior aiailar to ttot daaeribad fbr traaapart duriag aroaiao. lowaTar, alnoa wa do aat taava a tofinad dlataato tnm tto burial groaal to tto aqulfar for Uiia oaaa, it la aora dlffioult to atoaaa aay daoay aorraotiaaa. Froa Tbbla mil It would appaar ttat aay atraaa Atrttor tbaa O.f to 2 to froa tto burUl ground would raoalTU w aoataaiant for atout 10 000 faara* lowavar, thla t^la was daritrad for bypottatiaal oooditioaa ttat do aot tato lato aeoouat tto poaaibillty of aoo»hitoaganiltlaa oaaaiag ntamiallBg of tto flaw aad a fiatar aovaaant of tto watar ia tto watar tabla. Ite will aaaqaa, ttorafbra, ttot tto quaatitiaa aatarlag ia tto aadiaaat atady apply with oaly ttM daeay oorraotioo for 2^Ftt oataaioaad by tto 200 yaar aeatrtfl period. Tto qaaatltlaa ralaaaad to tto atraaa aa ealeulatad la tto aroaiaa aodal aad tto oerraiipoadiBg arwraga quaatitiaa in tto burial grouad era gltraa ia Tabla xm.

TABU XZfl

ALLOtfiBLB QQARITXB H BOIIAL OiOinB BASD Oi AOOXFB MFTniO mO SOIFACB SniAM

_ tMSBIKLm I • • I. anartif •^> iliTlnitfli — flit AUoatoU* IHnaahla* lltotoWa* AUaabbU^ Allimibla* Allowable^ •uollda a^i^— rnr^ItT Ml ITT OnMlTiltiT **'*•— flimtfin (Cl/y) (Ci) (Cl/y) (CI) (O/yr) (CI)

*'•?« 5 TOO* 2.9xlo'^ 380^ 1.9«I0^ 3700* I.9KIO'^ 23»,2*0p^ 3 500 3.5x»o' 220 2.2x10® 2300 2.3«lo'

**'to T5 T.5xW^ 2* 2.*xlo'' 5 5x10*

^roa Saetloa fBte - lalaaM to Straaa. ^Froa Saotloa VBId - lalaaaa to Straaa. °Froa aaetioo fBia - lalaaaa to Straaa. In burial Qrouad. *tatiaatad by ratio of iagaatioa liait for ^^Vn to iagaatioB Halt for 239.210^. 'tatiaatad by ratio of aoU Uait for ^'•fu to aoU liait for ^''•^•'^Ptt. 'laeraaaad by ftotor of flva to aooouat for daoay daring ooatrol period. • I ••• H««i to ATara Ul of tto uait. d«^v1 for tta ltoabi« to tta aquifer toto«d upon tto total quantity of tto trana-raaiu. eletoat pretaat U tto burial gr—. fbr ooaparlaon witb tto ottor llaltatloaa batod upon ^^^•;'^'''\A^lJ^^ operatioaal toe in deoidiag ahiob totah of wMte toould tot go to tto burUl gnH»d. we win ooavert ttoae total quaatltUa to ^rerag. oo«.eatratito. in tto burial ground by ualag tto voltoa in our aodal burial ,6 .2 with Tto aodal burial •«»— baa to araa of 1000 x 1000 a. J 10 burial in pit. • a toap. Thla Uada to a joltoe of %xlO «^. overau buUc deaaity of tto aata of 1.5 ./«^. UO. ^^^ "^J^^ of 6x10«g fbr dUutlaa. i«la qoantltlea in tto burial gwund orer thla TOluae are gltraa in TabU XXfll.

TABUXXrZZ

ALUMiaUA' to janm

i!blL ^'^'^ Tbtal Total AliaKil Allf»wd (aCl/g) (CI)

Vroa Tabla ZXIf. ^Froa TbbU ZCT. *Froa Tabla ZXfl.

70 Tto experieooe at Naxey Flata'', aa wall M at ottor looatloaa. baa indloated ttat burial of tto waatto ia a ralatltoly lainraaaltli fortatioa ia aa area with high rainfall ean lead to aoouamlatiaa of water ia tto waata pita with oooaeqoaat leaehiag of tto traaaaraaloa lata thla watar. If, thoa, tto fbraatioa omtalM araeto through ahloh thla watar ato flow to a lower elovatloa, aaeto «ad apriaga of tto ooataalMtad totar aw oooar. A aiailar ptianaaaaon oeuld ooaor la wUa or aediaeata if tto liqatda aorlag doaauvd out of tto waata pit aaaototar a Uyer of laparatobla Mtariala raealting ia a parehed water table. If tto iaperaaable layer Uitaraaeta tto grouad aurfaoe at a lower alavatioa, a aprlag or aeeap ooald to foraad. la tta im eatoaage aitea, partloularly la flow-through flaaaraa, beaaae aatarated. tto oooomtratioa of traaanraaloa will baooM eaaaatially aqtol to ttat ia tto lea^Mte. Tto watar aupply in aash a oaaa U Halted by tto araa of tto burial ground and tto ralafaU. In Maaay FUta^ tto 10^ Utara poapad In three yaara repreaeat about tto aao«t froa a hooMtold fbuaat ruaalag eaa-third of tto tlaa. ThSa qaaatity would «a«btlaM oooar la adltipla aprlflta or aaapa m ttat aay oaainqUte a aaHU (traotloa of tta ttflal. R, ttarafbra, appaara doabtfol that thla watar wsald to aaed aiTanHeaiy by toy popalatlto tfom tor ddaaatlo or IrrigatiM purpoma. Tto priaary potMtial problaa would appeer to to with M ooaaaioMl iadividual driakiag tto totar or UToatoak grasiag ia tto ragiw or drtakiag tto watar. It ia aetad, towarer, ttot ttore wUI uadatotadly to owy other otoaiaala preeeat la tto wtar, at laaat la tto early ptawa of leaahiag, ato thato aay waU affwt tto potabUity. Ha have Mt iwa-aued thla pathaay fttrthar aiato it U fait ttot auoh ooadlUow of waata burial ia wet araw abould aot to penHttad.

1* IntrnalflB intin lirtt Hmi Wa have ooaaidarad two tytoa of iatruaioa poaaible. Tto firat, deaerlbad ia thla aoaaaHo, ia tto astual latruaim lata tto waata aaw by «l«iag lato tto arw either awidwtly or w pnrpow. Tto aeooad, to to totoribad la tto aaat aoewrlo, ia uae of tta arw of tta burial grouada at aaw tlw tiataaw in tta future, tow eroeiw haa reaovad tta oorar, fbr llTiag or ftraiag. Th* firat fera of latraaiw wiU to daaarlbed Sa tto foUowlag aaaaarie.

fi Tto queatioo of iatruaioa, partloularXy people digglag lata tto arw, baa raiaad aow bwted datoU ia tto Task Qroup awtiaga. Oa tto ow beta, tto r«elii« haa hew atroagly expraaaed ttat our Obligatiw ia to praeito warning ttot tosartoua aaterial exiato uader tto grouad. Aayoto digging, ato doee aot heed thie warning, la reapoaaibla for aay ill-affaata ttat aay reault. Motlfioatiw would to by abovo-grouad aoauatota alaarly aartod to ladioate dangw or by aay other wbwa deaaed feaaibla, awh om aaveriag tto waatae with red oooarato. laoluaioa of raatrietioaa w laai uw ato tto raaaoto for thaw reatriotlooa ia aay legal daeariptloa of tto property waald alae aaaiat beaanaa auto doeiaeato uaually totre a llfb laager thw govaraaaato. la aaaaaw, thla approaW would aay that w would aat laaljito tola Itorwiw pa*>»toy batowa tto raapoaalbility toould to plaoto upw tto indlTidvil wto ia itoliaad to latruto into tto aaw. On tto ottor toad, there waa tto fwliag ttat ow oaawt aaaura ttat auoh aarkm would laat tta lifetiw of aoM of tto aualidw, parUaalarly with aw'a kaoaa poaohant fbr vaadaliaa. Ia additioo. If tto burial of aolld tojeeto of lateraat, aaoh w aaohiwa or laboratory aquipaeet, atotiauto, tto burial grouada aoald to oonatrwd w w "attraatlw aniaaaw* baeaaw there wiU alaaya to aonaw to tato t^.ridk to «aia w ahjaet tadaalrw. ttaa, thlawaaoalag would aay ,U»t w ahoold ooaaidar iatrualw aa a pwalhiltty. Tkla approaoh eaawtially atotw that our obligatlw ia aot to bury "hodbf trapaF ovw if m warn ttat thay are ttMra. aiiift« t>» «* <«>..««<^ *^^ J-MM *^mf^ —« <« fch. ii^lmiTfrl^f tHMi. iKwiTBri t&B Brartio ttit ttflu •an MmnlBttH witt Itnl tafl lOttiftiftitBit BrlBBialiB rtflBlrt tnilnt ttili BMatilnn anil fmrlilf a raBBOBBlili nnllnr iiiBiwr. Thto, w mil axaalto tto eato to datandm ito itoortaaw relative to othera aad provito lauuaaaiMiatiiMia to ttat eithar ooorto ow to otoew by polloy ^ktora. For tto mtruaioo oaw, ow auat ooaaidar tto wtlva fbr tto iatruaion aa wall M tto aattod. Ow tyw of iatruaiw would to aoeidwtal, wto as uateowiagly driUiag a waU through tto aan or digglag a Pwadsriaa fbr a touto. A diffareat tyto of iatruaiw would to tto iadividaal toe fiato a aaeftal or iatoraatiag artifact aad proceeds to axoavato toe wtire araa. ratrleving Itew aad, parhatot distributing thw to tto geaeral ptolia. to wiU ooosidM* tto awidwtal latrutor in a aaperato wtagory frw tto spavaagar baeeuw of tto 72 different aethoto of potwtial expoaura aad tto potwtially larger waber of people expoaed. Tto wwto aatriew ooaaiat of alawt any eoawivtole wterial, raagiag frw prooew row trato, through ooaatruetica itaaa, to Tarlow typw of a^lpaeot. They Tary widely, wt oaly ia aaterial but alw ia alw ato ratla of aorfaw to vQluM. Tto latter ftotor hw raiato queatiow w to tto otofbltoaa of aetivlty tor unit wight, of voluae, w a bwia for a liait, aiato to itw aato of high dewity aaterial with a lew aurfaw to trolon ratio ooold tow axtrawly higl^ aurfaw aotivity aad atUl aeet tta oooowtratiw liait. to will trwt tta two mtegoriw of low aurfato to TOloaa ato high aurfaw to volwa ratio ew^rately. Tto Uto of plaatic boga to aaatrol tta awtaaintioa daring hatoliag ato eaplaeeaeat of tto waatae alw raiaea a quaatioa aa to tta degrw of preaanratioa ttat tta plaatie owtoiaawt will provito fbr tta ewtwta. Bortoa,^ at BavaaaW liver, rotorto w tta whuaatlw of wutw after burial fbr It yeara. Tta waatw eaoaato ia plaatio ware wU proaervto wlto, for exa^la, tta writiag w a plow of topar atill elearly legible thraugh tta bag. He ooocluded ttat wich itaaa would to ^^aarvad "iadefiaitoly." Tha BBvirnwaatal Frotwtiw Acaoey rtoorta w a atady af tta biadagradtoUlty of ptolB^,Bg plaaUto hf tta Bkioa OarMda Corparatlw.^ Tba raaalto of this atady verify tta ooaBW belief that tta ounaat High laliMi, bitfi aalaeular wight, to'*bitiwt plaatioa are aot biodagradaMa at pratoiaal ratm. Tto oaly ayattotia, high aoltonlar wight polywara fbuto to to hladegradtole were tto aliptotic tolaatera and ttoir darivativw, with stroatural atoiflwtiw of pplyaUqrlaw ato poiyatyrew by raadw oopdyaarixatlw witt other aoawert aot leadiag to biod^radtoUity. BhUe tbew ware reUtivaly start-tani sttolw. tta tecbaiqtoa aato, growth of test aioreorgaaiaw w plaqaw, abould Itoimto tta utUiwtiw of tta oarbw ia tta plaatiw to provito dagratatlto. If tto growto doto ato oooar, ttoa praawably, tto plaatle ooald to attola. ia tto toaeoM of aoallgbt, for long perioda of tlw. It ww therefore, oowlodto ttot iteaa owtotato ia tto preeeat aoa-degradabla plaatlm aay to piewirto for relatively loag tiaw. Thla ia wt to wy ttot all aato itaw will rwaia slaw sow, ato pewibly owy, will to tookw duriag tto borlal opwatiw ato ethers will to bretotail by rodwto or other burrowiag eaiaala. Howavar, if th« poaaibillty wisto of aoM of tto panlrtooa «ith tto higher waste levels retaining iataot, thw oaaaem oust to fslt fbr tto iadlTidaal ato aay reeov«i tto pwhaga wd ooaaidar tto cwteato w valatola artifbeto. For thla reaaw. m fwl ttot wastos emtointo ia nea-dagradtole plMtle ebould to lialtto in transuranlo ooatent to a level lower thw tto waato toioh will dagrato la aoa* reaaootole tiae. to fully reallM tto iaportanw of tto pLutlo owtalaawt fbr wutea ia protecting tto wcrfcere wto truiaport ato bury tto waato w wall aa tto rtouotloo ttat tto uw of thew aateriala aatae ia releato to tto aovirato duriag auto operatiooa. Bowever, we ceaaot ignore tto toteatial prtolaa ttot could wiet ia tto future if eurioua arehwlogiato or aoavaagera ware to regard thew aateriala aa relioe of our civillaatiaa or aa ourioa.

Tbew typw of waato will ooaaiat of papara, alaaaap rage, or other biodegradtole wterlala w wall w waatoa with tto trantofaaiw elaawto inoorporatto ia tto aatrlx (aot oa tto aurfato), aoto to alodgw froa waato treatawt. Tto dagradatioa rato of tto biodegradtole waato ia axpeotto to vary froa aito to alto topeadiag upw tto aoiatnw avalltola to tta waatto ato tto oxygea ewtwt of tto tolle at tto burial depto. However, for ttow eetiaatoa, w WiU aaawi that tto waato, at tto Uae of iatruaiw, eaaaiato of a aoil-lUee aixturo wlto tta owtsaiaatioa diatrlbatad threugb tta oatarlal. "tot awte* will atiU ta preewt hi MOW of tto wwi wlfbra aiia»•* evwined tto tota w paauaoooalwia la aiaw ato tto Britiah data that itoiwto ttat duat lavala la exaata of l ag/a^ would reault la a large pOblla health problw. BhUa tta tito of ottowra of our hypottotical artifact bwter U lialtto, Aaapaagh'a date would itoiwte tto i ag/a^ to to a raaaoaable upper bouad. Such aa aayuaura would reeult in itoelatlM of 3-25 g of duat over tta 10 year perito or to average of O.OOO89 g/toy. Tto dow ratea froa tto inbalatioa of 1 pCi/day at tto aad of a 10 year writo of Inhalatiw, wre wlculated ualag tto coaataato ftoa Itole TI, again aeeoalng ow %m partiolee with plutooiaa to to claw I ato aaarioiw elaw H. Tto pltttoaiw dow ratw to tto bow ww iawMsH by tOf to allw fbr tto pltttoBloi rsMlafni !• tta Itog ttat «iU traaafar to tta bow. Ftoa thew caloulatiew, tos allrtwbla ''btapigd" uoBuwtratlw la tba warags aasto ww aatlMtad. Ttow valaw are glvw la ttola zmn. Thla aeaaarlo roproawta a aitwtito abera tto ladiTidaal ratoivw a btoy bta>dw la a relatively ehort tiae, mtb tto boM dow ratw owtiaalag through tto reaaiadar of hla lifa-tito. For tto platooiw iaot^to, tto abort tlw of aoeumlatlw aaaaa ttat tta lung la Halting aad tta bew dow rato ia about l/l to l/5th of tta Halt. For ^*'to, bowever, tta ow of daw V aaaw ttat tto bow u liaitlBc wd tta doto rato of 500 araa/yr wUl coatiato eaawtially througbeut tto rwt of toe lifetiw. Ow could uw tto dow eeaaitaent ooawpt ato aUow oaly expoaura each year ttat would provide a doaa over tta rwaindar of tto llfe-tlM equal to 0.5 rea/yr. Bowever, tta dow oooaitaeat ooawpt haa u aaoaaly ia ttat toe 0.5 rea/yr la allowto every year fbr abort-llvto nwlides or wtemal rtolatiw, while with aualidw auto w ^^Fo it raaolto ia low dow ratoa at eerly tlaw finally buUdiag to 0.5 rea/yr at tta ead of Ufa. This resulto in a lifa-Uw dow for tta toort-livto nwlidw of sboat twiw ttot of ^^Fu. BhUe CM ow argw ttat in ooeutotloaal expoaare tta prebtoility of owtlauto rapatitiw of tta dow year after yew ia low, tta aaas eaaaot to wid 75 TABLB IlfllX

son. COHCBBTIATIOBS TO UlttT OIQAi 008K OF miFACT BOBTB

Orgw Dow latw Averege Huolide ftir 1 nfll^flBT inhalafl aaii Lfits ygjg Boa^ y^g BaBB (rea/yr) (rea/yr) pCi/g pCi/g 23«Fu 239,2tOp^ 0.19 0.050 15 000 65 000 0.19 0.0t9 3 030 It 000 ««ta 0.019 0.17 30 000 3 200 for eovlronaental extob*>re Were tto iadividual haa ao owtrol over tto wuroe. to, therefore, tolieve ttat tto applleatloa of tta erlterioa of 0.5 rea/yr uaed here la appropriato.

^ "T** *-^«r* "^ v*'—* fi»<'* T^f-T Pallbarato aeaveagiag for articlaa of poaaible uto or iataraat is ow poaalbUlty ttat poaw grwt dlffiealty ia aaalyaU, aiaw aaab ohjaeto ow to widely dlatrlbatto ato aato la a variety of wya that cauld reault la expoaura to awy diffarwt people. Tto totaotial problw wiU to dapandwt upw tto tlw of iatruaiw ^Uowiag borlal ato tto corrwiw sttoUity of tto wterisl of toioh tto tojwt U aade ia tto burial envircoawt. If tto wterlaU are degradable ato tto ooadiUcw la burial are aato that coapleU corroaiw or blodegradatioa cooura, tbw tto owtwlwtion wUl to dlstorsto throughout tto atolaa aad tto prevloto aaalyaia wiU apply. Bowever, uader awy ooaditiow, aoeh corroaiw wy tato loag torloda of tlw, partloularly for reaiataat wterlala, ato it auat to aaswsd ttot amb itaaa aay to axhwad aad put to uw in a variety of waya. It ia eowltoto frw thla, ttat llaito Would te applito to aoto itew w that later uw wiU wt reault ia aa uaaoeepttole haaard. to a dafialtiw of tta tyw of iteaa ttat aay to of ooaoera, w would oonaider tboto ttat wy lateraat pwpla, either for tta aw for whlto tbay were toaignto or for tta awy otoer appllwtiooa ttat people cw drew up for eoeh itew. For exaapla, w old glove box aay becow a plaatar for flowara and all wrta of aorap oetala eew to have a woood Ufa w pert of w artiatic •ndwvor. SaaU toola have w latriaaic value of ttoir owe, ato aaay pieow of diewrdto equipaeat atow up ia hoae werfcabopa or ovea la totool ahow* Tto quwtitotlve haaard frw uw of auto aateriala ia extraaely difficult to tofim beoauw of tto diffarwt uaw ttot tojwto wUl uaderge eto tto lack of adeqwto data m trawfara frw tto object to aw. Tto prtolm is siallar to ttot of providing llaito for cont^iaatico oa tojtoto to to diatobad of to tto public frw a nucleer plant. Llaito for surface ooataaiaatioa oa tojecto to to relwssd to tto ptollo tove bew derivto by tto toericw tatiooal Staadarto laatltuto (AISI).*^ Ttow valws are baato uton wparieow rather tbw aaalyaia of hanrd n ttot it is not powibla to aaawiato a tow valw with tbw. lb fact, preewt wtbodology for providing euch wtiaatoa ia very ixiexwt, particularly ia aocowtlog for doaw reeultlag froa traaafer of cootaalnatica frw tto toject to other plaeea Were doeee oaa reault. Tto ABSI liait fbr plutoaioa (mr other treaaurealaa) la 100 dla/aln per 100 7 at w', whlto correapooda to w BGIF valw uato earlier.^ Other valuw tove bew rannaaatoad by iadividuala uaiiv varlow approaobw. toaater,^ for "laaative" arew of a pleat, i aunweila a valw of 2000 dia/bia par 100 w*. to "laaative arw" la cm where rtolowtiva wtariala are aot baadlto aad aoa-rtoiatiw workere are preeeat. Ba alw Itoloetw that averegiag ow to dcto over )00 oo^ for Inaalaato aurfaoee in general aad 1000 oa for aorfbew aoto w floors or mUs. Blats and Blaetoud^ ettoito tto workera ia rtoloa plaato ato ecocludto ttot a reaaoatole liait for thla owlide waa 10 000 dia/aia per 100 to^. Bheo tta grwter eolubUity of redlaa w owparto to plutcaiw is owsidarto, this would appear to to a coaeervative valw fbr plutoaioa. This liait did, however, apply to workera. Ttay alw iacludto a review of ourreet ccataaiwtiw Halts usto throughout tta world sto cooolodad. ttat they bto eafety factors of 3 to 30. He tove looked at other aethode of derlviag tto Halting wrfsce owtsaiaatloa. If m aaaoae ttat our artifact watar spetos w awb tlw working %rith tta ertifact w ta did fltoing tbw, tbw, over e tw yeer period, to wUl epeto 2600 houre. Tto total qowtlty Inbalto to Halt dews to our eritoriw of 500 araa/yr ow to eetiaatto frw Ttola mz by aaltiplying tto MU ooooentratloo by tto «to>er of toure, tto aaowt inbalto par hour (t.25 a ' ato tto aaauato average air ocooentration of I ag/ar. Thla glvw 9750 pCi for tto plutwiw iwtotoa or 10 tOO pCi fbr aaerieiw. Thw, tto aUowtole ooaoeatratiw ia 3 pCl/a^ for plutooiaa or 3*2 pGUwr tor aaariclw duriag the houra of working on tto artifact, to wUl farther ttot to dow thla work 3 -^,-87 Inaito in a rcoa with two air otoagw ato a v^wa of 900 a-*. Baaly" tos pointed out ttot, ia aa eooloeto , tto coooeatratlaaa are probtoly acre a fttootioo of tto total ooataaiaatioa preeeat w aay single ar^ ato haa preeeatto aa equatioa to eatiaato tto ooooeatratloa

(6) V n

f ia tto fraotloaal reauwottaioa rato (hr~ ), A is tto arm of tto cwtaaiwtto arw (.r), a la tto ocataaiaatiw per a^ w tto awtsalnated area (pCi/8^) f U tto volwe of tto row (a^) eto a U tto otober of air ofaa^e par hour. This equatlw Inataataaeow alxlng of tta owtaainant witb tta air of tta rcoa. ,87 Tto valw of f has beea exeained by Bealy wto oowlutoa ttat a valw of 5x10"^ hr' la appropriato for vigorow aoUvity to WiU, therefore, aeewe ttat toe artifbet iteaa with a vigor to prodwe thla rato of reaiMpwaInn wito offwUw at aay ow tiw. Tbla raaiMpMalw rato wiU to tta avoragi tta fail UM of woridag and wiU iaalnto perioda tow tta ooataalaaUoe haa to w waU w pwioda whw work bw atartto wbw tto reeuapeaaioo aay to t hi^ier. Tta Halting ooooentratloo, than, cw to totoiato by atoatltating tta aliowble concwtratlcw in eqwtiw (7). Thla providw llaito of 600 000 pCl/a' or 60 pCi/w^. For 238Fu, , tta dewy during tta owtrol wriod of 200 yeara would perait laereMlag tta liait to 300 pCi/w^. Tta iteaa ttat are pwtulatto to to reoovorto frw toe burial grouto wUl tove bew In cwtact with tto wU for perioda of huadreda ato, perhaWf ttoueatoa of yaare. For aoat, if act aU, aajcr corroaioa of tto surface will occur in thie period, releealng aoae of tto cwtaaiwtiw to tto wU. trw for tto aoo-oorrtolble wtoriala, aoae aurfaw rewtlOM wUl coeur ttot will rewlt ia low of cwtaainaat. Tto auabera of itaaa reoovorto, ttoir dlatrlbutiw la tto public, ato ttoir poaelhle uwe are aakaow. Bowever, it ia wtioitotto ttot fbw «riU g» to tto aew arw w that expoeare wiU aot to for wteoded tlw toritoe coapertole to tto life-epw or workiag life of to Itoividual.

78 Tta altwtlw wtore w object le uaifcrbly cwtwiwtto to a Halt is wt tto usMl ow. Rathw, tta owtaaiwUw wUl to apotty with tto Halt raaowc L ooa arw. Thw, for tojooto with large aarfbw arw, tto total ewtwiwtioo wUI to law thw tta product of tto area ato tto liait. For thaw raaaooa wa WiU arbitrarUy raoowato a Halt of 60 pCi/w^ averagto ever arew of 1000 o«-a2 . This valw ia not aa ooawrvatlve as tto oto applito to day to day operatlow, but wbw tto ralaUvely Low probtoUlty of intrwlw ato tto tiae for oorrooioe or ottor eurfaoo ofaaagee ia ooaaldarto, it probtoly repreeeoto a rlak lower tbw wlculatto for tto uaifora alxtora, although thla oaaaot to proven fbr reaaaaa givea above. Ideally, la toflaiag tta wwtw to tolto either liait appliw, ow abould to able to relato tta aurfaw cwtaaiwtiw valw to the aaw oooowtratiw valuaa with a polat in tta coaparative curve itoioatiag Ware eato liait ebould apply. Bare, however, a problea ariaw aiaw tto aurfato owtaaiaatlw is aore Halting thw tto aaw oooowtratiw tow to aaaU thlokwawa of wterial. To lUwtrato this ^-tolea w tove oaloulatto toe eurfaw ooaoeatratiw frca geoaetrloal ahapea fbr givea valuae of tta aaw aeaoeatratloa. Tbew valaw are glvw la Tabla SOX. to ow ta aaw, aay Halt of 60 pCl/w' «1U to vleUtto fbr tblataeea of 0.01 w or grwter for low deaaity aateriala ualaw tto aato Halt U aet awh lower thu tto praawt 10 aCi/g. At 1 aCi/g, fbr waopla, tto eurfaw Halt tottU to act reaaooably wU for low deaaity aateriala, aad with aow aargin, if tto Halting toickww ware wt at 0.1 w or 1 w. In lieu of attaapting to torive w laterohaaga point, ia view of tto uowrtalntlw in tta aurfaw level and/or tta raquirto Iw aato ocaowtratlw for other wwtw, w tove ccwlodto that tto aaparatlw abould to baato upw type of wwto. Tto geaeral traah froa tta epwatlooa (ooabuatiblw), tta waato traatoent aludgee, incinerator ato, ato other waato tywa where the QWtaainaticn ia related to tta geowal volow aad wt tta aurfaw abould to lialtto w a aata baaia. Bquipaent, ebwto of aetal, coaatruetiw wtoriale, ato aiailar itaaa Wtare tta owtwlwtloa ia chiefly w tta aorfaw wUl to QWtrollto w baato w tto eurfaw cwtaaiwtiw.

Tto raUcaala for ocaaidariag waataa ia plaatla wrappiag w poteatlsl 7? TABLB mX

SOBFACB COBTAMIIATiaB (pCi/ca^) FOB fAIIOOS fALOIS OF MASS OOaCORIATIOa I

••HtiiA ^(Bai a* or CrliBdir* flaf* Satore tyMm^a^ KU^ (w) Maee ooooeatratloa • 10 aCl/g

0.01 30 50 100 6 10 20 0.1 300 500 1 000 60 100 200 1.3 3 000 5 000 10 000 600 1 000 2 000 Haae ooaoeatratiw • 100 aCl/g

0.01 300 500 1 000 60 100 200 0.1 3 000 5 000 10 000 600 1 000 2 000 1. 30 000 50 000 100 000 6 000 10 ood 20 000

>t iwludto. arUftoto ww givea earlier. Tta evldeow of aarvival af ttow aateriala is wt ^to but tto evldeow ttat they wiU aot aarvlva ia alto poor. A aay to avoid auoh a prtolw la to develop owtalaawt aateriala ttat are edeqwU for tto handling procedurw but toich are teaigoto to dagrato la tto burial grouto. Thla Itoiwtoa ttot tta goal of providlag iaprovto pwhagw to alow tto algratlw of traaaoraalw frw tto burial grouto wy to uadwirtole. Tto awlywa ttot w have dow ladiwto ttot tta problw of aoveawt frw tto araa by leeWlag or eroeiw ia aoW lower tbw tto prtolw of artlfwts rwatntng. This bw Ud to tto ooaelwiw ttat dagredtole paokagw are of lowr totwtUl tosard thw paokagw deaigoto for loag-tiae owtalaaeot. An obvioua qwatloo is why swh waatae should to ooaaldarto u artlfaeta. In gewral, tto itew tbay ocatala are wmth little by totoy*s steadarto. There is, of oourw, w aasuranw ttot ttoy wUl not to alaply reoovorto aad reburlto. Bowever, tto treto ia our clviliwtiw appaara to to cw of apprwiating old ato uniqw thloga, wt fbr toalr itoerwt valw, but alaply becaaw they reflwt tto past. Tbw tto eoUeetlw of old beer oaw, iavolow, or doooaents of sny sort is a popular paatlaa. to oaawt assure tost oertala of tto Iteas burlto will

30 not eventuaUy to aiailarly prixto. For, exaople, la a wt^kage of f«sta tber* oould to notes oonoeming tto work or even perecoal aattere. Bven A.' ttore is not, tto ttougbt ttot euob itaae wy to there oould to adeqwto atiaulus for axpLoration. Ve tove wt attested to estiaato a wparato exwwre liait for totoUng of auoh aatorisls beoauw of tto unkww, ato unknowtole, uw ttot eight owisr ato tto air oonoentratiott ttat could remilt. Inateto, w tave applito tta Halt derivto previoualy for iatruaioa. into tta degraded oatarlal except ttat dUutiw faotora fToa wcootaaiaatto waatoa ato tta wU la tta burial grouto wUl wt apply.

AJ^—Imnmra nf IhatJi A pwtulatto totbway to aw la tta evwtaal uaoovorlag of tta wwtw with pwple thw Uviag la tta arw, faraing in tta arw or oarrylag cut other wtlvltlw. Tta burial arew will to large w ttot row wiU to avaUtole for auto uaw. Oaw egala, tto quwtica cf aarklng tto arw ato dwwdiag upw tto future race to eaforoo ttoto reatrictloaa ocouro. tore w ere ooocerato with tiw aoBlto of ttouaaada of yeara w ttot tto probtoUlty of aoaoaeato er other aartwra aodariag la aot aa great aa fbr oar latroaioa oato. Bb wiU, howver, approaoh thla liait w tto aato baaia u tto iatnaaito Halt, ttat U, tta Inforaatioa wiU to prewotto witb ito aoceptaaw atojwt to opialaw of ttow akillto ia legal or awlolegioal flelda. Ow wthod fbr raanvlng tto cover eto Iwviag tta waatw extob*d hw been dlMuaato la tta erosiw pethwy. Bare, tta aurfaw cover ia reaovto in 2000 to 13 000 yeara lwvii« tta expoeed wwtoe over tta oext perito of tOOO to 25 000 yeara. There are other waya ttat aight ta oooaiderto. Floote ttot grwtly eahaaw aroaioo could wt ooly uooover tto wutw but alw apraed thw out over a larger arw, although with aignifioaat dUutlw. Qlwiera could aoceapllto a aiailar aoouring of tto cover, although it appaara aore lltely ttat tto affect here would to to acoop out tta wtire wuto arw ato depoelt it over a larger area. In tto atortor tera, tto wutoe oould to uaaarthto ia lialtto areu by pwple digging a trench or fbuatoticos for build Inge. Tto probtoUlty of tto tTBTItlial roleaw ato uaooveriag of tto wutw by eroaioo or other ocourreoce la high at aoat of tto DOB aitee aiaoe tbey era In areu of wt eroaiw, wt buildto* It ia difficult to eatiaato tto prebWllity of any unearthing by aaa baeaaw of cbaagee ia populatloa «id dlstrlbutica of U topulatiw ttat will occur. Host BOB eitw are lowtto ia arew ttat wre iwlatto wtil I9t0-1950 booeuw ttay were oot owsidorto w prtw sitoa for ottor uaw uader tta populatloa patteraa thw provalaat. Btattar this wuld cootinus in tto future in tto saw wttem would probtoly depeto to any ellaatic ohangea or draatio population ahifta. Thue, w caaact atoto ttat tto probtoUlty of thla wthway occurring la high; wither cw to eay ttot It la iaaigaifioaat. Tto oooaeqoeaw of aoto wearthlng could to to produw aa arw.with aoll ooocwtratlow approeWiag ttat of tta waato aaw, depetoing upw tta aaowt of dUtttioa froa cutolte wU ttat oocora. Tta arw could raage froa a lialtto ow arouto a touw, wbwe tto excavatto aaterial la apreto out ia tto vieialty, to tto eatire burial area, or a larger area than tto burial arw, although at lowr oooceotratiw, froa sprsto dowo-grtoi«it by eroeiw. In tto woret oaaa of ao dUutica of tto reeultlag waato aato ato aaawlog that people live w tto arw, tto wU llaito dwivto provioaaly would apply to tto average aaw. Bowever, ia tto aajority of tto aoewriw letoiag to expoeure of tto waato, aajor dUutiw of tto wterial woald to eaaowterto. Bvw ia tto eroaiw eato, alxlng with wcwtaalaatto atolaaato frw tto rwaltoar of tta totartoto ooald oooar. to wiU. ttarafora, ooaaidar w afbitrary dUatlw fwtor of tw by iswwarttolwtod toils to ta sypliwbie ia eatlaatiag tta fiaal ooooeatratloa* Tta ^**Fu wUl have diwppearto aad tta ^**to wiU have deceyto to O.Ot of ito M^iaal valw ia tta 2000 yeara raquirto to uooover tta waatw In our eroaiw aoeaario. However, tto powlbUity of aoviag tta waatw to tta surfwe early by buaw wUw wiato, although toera wiU ta dUotlw ato Haltatiw of arwa diaturbto. to a ooaaervatlve awaura appropriato to tto uataow future wa WiU oooaider oaly ow balf-lifa for ^^*to ato five taalf-livw for ^^Fu in deriving tta llaito. Thew llaito are glvw la Ttola XQ.

^i Qttar rBttBBTB &« nntjfca BT TtBitBtlaa A totwtlal chronic releaw pathway ia tto uptato of trwaarwiw eleaenta by pleat rcoto, ato traaapart to tta aurfaw whore tta traaaarwiw wUI aocuaalato la toe litter aad hnaw over tto yeere. Tta diaertaitatiw of plwta agaiaat wat traaaaraniw elaawto aeeto that thla wiU to a alow prooew bwt

82 TABLB XXZ

LIMITS FOB ATBIAQB COBCBBTIATIQB BA8BD OPOB BZPOSORB OF HASRS

(pCl/g)

2^'FU 22 000 239.2llOp„ 1^

"'to *60 tto coatiaued "pwping" to tto surface oould, ccaceivtoly, to of iaportaace over long tiaw. A bicaaaa aodel, ualag tto pareaetora of tto eooeyatw ttot follow tto gewratiw ato tranafer of blcaaw, sto laoerporatiag tto uptato of plutwlw, U wter developawt at tto Loa Uaaw Saiwtific Uboratory.^*^ Tto aotel aaauaw ttot 0.2f of tto root aaw of a wture trw la below 1.5 a with tto uptato linearly protorticoal to thla fraotioa. Tto uptato owfflcieat is dafiaad aa tto fraotioa of the radioaativity reaovto froa wll due to rewiratiw of tta wU wtor by tta leaf bicaato. A valw of bxlO*^ (al/a^)*' (g(leaf)/g(wU))'' WW teteralato frw oxperlawto by loaaay at al.^ witb Qlover over a wri^d of five yeara. Oaoe again, tto uptato ia linear with this ooeffloient. ' to evaluation of tta uptato waa atoe fbr a piaoo-Junitor regioa typlml of Norttom tow Hexlw aaaualag waatee oootolning 10 nCi/g were burled t.5 a tolow tto aurfaw. Aftor 5000 yeara, tto aianlatod toU coaeeatrati«i reeultlag froa IB traufer of plutoniw to tto earfaw wu about 8 fCi/g. Tbw, tto reeults lodlMite ttat tta act reault of tranafer over tbia period wu to odd w aaoant of plutonlia about equal to ttat praaent frca natural fallout. This run did wt Iwlute erooion of tta surface eo ttat a hlgter reault could to prtoiotto if it Is aaauato ttot eroeiw reduow tto oover ato a higher fractlw of tto rwta reaoh tto wuto aaaa. leoulto with other typw of vegetative oover oould to iwtat higher but wt aigaiflcwUy, within tto errcra of soW a prtoietiw.' Froa this, ws oooeluto ttot w slgaifiowt prtolw exieto with platooiw If tto plut uptato of werlolw is liswsil to to higher thw that for plutwlua. tto tranafer rato wuld to higher, however, tto relatively abort-talf life of ^^'to w coatorto to ^^pa would liait tto tiw for traaafar to tto aurfaw. It la alw wted, ttot thla aeehaaiaa ia ualitoly to prtoow aorfaw ooooeotratiow axoetolng tto original waato ooocwtratlow w ttot tto llaito oeverto uader tto totbway of wpoeure of waatoe wUl Halt expoeuree froa pleat aovaams*' to tto aurfaoe.

kj fcMTmrini ialBBla, Aacther aeetoal to fbr briaglag waato to tto aorfaae (or iatrcduoiag water into tto wuto in neraaUy arid regicaa) ia tto wtlw of burrowiag wiaala or Inewto. Tto dbptta of burrow or tuaaele fbr eevoral aoto eaiaala are glvw in Table nan.'**'' to cw to eew, tto probtoUlty of other tbw wto rewhlng tto wutw with tto tw aeter cover le low. to tto cover erodw, ow cw agpeet traaafer of tto waate aaterial by thla aeehaaiaa. Bowever, oooe agaia, tto aurfaoe ooocwtratlow wiU to lower thw tto wutw (iaitiaUy) ato tto doaw wiu to owtroUto by tto totbwy of people Hvlag w tto arw after tto wstee are expoeto by eroaloa.

TiKB vwT

BQBBQH UBFIBS

Hudana Typical Burrow ato SBBOIBB X|iBPg;L nmptik (a) Barveater ant 3 N»lM 1.2 Faokot g^ber 0.6 Fwtet aoow 1.6 Deer aoaw 0.6 Field aoow 0.6 Bartbwofve 0.5

*CwpUto frw leferoaow 92 ato 93. I

( ^ HTBTB iTtB Ow geaeral ooooera at fwUitiee total lag baaardew aateriale le tto powibUlty of dlaruptica of proteoUve barriara by a aevere aet of oature, or aooldwt, mil toycto tto toaiga parawtwe of tto fwUlty, with a pwtulated eubwqueat releaw of tto hasardooa aateriala to tto ewirow. Tto poteatlsl prwieaa at shallow eerth burial aitw are lialtto baaaaaa of tto totoral atwUity of tto earth*a aurfaw agaiaat aaay of ttoto far ato. Severe wiada auoh aa borrieeaoo or tortodoa totoiag over tto wplaaat wute WiU not dUtarb tto wterial below tto aarftoa. IB toe laag tera, after tto burial ground aorfato haa erodto to oxpeto tta wutw, there wiU ta aoae wlto reeuepeuiw ato dlaperaal. Tbia, bawever, ia ow of tta wtbtoya eoMlderto in terivii« tta llaito. It U to to votoA ttat witoa wiU ta of laportaato duriag tto otoratiooal phaw wbw waataa are axpoato tofora burial Md precautlcw a^iaat dlaperaal at tbia tiae aoat to tataa. Barthquafcw abould prcduw little vw^ioal ditolaoaaeats er grew aoveawt of tta eaplawd wtoriala ttdUM. tta borUl graato ia w a fbalt. Fbr thU reaaw, oaro abould ta takw to aaaura that a faalt dew aot rw through tta arw of burial, folaaalo wtloa aay ta a raaota paaelhility la aow weu. fcwver, tta prabbblUty of a fiaaora davaIo»iBg la tta burial grooto is Iw ato owaitertoU dUotiw aad fixaUoa of tta tiwawMfna woM raaolt if it did ocew. foloaala wtloa at a neailiy lowtioa weald, if it affoatto tto burial grouad at aU, reeult in further aurfaw aover throogb law flow or ato fallout. . FaUlng tojwto awt to aaaaive to pewtrato tto sarfbto oover. Tha probabUlty of w aircraft aocideat at a burial grooto paoetrating to tto waata la low, A aafflcitoUy large aetoor could pewtrato tto aorfato cover. At Los Alaaw it WW wtlwtto ttat to peaatrato a alafaw of oto aeter depto, tto aetoor would have to weigh at laaat 0.6 kg, aad tto probtoUlty of strikiag pita with w arw of 0.1 ta^ U eetitotto et about 10'^ per yeor.^^ Thw, tta probtoUlty of atrikiiv our 1 \ta? burial grouto ia lO'^/yr. Saab w awidwt, if it ocourrto, would expow ooly a wall portlaa of toa waatw. Ia tto evwt of a oaw glwlal advaaw, a reaaoatole poaaibUlty wltbia tto aext 10 000 to 100 000 yeara, tto waatw ooald to expoeto either by glwlal totlw or entonned woelw flrca tta oaltiag anew ato iw. At aato a tiae, the traawruito oaold to ocaaidarto to to aaly a alaar prtolw eeapwto to thaw rewltlng frw tto iw age Ittolf. la atoitiw, tto toiwwt aad aixiag of S5 •oils would teto to dUuto tta traaauraaio by aixiag tbw wito large voluaw of wdiawt. Suob a ootoitioo would oot oocur for aaay yeere ato le cw of tto iapcaterablee addreeoto earlier. Floote oould poee a eerloue threat by eroding tto aorfboe cover ato transporting aU or a pcrtioo of tto aaterial dewoatraaa. to alterwtive tothwy is to prcvite water fbr wapage through tto waataa la a aoraally dry area thartoy ccatwiaatiag tta grouto water. Floote oaold aaaur ato cauw aoveawt of tto wterial wltbia tto aaauatd tiae of gmerwatotal awtrol. Thw a woeeeary criterion in tto loeatioa of a ropoaitory la aataral protwtioa agaiwt floodiag. to wUl aaauw ia tto fbllowiag ttot aoto a erlteriw U ueto.

L, BBBLlBCfiftJbClBL HhUe tto Tbek Qroup wu ooaaiwlooto to prwito Haito fbr shallw eerth burial, it becaw apparaot early ia tto atady ttot aaay of tto aaat aigniflowt totbwys could to elialtatto if tta waatw wsra plaato daw aaoagb ttat auoh forow w eroeiw, iatroaln by aw, plant uptato, barrowlag aalaals or faUlag tojwto aoaU aot aaoover tta awtoa altUa tta tiw ttat tta aaaewtratiow waw aigaiftaaat. tta origiaal awoipt «w tta aw of abaadeato dry olato or tovw at a depth aof flalaot to provito raaaaatola aaoaraato ttat tbato foroto would aat peaetrato, bto oot deep aaoagb ttat wter woald paoetrato to tto waatw. A eavera teg iato tta alte of a attola bill or aeaatoia woald alw wffiw. This hw bew wteodto to tta ccooept of elaply digglag deeper pita. ThU wUl Halt tta pUwe where "toop" burial ow ta ueto to areu with euff iciwt dtoth to toe wter table w toat tta waatw are aot eaplaoto in w a^iifer. Safety prtoleaa alw reault frca auoh deep excevaticoa ato tta coat aay ta higbar tbw la wrraotto. If thaw totbaaya are allaiwtod, ttaa tta priaary ooaoera U treoaport ia tto aquifer, with tta water aaed for driakiag or irrigatlw or addlag owtaaiaatioa to a aurfaw atreea. Llaito for tta averege oeaoeouvtiw for thla oaw taw bew owaiderto for ehallow eerth burial ato are glvw ia TtoU izni. to toiw aet atteaptto a fira dafialtiw of deep borlal baeawi it will depeto WW tto apeaiflw of tto aiU. Ow woald feel that a depth of ebout 10 a (30 ft) would to aufficlaot to diaaaarege aU bat tto aaat detotolato iatrwiw ato would eaawrially aliaiwto tto fbUiag tojoat, osaept for a very

36 Large wtwr uhioh would to higbly iaprobtole ato waald eaoto oajer prtolaw in itMlf. Bowever, our etaodard oaw for eroaloa (6 toto par aore per year} tnuid unoover tta wutoe in only K) 000 yeara. IbU aaaoBto ttot tto watee are burled in unoooaolltetto eediaento with ao eroeloa proteetioo. Tto 239Fu , If plaoed U such aa area at tto lialta for tta aquifer cow would wt reeeb tto LUlte for tto waato expoeure caw for about 100 000 yeere. Thw, to qualify for dwp burial, tto aito awt tave reaaoatole aaauranw ttat eroaioa ratea are wW ttot tto eotual wutw wiU to intact for thla Uw period. ThU would aeea to require a aito ttot U relatively ettole, or exteaaive woaioo reeUtanw auat to providto. If thin optiw U to to uato. tto individual aito abould to dwwonted aa to eroeiw reaiataaw by exaaiaaticn of paat geological btoevior. n liiBMnr ftf TIIBUJI anri flfiiTBralflB te Qairatlnnal Itiiiti Tta Haito terivto in tta provloue wtbwy aaalyaw tave referrto to tta averege oooceotratioa in tta burial grouto beeawa tbia U tta qowtlty generaUy ralatto to tta haxard. For exaapla, tta wU Halt U averagto over aa area dapeateat upoo ttat oato to raiaa fwd ar upoa ttat froa ahiW daat U raiato for Itoalatlw. Ttawoaito proooto« la aoviag aadlaeato to atreew, aot only dUutaa tto oootaalaatto aadlaaat with dew atolaaato frw upatraw ato towaatreaa of tto arw but alw averagw ww tto partloulto layer of tto barial ground tolng erodto. In aoveawt to grooto water, tto averegiag tatee piaw both verticaUy by tto raadw layeriag of wutw ia UM pita u wU aa torlsontally by traverw aoveawt of tto water w it eeew through tto wastu. In Utrusion, tto averegiag owura by digging through varioue portloaa of tto waato. However, eny operatiooal liait plaoto oa waataa wiU refer to tto aaxJjHB owcwtraUw ttat wiU ta allowto to g» to ehallow (er deep) eerth barial. Ttot U, aeaaurwwto or eetiaatoa wUl ta aato of tta ocaowtratlw in totWes of tto wuU ato if tto wuto U lower la ocaowtratlw thw tto liait it will qwllfy for burial. Slow wutoe lowr in oooceotratiw thw tto aaxiaw will to preeeat, tto average coaewtratiw la tto wuto wiU to lower thto tto aaxiaw uato for ctorational dwUloaa. lb additioa, tto bwUl grouto oowlsts of a wrlw of pita with utoUturbto wU betwaw thw ato tto watw are Uyerto with wU totwew eato Uyer w ttot w atoltiooal dUutiw ftotor exists. Frier to providing e lUtiag of operatioaal Haito, w wiU derive «

87 dUutlw fwtor for eato of ttow aoorow of dUotioe w ttot w ow reUto tto average lUlt calouUtto eerller to w operatioaal Holt applylag to tto aaxlauB Halt.

1. PUHUBB fcr aatlB l^irlag burial, dUotloo cooura frca tto laooapleto uto of tto burial arw. Thw, imatw are plaoto in tto pito or treoobw witb layara of wU alteraatiag with tto layere of waato, eto tto treaabw or pito are lawtto with w UtoUturbto arw betwew thw to allow rcoa to ttat awidwtal exaavetlw Uto a fUlto treoto wUl oot occur idMo a aaw traow U dag. A reewt eurvey of tta five wjor BOB aitw bbere waatw are borito (Hatford, LASL, IBBL, SIF. ato OIBL) ladioatad a weighted average for TIB waato buried prior to the eettolUhaeat of tta 10 nCl/graa eritoriw of about 3500 ar^of wuto burlto wr acre of land. A wigbtto valw baato w aU low-lovel waato burUd we atout 3700 o^ of waato per core of lato. Frw Ttola HI tta depth of tto treoebw rai«w frw 3 - 4.5 a at Oak lidge to 8 a at Loa Alaaw. For aba de^b of tta treoohw, tta 3500 a^ per acre glvw a volaaatria dilotlow ftobor of t.€ while w 8 a daplb trwalatoa to a voltootrio dttohiM fbator of 9.2. OB • mm baaia tto dUobin fbatora wiU to grwtor fbr aatartala witb bbU deaaittoa law ttaa toU «B nallar for wtoriala witb balk daoflty grtotar tbaa aail. Haoevar, tta aaabw with buU dwaitiw lower tbw wU gaooraUy ooaaiat ot awpwttoU aitariaU ato ow to degradto Xn tta grooto over long perlote of tlw. lb a raoaot atady of wwtoe evhi^to at Savaaaab liver after burial for It yeara,^ it wu aotto ttat wll arouto tta waatw ww dark-wlorto w if ataiato by dewylng organU wtter. Hoet of tbia wu attributed to tta daooapoaitiw of tta wrteoard boxw. However, ia gaaaral» tta waatw wew woU prooervto, parUoolarly tboM eaeeeto U plaatic baga, with wriUi« atiU legible w tta peper la tto plaatU beg. ThU elow daooapoaitiw ww attribatto to a tefioieeoy of ooygw or nltrogw for tto bUlogical prooeowa. Tbey cooclodto ttat ooapleU deooatobitiw of wood, wttw cloth, aad paper wiU require aavoral daaadw whUa aatala wd wterlaU eawpauUtto in plaatU wiU aarviw latefiaitaly. ThU providw a picture of tta horial grooto, wing praawt burUl prwtlwa, of a aaw of wU Utoraperato wito raaatoto of tto Uitial waato U varyli« dagrato of preeervaUw topetolag apw toa ttoa aiaw borlsl ato tto ootoitiow at tto burial grooto. to ovoraU aaw dUatiw fwtor of 5-10

88 appeare reaaeatoU wito saaU loool erow la tta barial graato lawsr thw thU valw. to wUl uw a valw of 6 for tta overeU oaw dUotiw by wUe U tto burial grouto. Tto uw of thla fwtor of aU could to qwatloato far tto awveegar oaw bewuw to would oot epeto tiae digging U tto toa prodwUto arato of tto apawe totwew tto pito. towover, thU U oot tto oaly aaarw of toe wU dUtttiw fwtor beoauw a part of it U dw to tto wU oorarlag aato layer. Ia additioa, tta acaveager doee aot know which are tta prodoetive ato aoa-pradoeUve voliaw eto cooaidertoU tiae wiU ta epeto la epaaw betww tta piu leokiag for tta artiftoto. to, tharofbro, taliaw ttat tta factor otoew U appreprUto for thla oaw.

It U tto prwuw to aU DOB faeUltiw to ooaaidar aay Mtarlal brought Uto a pro aaaa or laboratery area u cwtaaitotto tow it Iwvw u wuto, wtottor it bu owtwtto rtoiowUve aaterial or ato. tbU to tiiiatoi of tto dlffiealty aad expeaw of aweiirlng eoeh plow of paper, aloto, rtober, eto. to a level that wiU aaaow that oeateaiaatiw latoU aw alatoal ato aaaopttoU fbr aaaaatroUad relaaaa. Tbia raaalto la a dilation of tta awf Iwtto waatoa with tbU clew wtarUl. Sow additleaal dUatiw ariaw frw tta faet ttat awt of tta boxw wiU haw lower ooaoeatratlow ttaa tboto at tta tailaw Halt aet for tarlal. Ia order to eatiaato tto degrw of dilatiw frw thU aourw, teto are needto w tto diatributiw of cwtaaiwtiw la tto itoividoal patoagw of waato. Bowever, eooh teto ere aoaroo hwauw of tto diffioulty of aaking awb aeeaureawto. Oiatoboaar^ bw eui'»oyto tto five aaJor DOB aitto ato itoltotos ttat grwter thaa 9Tf of tta wtorial buried at tbato aitM U oaly very ellghUy rtolowUto or U aoapwtto of toiag radioaeUve baeaaw of tto plow wtore it U geoerated. Thaw five aitoe aocowt fbr 86f of tto total DOB waato volwe ato grwter thaa 99.9f of tto wtlvlty. If it were isawil ttot tto 3f of tto waato ttot U noaf-wiwtod U at a awiaw liait ato tto 97f of low rtoictoUvity or wtoonted cwtaaiwtiw U clew, tbw a dUotiw ftotor w tto ordM> of 30 would ooour. Data w cw tyto of wato, row trato, are avaUtoU frw tta Flutwlw lesser to sto Developaaat FwUity at Lw Alaaw. Here, tta iadividaal eardboarc borne cwtaUlag tta wuto are waaur ad w ttat tbay ew ta rootto to either 99 retrievabU etorege er burial. Tto teto frw alae aoatto of eperatioa are givea I In Table XXXII. Tto teto U tto hlgtoet tw wtegorUe were atreagly affectto by operatiw over ow owth during thU perito wbw 90f of tto total auober of boxw in ttow two oategoriee ware awawrad. Tto owuUtive freqoewUe U TWle XXXII, whw plottto egalnat tto logarltto of tto ccocwtratiw w probtoUlty paper, approxlaato a atraight liw Itolcetlag ttot tto valuaa are dUtrlbutad U aa apprexlaatoly log-ooroal fatolw. Tto dUutiw fwtoro, eweideriag eato of tto liatto valaw to to a awiaw liait, were oaloaUbto aaawlag tto average eeoewtratiw U ewh Utorval to to at tto aow of tto IcgaritoaU Uterval. It U highly protoble ttot thU proctoure uBdoroatlaatee tto dUutica ftotor U tto raage of 10 te 100 nCi/g bewuw of tto know dispooal of large qowUtiw of treto with w owtealaatioa. ThU woald lower tto average ecocwtratlca of 0.32 aCl/g for UM 0.1 aCi/0B oat^ory ttot aakaa op tto largaat vdoae of tto waato. To Uloatrato tto totontial obaage, tto dUtoiw faatore ware alw oalcuUtw •——Ifg tto 0-1 aCi/g category to cootoU w troaauraaloa. Tto trw anaiMr la probtoly tattoea thew valoea. Both wto of oalcalatto valuw are givea u Table mm.

TABU urn FLUTUBUM UJBIIBI Of lOQH TIASB AT THB LOS ALAMOS FACILITX

Cwtaaiaatiw « Boxw at f of Boxw LttMla at Laval OlTan (nCi/g) I <1 1 625 90.7

1-10 97 5.» i 10-100 39 2.2 I 100-5000 31 1.7

!

?o TABU xnzxz DILOnOB FACTQBS CALCBLATID FBOM LASL BOON TIASB

LlBlt ttilBtlQB fBflWra

10 20 60

100 85 1 to

5 000 380 390

Tbew data iUuatrato tta expootto treto of w laoreaalag dUotlw faetor (or ratio of tta aariaw to tta averege) u tta aaociaw peraittto iaereawe. Thw, for a Halt of K) oCi/g a dUutiw fwtor of 20-60 U'axpwtto for thaw waUa ead at a 100 aCl/g Halt tta dUutiw fwtor U laereaato to 85 to 110. ThU U oaly ow tyw of waato frw ow ftolHty, with other typw of waatee each aa alu^ee or oUa probtoly aore wifora thaa tto trato. Tto uw of iMlwratiw WiU teto to iaeroaw tto uaifcraity of tto traaaaraaito owteot of iadividaal paeki«M, aad tto alodgto ftoa tiea»awt of aaatw haw a aiailar charwtoriatU of raUUvaiy ooaataat ooaaeatratiew. Ss biditin, a aiagU liait w tto oaxiaHa coaewtratiw ow raaolt ia aladag of aaatw er totabto of ato or alodge w ttat tta dUotiw ftotor predioatto above U aet approprUto. be believe, therefora. ttat tta dUutiw fwtor attribatto to tta lowr oontaalnatto trato U oot appr^rUto for ttaw typea of waato.

•^1 Tfltal BUiHtInn Faator For tta routiae trato or teowai sal wing typu of waato, tta tw dUutiw fwtore of wU ato lower cwteaiwtto waato aw iadepeadeat w ttot tto total dUutlM fwtor U 120. However, for tto ato froa wldiato coabaatihlw or alodgw frw wter trwtaent, only tto wU dUutiw fwtor U approprUto. Thaw dUutiw fwtora are not appropriate for the artlfacte, eittor wild iteaa with aarfaee owteaiwtiw or for trato typw of waato cootalato U aoodagradahU plastic coataiaera.

91 Tto Haito teflvto earlier are daaeribad la varioto toatiow of thU report ato are ewtterod U variow tablw. Ia thU aeotica w wiU briag ttow lUits for tto itoividttsl totbwsya together w ttot they ow to ooaparto with ow awther ato at tta awe tiw w wiU apply tta dilatiw fbatara derivto U tta preview eectlccH, w approprUto, to WtoU llaito for tta variow elaeew of waatw. At tta eew tiae w wUl iaalote tta reUtively ahert-livto perwt of tta treaaaraaiw eleawto ^*'FU, ^*^ eto ^**0a wUg tto raUw of eurU of daughter per eurU of poreat trom. TtoU tV. Several elaeew of waato haw beto teaaribto U tto dwrivatlw of tto Haito. Tto firat U obaraatoriato by tta nw wlferaity of tta owtealMtiw leveU to that a dUutiw by lew eoUw waato ooeara. ThU ooaaiato prIaarUy of degradable traah aad raadoa aatorUla ia which tta oootaalMtioa ia dUtrlbutto through tto wtrU rather ttoa toiag to tto atofbto. Tto aaxiaw Haito fbr tbU tyto of wato, twltolng tta dUatlaa by aaU ato lew ocataaiaatto waato, are givw for eoto totbaay in ttoU HUT. Ito eeooto claw of waataa U obaraatanato by a reUtiva aaifbraity in aeaaeatratiw, w ttat tta dUatlM by law aaUw waatto doto aet oooar ato tta otttaa liait diffbra ftoa tta avarai te «ta barial grntoJ ablf by tta dUotiw by tta aoU. laaiaarator ato or aladgto trom tta triatat of Ugald oaato IbU lato tbU wtagory baaawi of tta avaratiag owr larga gaaaUtito of trato for tta iMlaarator ato ar toe tataw of tta pro oaw for tta alodge. Ualto for thU cUw, iMltolag tta wU dUutiw (botor, are glvw U TtoU XXIf. Tto aob-claaaw, baato upw tta latraaiw ato artifaet buatlag aoeoariw were alw tefiaed. Tbew iaalote a eurfaw eooteaitatiw liait for wlU tojwto ato w arbitrary Halt w degredahU trato paafcto U aeo-degradtoU plaatiea. tt win be ^••a^iiar.d Miat tMa aaaaarta Maa iaaladad far aoa- aliiBBBBB aUimttn na flaaiBKa fwld m lailB in tf TBUrflrmm a a fn bhatftac intiTialnn ahnnlil Bt fmnamarBil If BffBrta ara Harta tn Birn. ibew luiu, for tto Utruaiw totbaay ooly, are givea U TtoU XlXfX.

V. IBOOMBBBAXXOBS

Tto raaalto of tto pathaay oaleuUtiow iiaaaartiil U ttolw XXXn tbroogh ZZXfl itoiwto that tto expoaare of waatw ato rooovery of ertifacto are eleerly tto ooatrolllag to^bwaya aad llaito baato upw tbew to*bwya wiU rewlt U

92 tiHJi xmr

MunmH Lncts pot woiiDiBU waaa nm mm OR DiCOniMIlAnQi (DlUmOi PACtOi • 120)

1.1 (f,CUm^ zj^ i^^z'^ aula, Imiinn tin fltrwi 1,3x10' •1.3x10^ l.lxio" Driaklat of Ukt«r 7.0x10* 1.9x>0* 2.2x10* 7.3x10' Irrlcatioa 7.%x10^ 2.0x10' 8.9x10^ a.oxio' lati^ Plah liMflMM te iflttlftr T80 170 5.7x10' 1.0x10* 2.9x10' Drinkliic 5.2x10^ txlO^ no 3.7x10^ ».*«»0* 3.7«'0 Irrlcatioa 3.2xw'

i^wntilnt tti iflulf IMO'' 2.te10'° *.8E10» T.OXIO^ UtelO* 5.3X10 3.8.10^ «1.»x10« «l.8xl05 ,.faK»^ 7.6.I09^ ,.^10^ Irrlcatioa 3.8x1o' *.tx10' 9.0x10* 3.0x10' 7.te10*® 1.7x10'° tatlac Piah Tntnalflo 360 360 380 1.3x10* 7.2x10* 1.3x10' Soaraaciac 2M 5.2x10' 1.8x10* 2.6x10' W 7.2 UTlnc oa Araa

I I

I 93 I I

TABU ZZZT I HAZIMOH LIMITS POi OHDATIQC nOOOCTS OP PMUDAmj WASH Oi SLODOB PBOM TUAXNOT PtOCBSn I (DILOnOI PACTOi • 6) r

1" BECUlflAJ 2»2(^ Patbitty 238y. 239,2<0»„ 2»1^ 2*1^ 2Me»

Driakii« 1.6x10* 6.6x10' 2.2x10' « 5.9x10* Irrlcatioa - 960 l.lxio' 3.7x10* - 3.6xlo' tatliV Plah - 1.0x10* MO 1.5x10* - 3.7x10* - UM rra Drlaklac 260 39 8.« 280 5.2x10* HxlO* Irrlcatioa t 600 50 5.* 180 3.2x10' 1.9x10*

Drldklac t.9xlO^ S.5X10* T.SxIO* 2.6(10* 5.8xlo' I.3x10' IrricatlMi 1.9x10' S.tsio' t.ixw' 8.0x10^ S.txIO* 2.3«10* latl^ Plah 1.9x10^ 2.3x10* S.Oxto' 1.7x1o' 3.8x18' 8.9x10* iB^miiflB Soavaaclac 90 18 19 630 1.8x10* 6.7xlo'

LlTlBC oa Araa 130 2.» 0.36 12 2.6x10^ 890

9k TABU ZZXfl LmiS POi TBI NAZmM OQRBR OP TIABSBiABIC HISXB BASD OPOB XraoSXOB PIBMIX

Trnt of Miiti ~ Solid It«M with DacrodabU llMta Surfaoa Oootaolaatloa la loo-Dacnidabla

pCl/0.2 aCl/c

23*Pa 300 15 239,2»0p^ 360 3 2*'A. 60 3 "'Pa 2 000 110 2*2Q. 12 000 3 000 2WQ. 22 000 1 too

olnlaal doaaa froa ttaa othar. Both of tbaaa pathwaya OM ha oooaldarad aa latmaloo* ahlA aoaa paoBLa fbal oas ha oootroUad bj adaqwita aafainca. Bowarar, axpoaora of tha waatas eaa ooear hy aatoral BhoooBaaa aooh aa aroaloa, aad at laaat partial axpoaara oaa oooor trcm plaata Mfrioc tha aatarial to UH aorfaoa, borrowlac anlaala aixlac *^ •atarial, aoovrtac nooda or othar uaforaaan aotlooa. Moat of thaaa aotlooa will ba alow ao that tha atpeauro

fka iBpBrttPoi of tha of ttaa aaatoa aad tha •oaathla laaartaaaa of iatruaioa lad tta Ihak QrouB to tha poaatMlltf 9t aiialaatlaa of pathaaya By.flaaiaB ttaa iato ttaa

A fira Bafiaitioa of daap barial ia aot BoaallM* haaaaaa af aida difforoaoaa la aitaa. Xaataad, U ia naoMooata that aaoh alta for ahiah thaaa liaita ara to bo appliad aaat ba ravioaad oarafdlly for aroalaa rataa aad othar

amnpaaMaa4BiHaw wuaMa* ^wp^a^aa ^ia»|^p^pv ^i^aw ^^Hivapv^a • ^^aaw^iw^aiw ^i» ^^^^^ai^^^^a^^^ ^a* ^ ^w^^^^^^ ^^^f^^^^w ba ooaaldarad aa a BoaaihiUty. fbr daaa barial. ttaa *.*^»—**^<** aathaur ia aoaalMa laaohiaa af ttai aad BB>itn8 to aa «9>iftr. HaiUii umiiiHrBttow to Mbi BaM.«M«&

XXEwXXX*

WZXHM LSntS fOB XHBBWtKUL OriBBBBI vDBTWlBiTBP

toifbntly

<» 4aei/g>

«SVa " SOOO ' 300 «39*2to,^ 800 00 B»lj^ too 8 000 1 000 000 so 000 100 OOO 10O60

«- faanM^ oaa diiiildaBt ttigifir 97 i

rW-f

OHM appltoBUtoM "to ahall aarto barial toBly to to alto any aa«r WotoBt* Uattottoa aa to aatlto*'^toBto Mli^laf toato that haa coto aa to too pato, tto qaaatiaa ariaaa at to ito toBto tow liaito aould apply to barlBl craoato that taava baaa adai to toa^toBl^' 4k faaoanto ttot ttaaaa liaito apply ohly to fatara buriala alto to iB»ltoatlaa that paat buriala ara oaaafia. Ihto to hoaaaai ttaaaa Ualto^toHra BartaiJ toi a fftotrte baato alttaoto rafaraaaa to ladlvidail alto totototaftotlto totflta togr to fbr tottar thaa aora aaaaaad tora. to addlttoa, ttaa ailaBa>lto «t toatoa fotaattal rittm to ttaaaa oarrytoc oto ^te apdratSaa. to, ttowhwa, ttot aato faat burial aitoa to avaluatad oa thair oaa atrlto ao anaaa ia fl. MJUMBBMB to ttaa body af tto raport aa Bara attaaptad to ariftoto toa otoioaa of aoaaariaa aad to diaooaa tte arScto of tto paritotii hmT tod tto toto availabto tor auto dtaatoaa. 1taa(« ara, haatoa*, aatoral tottara ttot ahoau to

•iB*ift,,^r >; ^7'^'^'fS- i«!S»vfeJi».*Se*J^ 3'«!«t,

Bfiit iiWti frr iBmiAi Za tto pratioua

_^SS!L 'BSBta'' riato to toa ttoa tto aaatoa Bfi lato tor toitoeto af BirrtoBtotBftot-toit tttoAaitoli toMtoM af paakacaaaf aaato aaa raoocrtato ataartly lartor tto to aCi/iB Itoto aaa iaatitutod ato raaaarto uaa atartto to pravite latorwaatatiaa to to liBltoB to tto aaato haadliv oporatieaa. toa'firto amiifiBiai ayatto aaa appUBi to 9r litar, af low iiMioiii aoahaa. auto aa ara asMtotod to BLatoaiHi ftoUitiaa. thto f«iiia:tad to MBM X, to toftto tto toK to ratotto ato of tto 17 to? X-raya attta a aadiaa todtoa aryatal. thto •ato .roattooly to tto toa Alaaaa toloetifto Ubaratary for aitta aaaaiUvtitiM «a tto artar of I ad/g. Baoaaay a MUS U, I, canaauaa, paouoa aaaaaaor aaa a tK aauavu totoator, haa baaa Blaood to oparatioa. thto aait provtoap aiiiannad aaptoility of totootiOB traaaaraaisB alaaaato to bigtaor daaaity aatriaaa ato aito hlctaor

aaito fbr ahtoh ttaay ara tataadto (thoaa aito loa aoataat) thara to atiU aato fbr tto iataaticatiea

^ tatacJ^a 4|8 toa anadjapaaaat*, ,-XpBlc».jLa ayataa aatog a 30 tof alaatrto aa^roaa, aa aall aa toaavar, ooaaidartoto aortc to ra^airto eaa to built. to tto poaatomttto for farttair dafalopaaat to givaa to Appatotx a.

to aaa dtooaaaad to toa orltarto aaoUoa, a baato fbr aalooUtioa ma darivto toat Uaitto, tto doaa to tto orgto raoaivtog tto «k|toto doaa af tto iadtoidual toat aapaato to tto u-aaaaraHfaa altoajtfp aato Ctoto aatarlal ralaaato frto (lowfii—aajt^ Additioail daaaa, taatorar, toll to ta^ptoto By pao^to ao l^t tto poyglittoa dato aaau iaalato toaaa Bdaaa aa aati* to aitaaptoJLto latOiii to •attoato4af tto BaBalptSto toto tm Ito paatolatto '' i.to'a;totoito4^^af.to» af botonto* Ptoatoai ato aaifeatol to Blato (80^ la Btottol ttoaattoi of yaara). to baliaaa thto tto aaoartalaty iatototo li aato aatraBatottaaa ato oaloutotioaa aould to*to iraat aa to aagato tto aBMfiUaw af aay tolaalatlaaa. Boaavar, thara to aaauraaoo ttot tto popalatlaB daaaa «iU to lewar thaa tte Itoitiag doaaa aato to thaaa aattoataa. tte aaaot aaoMit laaar tapitoo upoa othar iapoadortoloo to tte'oatiaataa - partioularly tte oaataaa aM tohito of tte todividaala too aato up tte populatioo, aioaa thaaa aill d^Tite aot ably tte pooaihiUty af aapoaora bdt alao tte dagraa of aapoatot.' ^laalttatlM aattoataa of tto ralatlaaahip bataaaa tto doaa to tte aaxlaa •Mpeotd itoividaal ato tte for aavaral laportato tottautya am, houavar, prortoa

attlLfBttBBI. tte aoil tottauay ooeura to toa aooeariea tovolTiac irrlcatioa aad axpoaara of aaataa. toraally oaa would ooaaldar tto aotoar of paoj^ liviac fbU ttoa oa aithar «raa to to raUUtoly aall, ato totaralttaat aipnawroa froa wortora to tte araa or Tialtora wobld to aaU baloa ttaoto fbr toito tte liaito wora baato « ooattoail raaidaaoa. Oadar ttaaaa ooaditloaa tto populatioo dooa aoaid to to aai? a faa paapla,' toaavar, tto poaatotlity aaiato af haviag tte .-^^b ^^^^k&^ ^^^^_^^^^^^^^ ^^f^^^a <^Ma B^^^nMO^^ato jf^M^^^ •' j_-^-|^ ^^^ ^ iK^AWUraS MCpDOTV toBSft wm fltotoBUm WB * toHB mm m

Qoald to aapoaad. Itonaat, tte Itolt to baato apoa aa laillridaa graaiag hto oub food aad ibtaaliBg aa avaraga of 200 ag/«' af toat dariato ftoa tto aoU. tto aetaal aipoama of aaotaato of a papulatlnwaill vary flraa Bboto toto for ladlrlduala ato aork oatdoora to a toaty aaficoaaaat doaa to, paitopa, 5*101 of thto for iadlTidaala ato aortc alaaataara ato apaad aoat of ttelr ttoa at baaa ladoora. tto tagaatioa patbaay dapaato atroagly oa tto aaooat of fbed groao at teaa. for tto ItolUag oaaa aa Baaa ooaaliarad tto ladivldaal ato groua aoto of hto fbod at Baaa. thto to, of aoarM, aora apptoprtoto to aoa of tto lato by iaditrtdudl fbnMra ttaaa a aall-lmit aoaaaaity. toaatar, ttaara ooald to

SB ordor to atoiaato tte popuUtioo dooa, toto to provito tte fraqaoooy of tte varloua aogrooa of axpoaara auat to afailahto fbr tto torttoaUr oeatototy. ttoM ft'ogMaaoiaa aill vary dtoBW'^^bg toM tto typa «t aototoity (i.a. atoarbaa, attoa or rarall im tte eliaato, ahloh wiU ooatrdl tto aaaato of tto* oatieora •to tto typa aaAtiitgraa of gUiaai^. ttoto ttot tto •gpaaai'i aiU alao vary dipotoiag a9to.$te af- rato or oator i^Ntoltog' 101 ?•

Dotailod toto of ttala Mtara ara M9% ayail^to far ^Iffaraat typoa of I ooaaooitioa to diffbrato parto of tto aaaatry. towtar. It to alaar that tte avaraga doaaa ato OBM ratoa to a totB^Pftoead •ipialoUte toll to aaU baloa tteaa rooaitrto by tto aaxiaua iadiaidual. tto gapatotiaa doaa froa aMrioiaa I will te partioularly lew baaaaaa a large part of thto of fooda.

Ooataatoatioa of atriaat alto WiU oeour to tto oroaiaa ted laaohliig to aquifbr- aito diaeharto to a aooaarioa. BM^ tte dew ariato firoa driaktog of tte aatar ato atoiag of fito I toAaiaB ^^Hl ^HBvAiB^p tPi •OM^to --1p|HVt^«>j^toi^^Kapa^PfawMH^^ •^^^^mM^^^^U^.. -wi^^T ' •"^^^•' lodlTidaal. lo thate Baatortea total jopatottoa BeaM aill popttlatloM douaatraaa ato topaad opoa toa aatar far driaklag, tto ftootite of tte population ttet uaoa fito Area tte atraaa, ato tte etoraotariatiM of tto atrate. If thto to a larga poinlatloa a largor pepalatlaa dote ooald aeorae lf^i» ^^^^^M* wBoa tte *<**..*'» loootlaaa tf *ifMii•*««•> aaatoca daiaatraaa tto ^laataif^ga ftoa tto ba^tol graaad.to toa^toaatoa-^iv»•'«««''^^i^-f^' '''^"•""•~i.j-i,'» to baltota ttaBt,ttoa tottaaty aaald raaalt to tto.Blltoat .jWitoTatlnn

iBttaaiflB tte aaat telorUy; of tte dote ftop totraatoa aeau te to toe indlvidaaU totroAiag to tte arte te ttet tte pepalatlon de« oeald te oatiaatto by tte prodaet of tte dooe to tte totradar ate tte aaaaato atohar of todiaiduala iavolted. thara aould te « additleaal ooatrlbatiaa firaa toa eaataalaatloa « tte latradar*a elqttate or paraoa aad froa aay pii^iftoto i wnud but ttaate deaw wauto to highly to»aadaat toto tto apaalfSto or the aam. It to aUe aatto thto tte toto ra«Birto to provito oatiaatto of tte BOM, ovaa to deflate oaaaa, ara axtraaaly ategar ae ttet aogr aatiaato would te poor* I

tte barial tod poaaibto ralaaaa to tto to toa atoivto to toa

^p% toPBjjlWWa"toto a^^ppA^B^WKS^to •••• a^^api^^^Bi^avfca ^w^ a ttae praaaat itou of ,10 aCi/g tof j|B|U

1C3 eteta, ate by ttato ttae tto fnaUtlM era hy faotora of 10»- 3^ or thuor tte aatural aeUvitloe wiU prteuM elpto rtoiatlte deoae ttot wUl te atoilar to tte troaauraaioe. tte diffaraoeoe to dOte aaaete by aapaeara to aatural depoeito of alpte aaittore ete tte treiiaaraaiaa to toil Of tte pbyeioel ate eboatoel ebaraotortotioe that baaa aat evaluated, froa tte above, however, it appeera ttet aetaral depoeito era at leeat aa haaardooa to tte eate level ee tte traaaaraalM. thto givoa a aloe eo to tte order of aataniili of effteto ttot aay te obeervto, taowover, ta e aato aaall or poputotiae, ftoa fiaal lavoU to tte eoll of treaaaraaiee. Bito ttato latearlafia ate tte overall dUatlM of 180 bataaaa tte llait oa toe aaadaaa ooaoeotraUte ate tte avaraga to tte atelaaad aaato, tte waeto llait would te 100-1000 aCi/g to prodaoe tte toa, bat etill totooaa, leveU of hem ttet aay ooear ta theee aataral dteaaito. A aora quaatitotiva ooaparieoo oaa te aato by oaaaHiratite of tto dooe to tte booa froa aatoral aaittore ee aiiaterto to tto ItaitiaB tote doaa of 500 area/yr eate ta toU atady. toaauraaaato have bote aato of tte qaaatity of oertata hey aaelidte ta total boae, to tto betal bady, ate ta baaa ato. ttaoae «*to, **>to, «H, *»g, atai ^ al|,. ,1,^ aaalldte eU I, ail

tte toto avaiiahto ta tto Utaratare ea tto boae or body eoateat of theee tetaral aaolidee varlte ta aataot ato ta tte auaher of paopU aeeeurte, wlto '^*ta raoelvtag tte greatoat atteatite Md ^^Sa ate ^'^th tte laeet. to have oot atteaatte a ooagUto Utaratare review fte aaalidee aato M ^^Sa ate '^^fb I but teva aaloette eeveral pepere ta abite toto ftea iBveatigatore other ttaaa thoee aakiag tto abody raperbto are liatte. to dto, heaavar, oheok to ete ttet tte valuae uete are oaapertoto to oCtaero reported to tto Utoratara. i Ia geaeral, we have aato Talaeo far boae ato rather thaa atele btey to or oetiaatee binauai ttaaee valaaa tfo alaeidf to tte teaatlty dealrte -^ oeaeeatratiea > graa of alaoral bete, tb eearart to aiaeral baaa aa ootte, ttet toltaaaaa^ deteralate ttet tte everega ratta of oetoite eeotaat, expraeete ee Caj(P0^)2. to tte boae ato eoateto to I.QOl t 0.012, todieettoB ttot tte ato oaapoaltloa oaa te ttooa aa Ca«(P0^)2 for thia Ite te a oalolaa aeatoat ta tte booa ato af ahoat 39t. tte XCBP, ta their aea etudy,*^ todloete ttet tte ealeite oooteto of beaee aitheut aarroa for io»» •dolta wara 19.7f fbr tte almU, t7f fbr tte rib ete It.to far tte Ulua. For tte followlac oalottlatlooa we aaauaad a value of t9f. thue, tte ratio of booa aah to alaerel boae waa tteaa aa tte ratta of theea two or teeut tOf. Doee oaloulatlooa wara dooe oalac tte aaae aatboda aa fbr tte traaauraoloa with toa oxoeptiooe ttet tte dooa dietribtttioa ftetor wae tekao ee uelty ete tte aotual aoarglee of tte auoltae mad/or tte appreprtata daachtere ware uete. Doee retee for ^^^Ttk ate oaturel ureolua were eetiaette froa tte toU clveo by Looaa at al.^ for *^*1h ate by BMilteo^ for uraaiua. tte oraaloa doaa rataa wara ooly a aaall fraotloe of ooa araa/yr ate wara aot oooeiderte farther, tte ^^^ doee reto waa ooly teout I araa/yr fbr ooateoto oloee to tte teper ate of tte quaatitiee foute ate aaa, acata, icaorte ta tte fiael tahulatioe. tte ^^*ta ete ^''^Pb - ^^^Po doeee ware eetiaette ftea a tteU civaa by Boot at al.'^ ttet ioolodte tota on 5t6 oaaea for '^*to ate JI36 oeeea for ^*^Pb orlclaatlog ta tte oorthaaat ate aidwaat O.S.A. tte everece booe eoateota (oorraotte firoa boae ato) ware 0.007 pCi/c for ^^*ta ate 0.06 pCi/g for ^'^fb, ahloh reeult ta doeee of 1% araa for '^a ate 60 araa tor tte ^*^ - ^'^. tte data for ^^Ha ate ^^1h ara aoto leee exteaeive wlto elx aaaauraaauta givea by Stehaey.^ Beoeuee ^^^ to e daughter of ^'Ha ate ta tte pareat of a ohata of roUUvOly etaort-UTte aanlldte, ae atiliate tte toto for ^'^ih for doee oeleulatioaa. tto loageet-Uvte dai^hrer ta tte ohata fblloaiag ^^h ta ^^^la wlto a half.lifa of 3.68 toya. to, ttaereforo, aeoMte tte total alpte eoergy of 31 to? liboratte ta tte oteta to te affaotlve ta protootac dooa. tte average qaaatity of ^ th ta tte booa tMa 0.0053 pCi/g ahlte leede to e doea of

thue, tte averace booa doaa froa aatural, alpte-aaittiag rteloimelldee ta oa tte order of 100 araa/yr. Bowavar, tte eeaa eourooe of teta eleo taolnte tte reage of itelTldual valuae eo toat we ote oetiaeta e aexiauB boae doee ta tte aaapta aixee available, theee valaee ere 160 area/yr for ^'nhi, 200 araa/yr for ^'°Pb ate 90 araa/yr for ^^^. tto ^*^ doeee ware eetiaette with two high valuae, loteli« to 1800 araa/yr ate 530 area/yr eliataette. to telleva tte value of tte aexlana for '^th to te poaeibly low beoeaea of tte vary aaall aaapta alao. Beoeuee tteaa aaaauraaeata were aete oa dlffarete iteivldaaU, tte peeelbiUty of aU oooorrtag ta tte eaae tadivldual ta uahaoaa. Bowaver, StahUcofao^ Iteitetoa ttet tte alavatte aoUvitlee of ^^Th were foute ta booea ttet oootatate high lavala of '^*to ladioatiog tte poeetaUity ttet tte aexiaua for teth oeturel eetlvity eeriee would oolaeite ta tte eeaa pereoa. Oa thia 105 baaia wa would eetiaeta ttet tte aaxlana ta tte eeriee aaa air ail to data oould hava booa doaa rataa froa alpha aaittera oo tte ordor of 500 araa/yr.

g. K«tii«ta« or a lie A quaotltatlva aatlaat* of riak to paopla axpoaad to tte pathwaya poatulatte ta thia attey oan te aete by aaauatag a llaaar, ao-tbraateld ralatlooahlp tetwaaa oaaoar ate doaa, uaioc obearvatloaa of hiaian populatlooa at auoh blgter doaaa ate doae«>retoe ttea ara uete tore, to provide tha ooafftaiaota. Soeh eetlaataa ara ortea beoeuee of tte doelaetry ta tte poputatiooa attelte ate tte ooteitloaa uadar toloh tte paopta wara mpoami • uaoaUy hlch doee ete teee rata. Ooa ooaaot axolote a aero affeot at tte low-doaee ate doae-ratee ta thia atudy by aay aoioatlfieally aooeptabia prooteura, but wa will, ta tte followioct aaeiaa tte Itaear, ao-thraatold hypothaata to apply. tte aoat axhauatlva atu^ ate applioatloo of hoaea tota to rite aatlaataa baa baaa ttet of tte totiooal Aoteaay of aoleooee, Btalocloal Bffaeta of lonlsioc todtatloa (BCR) Coealttaa ta 1972.^ thta r^ort ia oow teinc ravlawte ate raviate bat tte aew oooolueiooe ara oot availabta. tte BDB report poetulatae four diffareat aodela for oalotttatioa: 1) aa toeolata rite aodel with a clvoa teaolttta rite per raa, ate "plataaa" (tiae over afetoh tte rtak ta expraeete) taee toea a lifetlae; 2) ea Obaolota rite aito a pUtaea axteadlac ovar tte raaattear of Ufa; 3) a reUtiva riak ta white tte riak ta laereaate by a parooataca of tte axletioc riak ate a ptateeu leee thm a lifetlae; ate t) a ralatlva riak with a Ilfatlaa ptateau. Coafftalaota, Utaot periode ate plataaua wara obtalate by atudy of taoaaa data, tte doeee wara axpraaate ta raaa, white oaueee a taolmloal problaa beoauae tte raa aaee a Quality Faotor daflote for rtetatloo protaettaa pwpoaee retter thea e relative btalocloal affaeUveoeee for a parttaulvr type of oeaoer, but thta oakaa llttta praotioal dlffaraooe ta vtaw of tte aaay other lawartatatlee. tto ooefflolaota uete ta tteaa oaloulatloaa wara takaa aa ante aa poaalbla froa tte BKIR attey with raaort to othar rafaraooea oaly ahao tte partloular value oould oot te fbute ta tte BOB report. Bota tte teaoluto ate ratatlva riak ateal wara uete with tataot parltea ate ptataau laagtte aa raoooaanilad ta tte Bgn raport. tteaa ooafflolanta ara cl^en ta tteta IIITT. to oaa te aeeo froa tte ttela, tte ooefflolaata uete eeae ftea e vartaty of eourooe. thta waa aete oaeaeeery by tte feet ttet tte BOB report dta oot cl^a 106 tABu mix PABAMKtIBS OSID IB BStlMATiaa BISBS

Uteat *natoau Abaoluta totaUva QCCBB tBCJifia UflgtH ^*'^ ItHf (yaara) (yaara) (Oaoeere/year) (t iaoreeee/yaer) Luoc 15 15 1.3x10"* O.S>^ Booa 10 30 2x10'^ l.lf^ Uvor 15 30 8x10"** l.lf*

"for aodel with afftetivaoeee leee thea Ilfatlaa. ^Proa BKXB leport^ pp. 150. ^froa BKDt toport pp. 132. *Troa lef. 99. •proa tof. 17.

valaaa fbr tte Uvor, ate tte aaaaery ttolM provldte oaly tte reUtivo rtak for aU oeooere ottaar thaa loOkaata. to uete a tateat perlte fbr boae eeooer eoaaatet ahortar thaa tte BKIB report aould iteloata boeeoee ttelr ttela (pp. 129) ta white tte rite aatlaataa ware derlvte tadloette a raUtlvely ehort lataat partad. • Tte teaoluta rtak ooafftaiaota are lower thu tteee uete by tte BPA io ttelr propoate piitollaee for treaauraaiua alaaaato ta tte aovii'ouaaot. 17 tte luDC ate boae rtak ooeffleieata ere teta lower by ebout a faotor of two thaa tte IPA valuae, whita tte livar rtak ooefftaieat ta lower by ebout a faotor of flva. It aaa lapoaetaU to eoopere tte raUUva rtak ooefftaleata beoeuee they wara not explioltly ci^aa ta tte BPA dooaaaot. Bowaver, it ta aotte ttet tte lone ooafflolaat ta baete largaly oo tte uraaiua ataere teta ete a doee ta tte praaiOMd aoet aaoalUva tiaene, tto brooohial epitteUaa, rather than ta tte tatal luac. tte riak per yaar waa ealeulatte for aato of tte four aotela ate ooovertte ta tte tadivldual riak ta ace create by uatac tte poputattao diatrtautloa, ate, for tte ralatlva rtak oaaa, tte taetaaaoe of boae, laoc ate liver eeoeare froa tte 1970 Tltal Statiatioa.*^ tteaa teta ara ahoao ta flcorea 2 ate 3 •• lo-t

J io-» -

t ^"" / !•" m- _—"" ^^^1 • * o» ^^^JT 1 /^/^ x*| 1^ ^

m / A>'''' ^ ^ 1 *.** -

^€ ^^ 10 BO BO 40 BO BO 70 Ago (yaara)

Pig. 2. toaulto of Bite CaloaUtioo for '^^ fbr tatate roeulttag ta 500 f yr ta boae after 70 Uaitte PUtaaa Ufbttoe PUtaM —f -^— Balattva Bite

to tto betal oeaoer rtak fbr croup froa tte 197Q Tltal Statiatioa. tb ata ta praaaatatioe aa have tte tatel oeaoer rite aa • liae eeroea tte age group ahile toe eetiaette f^w axpoaara ta ^^Pu ate to ara drawa ae a eaeoto ourva through tte of tte age diatrlbutioa. tte tota are praeeated ee ladiTidaal riak. rather thaa rtak per 100,000. aaa tte baata of tte oaloaUtioa waa tte tabatatiaa or tagaetioB of auffioieat aaellto ta raaalt ta a doae of 500 area/yr ta tte boae at tte ate of 70 yaara. thta ta tte toeertptioa of tte aarlaiM aapoote iteividual ae ttet popaUtiote am aot te aapaaaa ta ttaaoe leveto.

106 lO^ to BO 40 BO ao 70 Ago (years)

2t1i for tateta reeulttac ia 500 Pig. 3. Beoalto of Bite Caloutatiflo fbr to booe after 70 yeare. Uaitte PUteen UfatlM PUteau ..— Ibeoiata BiOk .^-. BeUtiva Bite

te altaraato atetate af pr^aaatiac ttaeae teta ta tte total Uf.tta. rtak ta tao a-ctooa axptete tadlTidual. theee teta ere ct^ea ta tteta IL. acta a. tte rtak ta thta tadi^taual. tte «^Po aou itolt oerrateote. ta ta. 200 pCl>^ whloh r^ta ftoa a ooatrtbotta. of 2/3 tateUttao «d 1/3 tactettao. Tte oate ta tteaa 2«1, Itait ta oootroUte by tte taceetioo tte I oaleuUtiooa. ^_^^ ta averace Ilfatlaa rite oao te eetiaette ftroa theee tW^o* by divldlof ^^ I tae aa^atel Ufettoa of 70 yeere. Per tte ««Pu aoU Itait tlUj. raaf ^ro. I .^ 6„0-^ to aoaeteat ovar IxlO"* per ye--, fbr tactetta. of ^^Pa (" i- TABU XL LIPBTIMB BISK PBOH ItoAUTIOB ABD IBOBStlOB KXPOSOiB BBSOLtm n 500 MBN/IB to BOBB APtto to tBABS I Typa Ufattaa Uufl^ito Pathway HBtol >i[|^^« flititoff ^^Pu InteUtloo ibaoluta 5x10"* 7x10"* teUUvo IX10"* 2x10"* loceatioo Abeoluta IxlO"' 1x10"' I toleUva 2x10"' 2x10"' ^*'to tahaUtioo Abaoluta IxlO"' IxlO*^ letativa 2x10"' 3x10"'. lacaatioa toeoluta txio'' 1x10"' letaUva 2x10"' 2x10"' ^^ Sou Ibeeiato txio"' 5x10"' Betattoa IxlO"* 1x10"* eettac of fito or driaklag of aator) thta aven«e rtak ta 1x10'*^ ta 3xlO'^ par yeer. Pbr ^^to tto avertee rite fbr boto eoU ete iacoatioB ta ixlO'^ ta 3x'0" par yaar. It aoat te eaptaaalate ttet tteee are tte eetiaatte rlate to tte aaxiaua axpoete ladivtaual. Blato to aa avaraga ladivtoual would te oooeidertely lowar. to aokaowlodge tte oaoertataty ta theee eetlaataa wita peeetaly higher riato pooetoto if oaa aooapta othar rite ooefftaleata. Bowavar, wa telieva tte valuae ci^^ea abova ara withta aa order of aacninwla of tte aexlaaa aatlaataa. I NodaU ate ootelnatloaa of aoteU, eute aa wa bava aete ta thta atudy, are I etantatiooe of roellty ate airror reellty ooly ta tte axtate ttet ear kaovledce ate aaeuaptloae acraa wita aatara. Aoother faotor ttet ta dlfflealt ta aeoovit for ta tte varitellity ta tte btelta of paopta nd ta looatlooe ttet ooald I raaalt ta diffwraat traaaport thaa uete ta thoaa aatloatoa. uo In this saotioa wa will rcvisw tba aajor psraaatara uaad in UM study and «tt«upt to assicn an uocartataty to aaoh paraaatar. Ua teva included rough •atiaatas of tha rancaa of •aluas ttet oould azlst in tte aodala usad for doa« calculation dua to dlffaraooas in six*, sax and aotivltias of psopla in order to provida sooa aaasura of tba unoartatatlaa aocatearad froa thta aouroa. Tliia axaainstlon ta oooftaad to only tbosa pathwaya ttet raault io tha Itaitiiqc rsooaaaodatlons io ordar to kaap tha slxa ate ooaplaxity of the axaalnatioa to a raaaooabla Itait. Tteaa pathwaya laoluda axpoaura of tha waataa wlto paopla living oo tte araa for ahaUow burial ate laaotaiog to an aquifar wlto uaa of tte aqulfar for doaaatio watar ate Irrlcatioa. ta Tabla XLI wa Iteloata, for aaeb of tto paraaatara, tto valua usad in the study, an aatlaatad ranca of valuaa ate tte aoltiplloatlva affort of tola ranee on tte doaa assualnc ttet tte paraaatar, aa uste, laate to a doaa of 500 araa/yaar to tte aaxiaua axpoaad itelvtaual. tooh of tte paraaatora is mabarad and a dlsousaioo of tto teata for tte aattaatte raoga ta clv^i balow. It should ba aotad ttet wa did not attaapt a statlstloal traataaot ta darivinc thaaa rmncaa baoauae tte aaount of tafomatloo avaltabla for aaay of thaa is aaa

1. Por tba ICRP rafaranoa uao^' tte walcbt of total luoc tiaaua (paraoooyaa plus artortal ate vaooua blote) ta listed as 1000 c ta tte aala ate 800 s ta tte faaata. Tte 500 c valua uate waa approxtaataly ttet of tte lung tissue without blood as a ooosarvatlva astlaata. Bowarar, alnoa tte blote does abaprb alpte anargy. tte hichar valaaa aay te aora approprlata. Tto rancaa ware obtained froa dato on blood-fraa luoca froa aalaa givaa ta ICKP-23. Tbase data indioato a faotor of atout 1.5 batwaao tte lowest ate blgbaat valuaa or a faotor of ^ 1.25 froa tte aaan. Tteaa ranges wara applied to tte reference asn waighta.

2. Data ta ICRP 23^^ indicsto ttet the akeletsl weight varies froa 9t to I8t of the body weight ta oales and 5.6f to I5f ta feaalaa. It ma assuoed that thia skeletal weight inoludes uarrow with tte uineraliate portioo of booe, of intorest hare, as ooe-half of tte akeletsl weight. Ttese fraotlooa ware spplied to a osle body weight range of 120-200 pounds sod a feosle body weight range o' 100-(80 pounds. TABU m CSTIMATBS OP T« BABG8 OP OBCSBTAIBR IB OR PABANBTBKS

Ulua btlaatte Bffaot oo EBUBBtoC need IBBBB DtoB

1. Lung tolght 500g 300-600 0.6-1.2 (600-1200) O.t-0.8 2. Boas Velght 5 OOOg 2000-BOOOa 0.6-2.5 3. Qeellty Paotor 10 10-20 1-2 t. Boaa Dietrtautloo Paotor 5 5-15 1-3

5. Parttala Slaa lao 0.1-10«a 0.5-2 6. lohatatioo Rata 20 a^/tey 10-27 a'/tey 0.5-1.t 7. Oaaa T - Praotloo ta Booa 0.057 7 ' 0.5-2.0 8. Claaa V - Praotloo to Booa 0.12 7 0.5-2.0 9. to - Claaa V V-t 0.*-1 10. Tjyj - Luog - Claaa t 500 150-2000

11. Praotioa-QI ta Booa-Pu *.5xl0"' 9x10"*-3.5x10"* 0.2-8 12. fraotioa-OI to Boae-to 2,25x10** 3x20"'-3x10"* 0.1-1.3 13. Biologioel laoorporatloo 0 0.2-13 0.6-8

It. teauepeaeioa 200«g/a^ 20-200 vg/a^ 0.1-l 15. Pertiota Sixe Correotioa 1 1-2 1-2 16. PlMt uptate - Pu B.t. Diet 0.2-2 I6a. Pleat uptake - ta lOxPu 0.1-2 17. Diet 628 kg/y 0.1 18. Oeeupeaey 1 0.9-1 0.9-1

19. OUtttioo by olaao aoU 0,5 1-0.1 0.2-2 MatMP lAmlt. . kauirmf fbMB burls.L I 20. Qaology - Sydrology 0-1 21. Uaob Beta 10-«ir-' 10""'-10''yr"' 0.1-10 22. falooity of Aquifer 30 oa/tey ea 23. Depta of Aquifer 10 a 5-50 a 0.2-2 2t. Poroeity of Aquifer 0.1 0.1-0.3- 0.3-1 25. totar tatate 1650 oa^/tey 365-3000 aa^/tey 0.2-1.8 26. Broaloo tota of SoU 6 T aora-V 0.1-20 T aora"V"' 0.3-60

112 TABU D-ni

RBTBBTIOa IB TARIOOS OBQABS OP PIQ8 Ato BATS APTBB A SimU IBTBAQASfBIC ABMIBISTBATIOB

Organ I Bf Piga tota Skeleton 0.00f5 0.0020 Livar 0.00036 0.00093 Kldnay 0.000009 Splaan 0.000003 Baart 0.0000007 6 Othar Soft Tieeua 0.00033 0.00021 Total Soft Tiaaua 0.00071 Total Anlael 0.0022 0.0032

Tte rata axorette Wt of tte doaa adatalsterte ta tte faoas ate 7.7 x 10~ S in taa urina ta tte 9 daya tefora aaorifloa. If ooe- Igooras teaorptlon ate return ta tte bowal ate Inoludoa ooly tte urine teta ea a aaaaara of abaorption, a total valua of about O.OOtf of ttet fte la tetalnte. In tte talrd part of tata axpariaant, stteies ware aete of tte of foot of valeooa atata ate tte uee of oitreta Inetote of nltreta oa tte ebeorption. ta tola axparlaeat, aolutioae oontaining eppreaiaetaly 0.5 as/bl «ere oaidiate to tae TI valanea atata wita l^Cr^Oj, ate rteaotioo ta tte III atata was aoooapllshte wita PeSO^ ate urea. Tto oitreta aolutiona oootatate a tan-fold ezoeas of oltrie sold and, in all oasaa, taa daairad pB was acblevte by dilation and adjustaent wita toOB. After preparation, tte aolutiona were allowte to stand for 2t hours tefore adataistration ate taa plutoniua valanoe atata was deterainte at or about tte tiae of adataiatratlon. A single i aL doaa was fivan by stoaaoh tute to 12 young, teult, aala Spragua-Daalay rats, toaults froa saorlfioa of half of tte group at t teye ete tte othar half at 60 teya are given in Table D-IV. It is difficult to drsw qusntitative oonolusions froa taese dsta becsuse of tte Isok of knowledge of tte valence stato ta aany of tto experiaents. Bowever, it ia apparant taat these teta abow tae uptake of bota Pa(III) ate Pu(rf) to te greater than ttet of PudV). Tte deposition of ^^Pu in tae liver and akeleton of ainature awlne waa studied by Buatad at al.^ Swine were uste because their gsatrointestlnsl tract 13 siallar to that of aan. Only tae liver end skeleton were analyxed becaus* 3. Tte Quality Paotor ta a quaatity teftate far uaa ta rtelation protection taking into aooount tte relative biological effeotlvaoeaa for differaot typaa of bara. Tte QP of 10 for alpte partlelea baa baeo uete by tte ICRP ate BCBP alnoa tte 50*a. Baoaotly tte ICkP tea teaaBte ta a QP of 20'^ ate thta haa baaa uate by tte BPA^' ta ttelr attey of traaeureaiua alaaeata ta tte envlroaaeot.

t. Tte doee dtatrtautloa faetar of 5 for booe haa baeo uate for all alpte-eaittara except rteiua aiooe 1950. It waa darlvte froa tte teta available on tte effacta of rteiua ta aaa by btalogloal ooapartaoe tetweoa rteiua ate plutoolua. ^^ Tte ICBP bee aaoouaete ttelr tataatioo of Mttiag tte Itait baate upoa oaleutatloo of tte doee ta tte aateataal ate epltteltal eelta oo tte booe aurfaoa*^, but teva not, aa yet, apaolflte a aetbte for ealeulatioo. Barley ate Paataroaok'^^ teva oaloutatte tto rtetatloo deoae froa ^^Pu ate ^Sa ta Mlla on trabecular booa aurfaoaa. Tte aatlaatte 30-yeer teee to huaeoa, for aaxiaua peralaatala btey burdooa of ^Sa ate ^^^Pu, wara hicher for ^^Pu thaa ^^a by a factor of 1.2. Thay oeooludte ttet thta dlffareoM waa aot alcaifleant. Splara ate Bhitaau'^ eetiaatte tte rtetatioa doee reeeivte by eadoeteel Mlla ate ooaoludte ttet ^^Pu ta a ftetor of t.5 tiaae ee ilMecIng ee ^'Se. ta teta of ttew oeoee, 90S of tte plutoaiue ta tte body aaa aaaiMaa ta te ta tte bona. Ooucterty ate toya^^ teva eetiaatte tte ralatlva danege ftetor to te 15 froa tte extotete atudy wita ^^Pu ate ^^a ta beagle doge at Otto.

5- Altteugh reauapanaion atudiea atew fractional deposition about equivalaot to a 1 ao particle ta tte ICBP Tbak Oroup luog ootel or aaaaured aerodynaata alM ta tte raoga of 1-3 «a, it ta oooeelvteta ttet ta apeeific aituatlooe blghar or lowar alsaa oould te aooouatorte. A aaxiaua range froa 0. I

6. Tte ICBP referaooe uao^^ flvaa vmluea for tte adult aaa of 23 a^/day wita t2f of thta iabalte at work ate 21 a^/tey for an teult woaaa with H3S intelte at work. Tte value uate ta this raport of 20 a^/toy was uate In tte lOtP-II^^ ate BCiP^' reporta on tatemal ealttera. Tte Task Oroup on Ung 10 -1 Dynsuics provided oalculatioos for a respiratory freqoaoey of 15 sec an'' tidal voluaea of 750 crn^, 1*50 ca^ and 2150 oo^ ttet oorreapote to tot*. Intelation of )6, 31 and nh a^/day. Tte 750 ai voloae was quotad as b«lru( repreaeotative of alta ta oodarata activity. ICRP^^ reporta ao lohatation of 7500 «/ata for aan at reat ate 6 wi/ata for woaao at raet. Tbaaa oorreapote to daily Intakea of II ate 9 a^/day raapeotivaly. thaa, a alniaaa rato of intelation la taton aa 10 a^/day while tto aaxiaua will to taten aa a aale reatlng 8 boura/day ate worklag at aoderato to heavy aotivlty wita aa lohatatioo rato of about 35 a^/tey for tte raaaltear of tte tiae. Thta ta ebout 27 a^/day. It stouta te raoognlate ttet there ta a syeteaetta vartatloe ta tteM iotatea with btey alaa ate a rateoa fluetuatioe wita iteivtauale depeodeat upon their age ate atata of baalta m ttet aoae valuaa below tte etaiaun ate above tte aaaiaiM ara poaatala.

7. Tba fraotloa of ttet iabalte ta blote ta takee ftea tte depoeltioa ate to uptate paraaatara of tte ICRP Tate Oroup on Luag Dyaaatae ' ate froa tte ICBP study CO aotaboliaa of aottataee. There ara aaay poeetale varltelee ta tteee paraaatara ttet wouU require eaaaotially radarivtag tte aodele to aetiaeto tbaa. Por axaapla, tte dateaitloa depoote upoa tte tldel voluae ate tahaUtiea rato of tte itelvtaual white will vary tepatetac upeo bta eetlvity. Be teva aatlaatte a vartatloe froa about 0.8 to 1.3 for a ehaace ta tltel voluae froa 750 to 2150 oa^ at a raaplretioa rato of 15 aeo"*. There ta eoae vartatloe wita tte particle alM dtatrtautloa. Proa tte ourva oa page 161 of tte Thto Oroup report^ we eattaato thta to raoga froa atout 0.7 to 1.1 for 1 aa AMD pertlolaa with o froa 1.2 to t.5 with a tidal voluae of lt50 oa^. Tte tafluaooe of depoaltion during aouth-braathtag ta not well quantiftad but thta action doea bypass tte protective featurea of tte oaaopbaryngaal racion ate a higter depoaltico ta eapaotte ta tte traobaobroooblal ragloo. Tte Tate Oroup ' potata out ttet there ta avtaaooa of trappiag ta tte aouta. Bowavar, It ta dlfftault to ateal thta beoauae tte dapoaittao will to eeoaitiva to tto degree to whtab tte aouta ta opwi. Ttey aaauaa ttet thia will te ao tafraquaot problea ate, ta aoat oases, will not affeot pulaonary teposltion. Tte fraction transferrte ta tte blood froa tte itelvtaual regions of deposition alao oootatas uooertatatles ttet are dlfftault ta quantify beoauae of tte lack of detaUte data oo each. Stailarly tte tranafer froa blote ta boM and liver, taken aa O.tS to each, has uoeertatattas ttet are dlfftault to quantify. The teta ta Appeteix D indieato ttet plutoniua absorbed froa tte GI Traot aay result ta a skeleton to liver ratio of atout 5 rather than ooa as n

11- tte ICRP aotel. Bowavar, tte applioatioa of thta to iatelte aatartal is questiooabta. ta a raault of thaaa aaay uoeartatatioa, wa bava arbitrarily oteeaa to aaaign a raoga of a faotor of two to oovar all of theee ueoertetatiee. Tte quaatloo oark ta tte "Poaatala taoga" ooliaa Iteieetee tte erbitrery oeture of thta oteioe.

8. Tte aaaa arguaaota aa ware uete for daee I apply atae to tte Qaea V ate tte aaae faotor appllea.

9. Tte eteiea of '**te aa a CLaaa V aetertal waa baete epee tte faet ttet It ta a ^3 valaaee eetiaite, e elaee ttet ta ueually aora aeltele then plutoolua. It aay te ttet oertata of tte ooapoatea are aere deee t than If. Por axaapta, Craig et al.'^ preeeot teta for ^**Aa02 that iteloeta ttet tte loog ooapeaeot ta tte luog of doge aay bava a half-Ufa oa tte orter of tOO teye. Bowavar, Ballou ete Olee'^ praeaat teta for ^*'to(B0j)3 wlto rata ttet Iteloata a half-Ufa of Obote 50-60 teya. Siaee tte exaot etata of ^*'to ta tte eoila ta uahaoaa, ate, ta faet, aey very froa eaa pleoe to eaethar, tte poeelbility ttet it aey behave ee e daea t eoroeel ta eeae oeteitioaa ooaaot te dtaoouotte.

10. Tte telf-llfe of 500 teya ta tte ICRP Tate Oroup Motel eon te exceeded by hlgb-flrte plutoolua oxlte. Tte Task Oroup ' raport llata a raoga of half-llvaa ta tte lung froa 150 ta >ltOO teya ta atae. doge ate rabbita. Thia will teva littta affeot oo tte Itoita beoeuto boaa ta oritieel. Bowavar, if tte telf-lifa ta tte lai« baoeaae loog eaough thee tte luag wUl beoeae oritieel. Thta turoover poite ta eatiaatte to oeour et a 1000-1500 Bay balf-life.

11. Tte raoga ia tte raoga ta aeaaurad uptate tram aitrato aolutioa aa given ta Table D-XZZI. Tte upper value ta atout twice tte oaxt hlgteat but ia iocltete for ooaplataoaaa. It ta alao ta tte aaae reage aa tte uptate froa t-5f aitrato aolutlooa ta Table D-XZXU.

12. The range of valuea ia ttet froa Table D-XXXIII for ^^, ^^^ and ail.

U' 13. Tte raoga waa tetalnte froa tte deto ea eaperiaeata wita rata ate guinea piga fte aolutlooa ate looorporatte plutooiaa. Bowevar, it waa aaaaaad ttet ooly coa-balf of tte traaauraaiM aleaeat aae laeerporatte. wita tte reaalnder froa aurfaoa tepoaltloo. tte 0 ta tte *valua uaad" aolaai Iteloataa ttet no oorraotioo waa appliad whita tte reage iteleatee tte aeeewra< ratloa tetweao looorporatte ate oootrol axpariaeota. It auat te reaaaterte ttet thta ia a dlffioult experiaaot ta perforo ate tte reeulta ara variteta.

It. A valua of 200 sg/a^ avaraga waa uete, ooateete of axpoeura tadoora at 50 ag/a^, atoieot eir outdoore et IM pg/a^ ate work aapuaata ttet evaragte tOO ag/a^ ovar tte year, tbaaa are aot aotual air oeaoeatratioae bat reeult free a oorretatioo tetwaaa tte aaaauraaaat of ateiaot ata ate eelootatiooe uaioc a duet lotetac of 100 «c/e^- tteee ara hi^ duet loteiaca ttet we believe will te dlfftault ta exoete. to teva, therefore, oteeeo tte MO sC/«^ aa tte aniaua. towar duat loteiaca would te poeetale if, for aaeapta, e aajor part of tte araa wara paTte or plaotte ta tawee ete tte peopta werhte aoetly ta offioea - part»pa ata-ooaditioate off leee. Pbr thie ooteitioo eo everece date eeooeotratioo oriciaatiac free tte oeataaiaatte area oould te ta tte reage of 10-20 ag/a . for thie ettey %» uete 20 «g/r.

15. Bota taaara^' ate tte BPA^ teva eetiaatte oerreotioo faotara to aocouot for Inoraaete eoaoantrationa ta tto aaallar parttalaa ttet are acre readily detoaltte ta tte luog. tteee oorraottao ftetara raace froa l.t ta 2 for aoila Invaaticatte ta teta. to teva rajtotte tte aute larger taereaaa propoate by Johaaea et al.^ ta uotag ooly tte 5 ao portiolae ta tte eoll, aftar aggragatee ara brokee, beoeuee hta eenpla dooe oot oorraapete ta oooditiooa actually foute ta aoila ate te haa daaooatratte oo aaotenlee for oaloulattag air ooQoaotratiooa froa tata aaapta.

16. Tte vartability of aaaauraaeata oo plaat uptate ta diaouaate ta tte body of tte report wita itelvtaual aaaauraaauta for plutoolua raagtag froa I0~ to I0~^ ate fbr aaarlciua froa 10"^ ta 10~'. Wa uate tte tow Tork diet beoauae it repreaenta a aaapling of fotestuffa ttet are actually eatao by people and ttese foods inoortorata tte vartability ttet has been foute ta tte iteividual plant apeciea aa well as ta expertaantal coteitioM. Wa telieve ttet tte valuea

116 for plutonluB say ba high by an IBIOIOMB fbotor tunaiiaa of tha oontiniMd dapoaltlOQ of plutoaluB froa tha ataoaphara. Ibay say ba low, howovar, for « apaclflo araa baoauaa tha aell propartlaa aay raaolt la blgbar upiaka. Tha asarloluB was arbitrarily takaa aa tao tlaaa tha plutoaliai uptaka aftar rarlaw of tba data avallabla. lowavar. It la notad that tha •aaaurwanU at tha •mrlroaaaatal Laboratory'^ ladloata about tha aaaa uptaka. For plutoniua wa will aaaoaa tha optaka ooald vary froa aboot 20f of tha •alua uaad to about twloa tha ralua. Fbr aaarlolm, tha aaauiadi raaga la 0. i to two tlaaa tha ooafflolaota usad.

17. Iha lotaka of food growo oa tha ooataalaatad araa oan ba axtraoaly Tarlabla dapaadlag upoa tha aetual ooodltlooa. Xh tha oaloolatloa wa bara aaauoad that tha dlat oooalatad of food groan antlraly oo tha oontanlnatad araa - aaaantlally a aaMll faro on tha araa. Ondar otbar oooditlaoa, bowarar, nooa of tha food uaad In tha dlat would ba grown on tha araa. Qnn, tha ranga of 0 to I for tha faetor.

18. In tha oaloulatlona wa aaawad oontlnuad oooupanoy of tha araa for 70 yaara. In our «oblla aoolaty. It saaaa highly onllkaly than aa Individual would lira on a 250 aora plot of ground (tha alaa of our aodal burial ground) for 70 yaara and naTwr laaira to Tlalt ralatlvaa, to abop or to taka Taoatlooa. Bowarar, it la poaalbla and tba ranga will ba aat froa 0.9-1. 0.9 laounta to 35 daya par yaar away froo tha araa.

19. Tha ralatlTa aaouat of olaan aoll alxad with tha waata aatarlal at tba tiaa that tha land la ooouplad will dapand upoa tha oathod of agpoaura of tha waataa. Wa pradloatad tha aoaaarlo oa aspoaura by aroaloa with olaaa aoll brought Into tha araa by tha aroaloa prooaaa. In an actraoa oaaa, wbara tha burial ground la at tha uppar and of an aroaloa araa, llttla or oo elaaa aolL would ba brougbt In and tha dilution with olaui aoll would ba zaro. On tba otbar band, If azpoaura oooura by digging a pipallna or fo

20. Tha gaology-hydrology of tha burial araa la a prSaa faotor in dataralning tha potaotlal axpoawra froa aovaaaat to, and uaa of, tha aquiftr. Tabla xnil Mwwa tha aatlaata of tha dtatanoa trwralad la tiaaa to 10 000 yaara. Hovaaaat will ba alowar by an undataralnad aaownt la tha iaa^hlng froa tha burial ground to tha aqulfar alnoa a part of thla flow la la aaaaturatad oooditlona and tha raat la tha ralatlvaly alow aoraaaat by paroolatlag watar. Thla tabla aorlaloaa a ralatlvaly ualfora aoll with high adaorptltra oapaolty. Bowavar, la aoitrapolatlag, oaa woold pradlot a aoraaaat of oaly T0*20Q aatara In 100 000 yaara if tha oondltlona of tha laaohaU wara anah that a K^ of lo' ooourrad. 411 ooodltlooa battiaan thla and an alaoat inatantanaoua dlaebarga to thaaa daptha ara poaalbla, aittaar by a lowar C^ or a flaw through aiaaabla flaauraa. Thua, If tha burial crouad la battiaao 70 and 100 aatara ahora tha aqulfar, tha dlaobarga to tha aqulfar will raaga flroa aaro to about ahat wa poatulatad la tha aodal burial grouad. Agala, dapaadlag upoa tha oharaotar of tha aqttlf«>, addltloaal raaoval and dlaparalon oould ooisur batwaan tha point of antry Into tha aqulfbr and tha point of uaa.

21. Tha laaoh rata of 10 par yaar waa darlvad froa ralatlvaly uaoartala data at Maaay Flata. Otbar data that ara aora rallabla do not aaan to ba avallabla, although lyalaatar taata at Savaaaab tlvar oould provida Saprovad data within tha naxt 10 yaara or ao. Tbora ara aany faotora that oould affaot tha laaoh rata inoludlng tha aridity of tha aroa with oonaaquant affaot on aoil aoistura, tha praaanoa of obaaloala in tha waataa tbat oould anbaooa laaobiog, or tha production of aganta during tha daoay of tha orgaalo aatarlal that oould anhaooa laaohlag. Tha data froa Muay Plata waa froa an araa wlta raaaooabla ralnftai and tha waataa aroaa ftroa a mabar of plaoaa ao that it ahould ba rapraaantatltra of a raaaonably aazlaua aroa. Howarar, baoauaa of tba unoartaiotlaa in tha data, wa will oooaldar our aaaciaaa oaaa to ba a faotor of tan highar than tha valua uaad. Wa ballava that a oaaa oould ba aads for a vary low laaoh rata in arid raglooa with low aoll aolatura but will oonaidar tha lowar liait to ba a faotor of tan balow tha laaoh rata uaad.

22. Tha aovaaant of watar in tha aquifer will dafioa tha diractlon In wtaioh potential azposur«s amy occur as wall aa tba tias of aovaaaot to • (iv*n spot uKl tha coooantrttlon. Hera there is • trade-off becauae speads lower tber.

US tha oboaaa valua will raault la alowar aawaiaat but highar oaaoaatratloaa due to tba lack of dUutloa by laeoali^ watar. Baoauaa of tha wlda varlatloaa poaaioie at glvao altaa aa wall aa tha ooaplloatad iataraatloM bataaaa oeaaaatratloa aad diataaoa traveled, whloh alao affacta tha probability of uaa of tha aqulfar, wa will aaalga no unoartalaty.

23. DUutloa la tha watar puapad froa a wall will dapaad upoa tha dapth in tha aqulfar that tha oaalag la parforatad. If wa aaaoaa parforattoa through tha full dapth of tha aqulfar, thao aay ohaaga la aqulfar dapth will raault in a dlraotly proportloaal ohaaga la dUutlOB. it tha M) aatar dapth ohoaaa a typical wall oould draw 10-30 gaUoaa par alauta."^ It aaaaa doubtful that a wall to ba uaad for doaaatlo aad Irrlgatloa aatar aoaltf oaa a aaoh thiaaar aqulfar although thla would ba aora thaa adaquato fbr doaaatlo uaa. Tha total thlokaaaa' of an aqulfar (or a aarlaa of aqulfara oaa anaad that ohoaaa for oaloulatloa by an ordor of aagaltada although It la pooalhla that tba wall aay not paaatrato tha nOl dapth If tha aartaiM flow la aot aaodad. Wa will oooaldar a ranga of offaotlva daptha froa 50 aatara to 5 aatara aa appropriato.

2«. Tha affaot of tha poroalty la tha aqalfv aadiMata la to allow aora or laaa roaa fbr wator aad to laaraaaa tha qiwatlty floaiag aoreaa a given oroaa-aaotlaa of tha aqulfir. Tha affaot of poroalty oa tha oeaoaotratloa for a ranga of poroalty of 0.1-0.3 la given in Thbla ZZII. Wa will uaa tha aaaa range in thla uaoartalnty aatlaata.

25. Tba dally watar Intaka of paoplo will vary dapaadlag upoa thalr alM, aatabollaa and ooaauaptloo of othar flulda. lOtP laport 23^' glvaa tha raaga in ooaauaptloo &f tap watar for adulta uadar noraal ooadltioaa aa H-730 oa^/day. Paopla will vary dapaadlag upoa thalr alaa, aatabollaa aad ooaaoaptloa of othar fluida. ICKP laport 23^^ glvaa tha raaga la ooaauaptloo of tap watar for adulta uadar aoraal ooodltlooa aa «5-730 oa^/day and for aatar baaad drlnka, auoh aa older, aoft drlnka, baar aad wino aa waU aa taa aad ooffaa tha Iataks la 320-1450 oa^/day. Ttaa total Intaka for thla group la I000-2b00 aa^/day. For adulta In high anvironaantal teaparaturea tha intake la 2S«0.3*<0 oa^/day aad aoderataly active adulta drink a total of 3700 ca^/day. (Tha totala inelu(i'> ailk, which la included in the food pathway.) Proa thla we will oonsider «

U- range of 369-3000 9^fim,j tor iatato of watar darivad flraa tte wall ia all foraa.

26. In tte Irrlgatloa pathway tte aroaloa rata of tte irrigated fUld beooaaa of laportaooa baoauaa it datomlaaa tte aqaUlhrlaa laval of tte aaallda in tte aoll. Tte uaa of 6 tona par aora par yaar laada to a raaoval of 0.3f of tte nuollda par yaar. Tte aroaloa rata dapaada atraagLy oa ttw aathed of oultlvatioa, tte tyf of orop, and tte alopa of fete fiald. PCoa Thbla ITtI wa will ooaaidar 0. t tooa par aora par yaar aa a raaaoaabla aiitl—a aad tO taaa par aora par yaar aa a rapraaaatatlva —^— rata.

Tabla ZU providaa aatimtaa of raagaa that ara iadlaaUva of tte aaior unoartalntlaa la aaoh of tte paraaatara uaad for aaloolatioa* ttara ara thraa olaaaaa of thla uaeartalaty; 1} tte aitter-or olaaa ahloli la aitepllflail by tte oteloa of Quality Photor, doaa dlafeributioQ fMtor la tte taaa or tte olaaa of an aaroom to uaa in tte Intelatlnw oalaalatioa; 2) tte diaferlhatioa olaaa dapaadaot upoa tte alaa or aotioaa of oa iadividail aaah aa tte iahalatiaa rata or tte duat ooooaotratlon uaad for raaaapaoiion; and 3) tte vary oaaartato olaaa Mhara data ara uaavailahla to MUy ovalaate tte diaferlbahloa aad aaawptloaa ara uaad, aaoh aa tte laaoh rata froa tte waato aaaa or tte ralafetva tepeaitloo In aaoh of tte ooapartaaata of tte polaoaary ragloa with aribaaqaaat aovaat to tte bona. Tb tteaa unoartalntlaa, thaa, ara addad tte uooartalatiaa, dua to tte generic nature of tte atudy. In tte anvironaantal ooodltlooa, oow aad In tte future, of tte araa in whloh tte burial ground la plaood and tte uaknown poaalbla uaaa to lihloh tte aroa aay te plaood by f^itora gaoaratlooa. It la iBpoaattla to aatlaato aa ovaraU lafluaooa oa tte final lialta of tteaa uaoartaintloa baoauaa of tte uaknown dlatribatloa of tte valoaa batwaan tte UalU glvaa. In aaaa oaaaa ttera ara oorralatloaa that aoat te aooooatad for, aaoh aa tetwaan orgaa weight and Intelatioo or lagaatloo rata. An aitraaa ranga oould te obtalaad by aultlplleatloo of tte valoaa but thla produoaa an eactraaaly uouaual individual auoh aa one with bona waighft of 8000 graaa wte iotelaa 10 a^ par day of air wlta 20 «g/a^ of 10 «a partlolaa aad f%W* of tte oontalnod plutoolua la tranaferred to tte bone. Ibna, until adeqoato data of tte dlatrlbutloo of aany of tteaa paraaetera U obtalaad, a coabiaatloo into sn overall dlatributioo of doses in a population will te in itaelf uaeartaia.

120 During tte aataoalva dlacuaalooa of tte Thak Qroop oa thla problea, a nuabar of Itaaa wara brou^it forth whloh oould te lavoattgatad M iaprovaaaata to tte praaant ayataa or aa poaalbla altamatlvaa. Thaae ara glvaa In Appendix L.

RipnncKs t. O.S. Atoalo ttiargy Cbaalaaloo, "lladloaotlva Wbata teaagaaaat," ilC Manual Cteptor 0911. 2. O.S. Atoalo Inargy Ooanlaaloo, "Sortiag of Solid ladlaMUva Waataa, A laport to tte Oaaaral llaaagar*a Taak Poroa oa AK Oparatiaaal ladloaetlva Waato tenagaaanf (Jooa t9T0). 3. O.S. Atoalo Baorgy Ooaalaalon, "Tranauranlo Waato Diapoaal,* Padaral laglatar 39, #178 (Sapt. 12, I97«).

122 26. J. bts, fl. A. Eomborg aad I. N. Parhar, "teaorptlM af Plutoolw Fed Chrooioally to teta," te. J. Booatgoool, Badioa Therapy, tealaar tedioiae, 73, 303-308 (1955). 27. H. B. Weeks, J. Bats, V. D. Oakley, J. B. BaUoa, L. A. Oaorge, L. C. Buatad, R. C. Thoapaoo and B. A. Eombarg, "Pbrthar Stodlaa on tte Oaatrolntoatinal Abaorption of Plutoolua," BadUt. tea. «, 339-3*7 (1956). 28. J. H. Boaly, "Ao Biaainatloa of tte Pathwaya froa teU to tea for Plutoniua," Loa Alaaoa teiantlfio Laboratory report LA-6T«I'4IS (AprU 1977). 29- H. P. Sullivan and A. L. Crooby, "Abaorptloa of TTaaauranle Blaaanta froa tet Gut." Paoifio Borthaaat Lahoratary Aanaal Bapart for 1975, Part i Bioaadioal teiaaooa, BWL MOO Pti, 91-93 (Jaaaary 1970). 30. M. P. Sulllvaa aad T. B. Oarlaad, "Oaatrolateatiaal Abaorption of Upte^Bouad Platoaiua-238 by teta aad Oaiaaa Piga," Paoifio terthweat Laboratory Anooal Beport for 1976, Part I Blflaadiaal teiaaaos, BBWL-2100 Pti, 137-139 (tey 1977). 31. H. P. SuUlvoB, "Qaatroiataatiaal Abaorptloa of TftHMoraaie Blaaanta froa tet Out," Paoifio Borthaaat Laboratory Aaanal Bapart for 1976, Part i Bioaadioal Soionooa, BWL-2100 Pti, 123-129 (tey 19n). 32. J. W. Boaly, "Borfaoa CootaalaatlOBt Daaiaieo LavaU," Loa Alaaoa teiaatifio Laboratory report U B998 WB (teptaabar 1970. 33. W. S. GtepU aad I. P. Haadroff. "Tte Phyaloa of Wiad Broaioa aad Ita Control," Advaaoaa In Agroaniy 19, 211-302 (1963). 30. D. A. Qllletta, "On tte Production of SoU Wind Broaion Aaroaola Bavlng tte Potential far Long Bai«a Timaport." J. Raob. Ataoa. Till, (3-*) 735-7a (July-Dac. 197«l). 35. J. B. Shlnn, H. C. bnaady, J. S. Boval, B. A. Oogg, and W. M. Poroh, "Obaarvatioaa of Duat Flux in tte Surface teuodary Layar for Steady and Boo-ateady oaaaa (197%)," In Ataoaptero-Sarfaoa ftnteagi of Partloulata and Oaaaoua PoUutaata, B. J. Bnglaaann aad 0. A. Sahaal, Ooordlnatora, 625-637, tetlonal Tech. Inforaatioe tervioa, O.S. tept. of Cbaoarot, Springfield, te. (1976). 36. J. W. tealy, "A Propoaad Intarla Standard for Plutooioa in SoUa," Los Alaaoa Scientific Laboratory report LA-5483-4e (January 1970). 37. L. R. AnapaiMth aad P. L. Ptelpa, "Raauapeaaioa Blaaaat Statoa Beport: TI. Reaulta and teta Analyala," In tte Dynaaloa of Plotoaloa ia teaert BnTlronaanta, P. H. Dunaway and H. 0. Uhita Bda., 55-81. BfO-U2 (I97«). 38. C. J. Johnaco, R. R. Tidball and R. C. Severaon, "Plutonian teurd in Reapirable IXist oo tte Surface of Soil," Science, 193, 088 (1970). 39- W. S. CtepU, "Dynaaloa of Wind Broaioo: II. Initiation of Soil HoToaent," Soil Science 60, 397-0n (19*5). 00. D. A. QlUetta aad I. B. Blyford, Jr., "Tte laflooaoa of Wiad felooity on tte Sise Dlatrlbutlona of teroaola tenaratad by tte Wad Broaion of SoUs," Journal Oeophya. Rea. 79. 27, «068-4075 (tept. 20, 1970).

01. T. Thaura, "Plutoaiua teaoclatlon in SoUa," In TTanauranica in the tetural Bnvlronaent, N. 0. Whlta uad P. B. Dunaway, Bda., BfO-178, 97-nn, tetiooal Teotaioal Inforantloo tervieea, O.S. tept. Ooaaaroa, Springfield, 7a. (June 1977).

02. L. R. teapaugh, J. B. teinn, P. L. Itelpa and B. C. teaoady, "teauapaaaion and Redlatribution of Plutoniua in teila," Baalta Phya. 29, 571-582 (Oot. 1975). 03. P. B. teaami, J. J. tendaraon and D. B. CaldwaU, "Indoor-Ootooor Air PoUution Bolatlonahipat A Lltoratara Bavlaw," Baviroaaaatal Protection Agency, Publioatlon te. AP-112 (Ai^uat 1977).

00. B. L. folotek, R. B. Riruta and M. T. Qaaaaa, "Tte BaopirabU Fraction of Plutoniua at Bocky Flata," tealta Phya. 23, 395-396 (1972).

05. 0. A. S^ael and P. D. Lloyd, "Reauapanaion of Plutonioi at Rooky Flata," Pacific terthwaat LaboratOTy Annual teport fbr 197%, Port 3 Ataoapterio Solenooa, BWL-1950 Pt 3, 216-221 (1979).

06. J. B. Ballou, C. R. Prloo, R. A. Qlea and P. C. Doctor, "Tte Influence of OTPA on tte Biological AvailabUlty of Traaauraaioa," Baalta Phya. 30 009-050 (tey 1978).

07. B. C. Sohols, "Boot Optate of Tranaaraaio Blaaaata," la TTaaaoraaloa in tetural Bnvlroaaoata, M. 0. Whlta aad P. B. Duaaway, Bda. Bavate Applied Bcology Oroup Ptfblloatloo RVO-178 (Juaa 1977).

08. D. A. Cataldo aad B. B. faugten. "Retentloo. Abaorption. aad Tranalooacion of Foliar Gootaainanta," In TTanauranica in tte tetural Bnvlronaent, H. G. Uhita and P. B. Dunaway, Bda. Bevada Applied Bcology Qrovip Publication WTO-178 (Juaa 1977).

09. B. P. lardy. Jr.. OSIBDA tealta aad tefaty Laboratory tevlroooental Quartarly Beport for teroh 1 - June l, 1976. BASL-306 (Jaly I. 1976).

50. B. P. lardy, Jr., "terldwide Dlatrlbutlon of Plutoniua," In Plutoolua and other Tranauranlua Bleaenta, O.S. Atoalo Bnergy Coaaiaaion Doouoeot WASB-1359 (Doc. 1970).

51. Bnergy Reaearoh and Developaent Adainlstratioo, "Proceedings of the Workshop on Bovironaeotal Reeeareh for Transaraale Blaaanta,* Report RRDA-76n30 (1976).

52. R. G. Sohreckhise and J. P. Qlne, "Optate end Distribution of Pu. te. Ca and Up in Four Plant Species," tealta Phya. (Abstraot) (1977).

53- B. G. tennett, Personal Coaaunication (iugxist 1978).

12". 50. J. u. Healy and J. C. Rodgere, "A Prellaloary Study of Radiua Contaalnated Soila," Loa AlaaK>a Soientifio Laboratory report LA-7391-MS (1978).

55. J^.B. Till, "A Coapariaco of tte Foteatlal Radiologloal lapaot of Recycle ^^^ HTOR Fuel and LHPBR Plutoniua Ftel teleaaed to tte Bavlrooaent," Oak Ridge National Laboratory Report aRBL-TM-0768 (January 1975).

56. J. B. Till, "teMssoaot of tte tedlologloal lOpact of ^0 and Daughters in Recycled ^^^ BTOB Fuel," Oak Ridge Rational Laboratory Report ORNL/TM-5009 (February 1976).

57. M. F. Sullivan and A. L. Croaby, "Abaorption of Uraniua-233, Neptuoiua-237, Plutoniua-238, teerlolua-201. Curlua-204, and Binatalnlua-253 froa tte Oaatro-lntaatiaal Tract of teubom and Adult Rata." Pacific Rorthwaat Laboratory Annual Beport for 1970, Part I Bioaadioal Stodlea. BWL-1950 Pti. 100-108 (teroh 1975).

58. M. P. Sullivan aad A. L. Ooaby. "Abaorption of Tranauraaic Bleaenta froa Rat Out," Paoifio tertaweat Laboratory Annual Report fbr 1975. Part I, Bioaedioal Soienoea, BRWL-2000. Pt 1, 91-93 (January 1976).

59. D. D. telta and H. B. Hlachaeler, "Faotora Affecting Sheet and Rill Broaion," Trans, teerioan Oeophyaical Onion, 38, 889-896 (1975).

60. P. C. tenedict. D. B. tendurant, C. R. tell. J. B. teCee, J. Saallshow, and T. A. Tanoni, "Sediaeat Traaaportatlon teotenlca: Broslon of Sedlaanta," J. of BydrauUca Dlvlaloa. ASCB. BTO. 109-127 (1962).

61. O.S. tepartaaat of Agriculture. "Balafall - Broaion Loaaea froa Cropland teat of tte Rocky Mouitalna," Agriculture teodbook te. 282 (tey 1965).

62. R. M. telta and W. L. Staaey, "tetaralnlog tte Rata of Tolerable Erosion." Soil Soieooe. 100, 010-020 (1965).

63. S. Judson, "Broslon of tte Land or Utet's teppening to Our Continents," te. Sol. 56, 0. 356-370 (1968).

60. H. G. Wolaan and A. P. Schick, "Bffeota of Conatruotion on Fluvial Sedinent, Orban and Suburban Areaa of teryland," tetar Reaouroea Reeearoh, 3, te. 2, 051-460 (1967).

65. C. R. Miller aad R. F. Pleat, "Sedlaent Sourcoa and Sediaent Yields." J. of tte Hydraulios Division, ASCB, BT6. 283-1329 (June 1970).

66. D. R. Rogers. "Mound Laborstory Bovircnaental Plutoniua Study, 19^4." NLM-2209 (Septeaber U. 1975). 67. T. E. Bakonson, J. U. Nyten, and U. D. Purtyaun, "Aoo«aiulttion and Transport of Soil Plutoniua in Liquid teata Discterge Areas %t Los Aliaos," International Atonic Bnergy Agency Conferenoe Trsnsur^n;- nuclides In the Snrironaent, IAEA-SH-199/99, 175-189 (1976). 68. Bdward A. tertall, "Actlnldee in tte tevlrooaaot and Ttelr Optate by ten," tetlonal Center for Ataoapterio Reaearoh teport BCAB-TW/STR-110 ^tey 1975). 69. Intamational Cooaissioa on Radiological Proteotioa, "Report of tte Taak Oroup oo Reference ten," ICBP Report te. 23. Pergaaon Praaa, Oxford, tew Tork (1975).

70. B. J. Dunatar. R. J. Qaraer, H. tewslls, and L.F.T. Wis, "tevlronaantal Monitoring teaociated wlta tte Diacharge of Low tetivlty Badioaetlve teata froa Ulndacale terte to tte Irish Sea," tealta Phyaloa 10, 353-362 (i960).

71. U. B. Prout, "Adaorptlon of Radioactive teataa by tevanoab River Plant Sou," Sou tel. 86 (1). 13-17 (July 1958).

72. B. A. Bondlettl. S. A. Reynolda, and M. B. Shante, "lataraotioo of Plutoniua with Cooplasiog Subataocea in Sella aad Batural Uatera," 273-287, la Tranauranlua teclidee in tte Bnvlraaaaat, IABA.SM-199/51, Vienna (1975). 73. D. A. Brown, "The Adsorption and Diffusion of Pu In SoUa," ORO-0700-2 (1976). 70. c. U. Francis, "teeeaaaent of r, tetamlnatiooa," 1976 Annual Report, Bnvlranaontal Sciences Division. oIllL (in preaa) 1977. 75. R. C. Routaoa. G. Jaaaaa, and A. T. Roblnaoa, "terptloa of Tb-99, Bp-237, and Aa-20l on Two SubaoUa froa Differing teathering Intensity Areaa," BML-1889 (1979). 76. Jacob Bear, "Dynaaloa of Fluids in Porous Msdla," Aaerican Elsevier Publishing Co., tew Tork (1972). 77. G. L. teyer, "Preliainary Data on tte Oocurrenoe of Tranauranlua Nuclides in tte Bnvlronaent at tte Radioactive teata Burial Sita, Maxey Flata, IT," i IAEA Syapoalua oo Tranauranlua teclldes in tte tevlronaent, Sao Franoiaco, CA (Boveabwr 1975). E 78. 0. Oat and D. Qark, "tedloactive teata Inventory at tte texey Flata teolaar testa Burial Slta", tealta Phyaloa, 30, 281-289 (1976). 79. J. B. terton, "Bxhuaatioo of tedloactive Solid Waato Buried for Fourteen Tears," Savaanah River Laboratory Report DP-1056 (teroh 1977). 80. J. E. Potta. R. A. Glendinniog and W. B. Aokart, "Aa loveatigation of tte Biodegradabllity of Packaging PUatica." Boviroooeotal Pmteotion Agency Report BPA-R2-72>006 (August 1972).

81, R. S. Blanoo, Oak Ridge tetiooal Laboratories, Private Cowunioation (October 1977).

82, L. J. Johnson, "Effects froa Pmst Solid Waste Oiapossl Prsctices." Envi-. Health Perspectives In Press. I 121 I 83- teerioan tetlonal Standarda Inatltato, "Control of tedloactive Surface Cootaalnation on teterlala, Bqulpaant, and PaeUltloa to te Releaaed for Onoontrolled Oaa," Propoaed teerlcaa tetiooal Standard AHF ^328 (1977).

84. National CounoU oo RadUtion Protection ate Maaauraosnta, "Safe tendling of Radioactive tetarlala," WCRP Report 30, tendbook 92, O.S. Dept. of Coaieroe, tetlonal Bureau of Standarda, O.S. Oovt. Printing Office (tereh I960).

85. H. J. Dunatar, "Surface Cootaalnation teaauraaenta aa an Index of Control of Radioactive tetarlala." tealta Phya. 8. 353-356 (1962).

86. H. Blats and H. Blaenbud, "Tte btabliahaant of Lialta for tedioaotive Surface Contaalnatlon." in Surface Contaalaatloa. B. R. Flab, Ed., tergaaon Preaa. Okfbrd, tew Tork (1967).

87. J. U. Bealy, "Surface Cootaalnation: teoialon Levela," Loa Alaaoa Sclaatlflo Uteratory mport LA-0558-MS (teptai^ar 1971).

88. Loa Alaaoa Scientific Laboratory, "Tranauranlo Solid teato tenagaaant Prograaa, July-Deceaber, 1970," Loa Alaaoa Solantiflo Laboratory teport, U-6100-Pr (Oot. 1975).

89. M. L. Uteeler, U. J. telth and A. P. Oallegoa. "A Preliainary Braluation of tte Potential for Plutoniua Releaaa froa Burial (k^unte at Loa Uaaoa Scientific Uboratory," Loa Alaaoa telaatlflc Uboratory teport U-6690-lfS (Fab. 1977).

90. B. H. Boaaay, S. M. Mark and P. B. Uraon, "Paraiatanoa of Plutoniua ia Sou, Plaata aad SaaU Aaiaala," tealta Phya. 19, 087-091 (Oot. 1970).

91. A. F. Oallegoa, Los Alaaoa Soientifio Uboratory, Prirato Ooaaunioation (Aug. 1978).

92. D. F. Costello, "The Uorld of the Ant." J. B. Lippenoott Co., Philadelphia (1958).

93. G. T. Turner, R. M. tenaon, "Poctet Qoptera and Colorado Mountain Rai«eland", CSO tep. Sto. Bull, 5505 (teroh 1973).

90. R. B. BUtaaan, "teaauraaent of tte tetural Contenta of teD (Pb^^°) and RaP (Po^'°) In Buaan Bone - tetiaataa of Utele-Body terdena," tealtb Physica, 9, 385-000 (1963).

95. H. F. Luoaa, Jr., D. N. Bdglagton and F. terkun," tetural Tboriua in Huaan Bone," tealta Phys. 19. 739-702 (Deo. 1970).

96. £.1. Baailton, "The Concentration of Oraniua in ten and his Diet." tealth Phys., 22, 109-153 (1972). 97. V. R. Hunt, E. P. Radford, Jr. and A. Segall, "Naturally Occurriri. Concentrations of Alpha-Baitting Isotopes in a New England Populition.' Health Physics. 19, 235-213 (Aug. 1970). 98. A. P. Stehaay, "Badlolatopaa la tte Skalatoat teturally Ocourriog • Radiolaotopea la Maa," in Radtoiaotopaa la tte Bloaptere, 366, Univ. of Minnesota, MinaaapolU (i960). 99. U. Stahltofea, "Measweaenta of tte tetural Content of Th^^^, Ra^^^ and their Daughtara in the Buaan Body," IAEA Syapoalua "Aaaeaaaeot of Radioactivity in Man" (i960). 100. O.S. Atoalo teergy Coaaiaaion, "Propoaed Final tevlronaantal Stataaent, Liquid tetal Faat Breeder Baaetor Prograa, folaaa II," O.S. Atooic Baergy Coaalaaloa Doouaaat WASB-1539, O.S. Oovaroaoat Priatlag Office. Uaahlagton, D.C. 20002 (Deo. 1970). 101. O.S. tepartaaat of Baalta, Mooatloo and telfhra. Public tealta Sarvloe, "fltal Statlatloa of tte Oaitod Stataa, 1970, Voluaa n Mortality," Supt. of Doouaaata, O.S. Qov't. Prlntii« Office, Waahlagtoa, DC 20002 (1970). 102. J. U. Bealy, "Tte Origla of Ourroat Staadarte." tealta Phya. 29, 089-090 (Octoter 1975). 103* B. B. Barley aad B. S. teatamaok, "A Comfmrimon of tte toaa to Calla on .-^ Trabecular Bona Surface froa Plutoalaa-239 and Badiaa-226 teaad oo tepariaaatal Upte Abaorptloa teaauraaanta," tealta Phyaloa 3Q.:35-06 (1976). 100. P. W. Spiem and J. B. Whitwall, "Doalaatry of ^'Pa aad ^^a la Man and Aniaala," In: v*^ a^ifci. nttmatm of Piotmiif SUH asiiiii. w.S.S. Jee, ed., J. W. Praaa, Salt Late City, Otah, 537-992 (1976). 105. T. P. Do««harty and C. W. teya, "Boaa Gaaoar ladaoad by IntamaUy | Depoalted telttera in teaglaa," In: Radiation iBdnoed Cancer. IAEA. i Tlenna, 361-367 (1969). 106. D. K. Craig, J. P. Park, G. J. Powara, D. L. Cott aad A. C. Case, | "Dlsposltloo of iaO, PoUowlng Inhalation by Beagle Doga," Pacific tertaweat Uboratory Anfiual Report for 1977, Part 1 Bioaedioal Soienoea, PBL-2500 Pti (Feb. 1978). 107. J. B. BaUou and R. A. Qlea, "labalatlon Toxicology of ^*'te(NO.).," Pacific Borthaaat Labomtory Annual Report for 1977, Part I, Bioaedioal t Soloaoaa, PWL-2500 Pti (Fob. 1978). I 108. U. D. Purtyaun, Los Alaaoa Soientifio Laboratory, Privata CoiMunicatioo | (Oct. 1978). I I I UNmStrAIBB ENkRQY ROCMICH AND OCVOOraCNT AOUMSTKATION OJO.

SEP 2 d B75

J. L. Liwozaaa, Aaalataat Aterinlatrator for fnvirewaaat aad Safety tnoMLumnxm BHHIIHHMIS IQKniRSoiAniii-aatiiaiiziD totXD HASTES ,, la 1970, aiD& daddad that aoM apodal teirfliaf tachniqaa itad for loag-tata diapedcloa of eraaMraBie*

Tte KBC aubaaquandy publiahad, la S^ta^ter 1974, a propoaad rulaoakiag raqulrlag that cranauraolita-ooncaaiactad waataa froa lleaaaed fadlidaa would aaad to ba aaat to BBDA for uldaata diapoeitloa, with tte coaaardal tector baaclag all ralatod coata. In affaet, tte rolaaaklag aatabllahad 10 aaaocariaa par graa aa cte uppar lialc of waataa chat could eoadaua Co ba ahlppod Co coaaardal (lieoaaad) borlal gzooada. Thla propoaad mlaaaHag had aaqr raparcuaaloaa. Thraa of tbm Mix acataa raapoaaibla for cha loog-cara eoacrol of cte r>BMarclal barlal groonda howa oat laterally pradodad cewaarcial burial grooad oparatera froa raealwins tmj aidlcioaal TID waacaa abova cte 10 naooearia par graa laval. Many coaoMrrtal paoplo voicad acrcog abjacclooa to hovlag chia arbicrory lavd lapoaad la a way which waa aoc iataodad by nOBA la its initial dadaiaa. Thla polac waa scraaaad by mmf eeapaaiaa coaaantlag oo tte Draft Envlroaaaatal Stataaent, UAra-1539, "tenagaaanr of Coaaardd Bigb-Lavd aad Transuraniua-Contaaiaacad ladiaoeclva Waataa."

Tte aadoaad papor by Walton A. P.odgar, '^Cdtical Evalaatioa of tte Liait of Tranauraaic Contanination o£ Lav Level Waste,** waa praaaatad at tte 80th AIChE aeedng in Boston, Hassacteaecta, Saptaatter 8, 1975. It ia indicadva of cha interest cjid, I believe, cte raaccloa of tte ^^ycpaaardal nuclear Induatry to the 10 naaocurle per graa J. L. TlTsr— •}.

Hhila aoc iodsiag cho pardoOar approocli or radeaala tokta by Or. lodaor, Z ballova it ia cimly for BttA to akm m togltfwa atap coward qooocifyiag cho hoaldi haaasd roUcod ca 10 wiiBii. Z thota- foco roquoac thac yoa oacahUah oa official IDA hoaUh aoi safacy wiaopoiac Idaatifyiag cheoa TBI aaocoa widch OhooM MB ho dlopoood af by aiapla laad barlal aad, tharofoca, woold xofgixo loat-cosa eoacrol aoch m affordod by a laiaral ropoaltaty. Z coaliM thac' thla la ao aiapU caak. aad «U1 ca«alra BwlBfiiillal cia* «ad afforc. Slaoa «ASB-1519 baa bona aiChictea «id cha roplaoanac Biwtiiiiteancal BCRIttetef «iU aoc ba iooaod for ac laaat oaa totmfmtm^ thfta aoMB aa appropdaca parlod altiila ohldi Co oeceopliRb iSkLB caak. Z will ba plaaoad co aopporc whacavas acopo yoa fool appropdaca ia aceeapUahlat Cbla gaal. alaea Ic lapicti oa dorlataaa of tmorraiira CO tha aadaar aaargy protraa. Flaaaa lag aa kagir af tha daa achadala yeo faal would ba raqulrad aad boa tha i0 acaff eaa aaaiac la thla afforc.

Badoaura: Papar by Ualcoo A. Bodgar cc w/aad: ?. P. Baraaowakl H. 1. TThlgc, Jr. APPOBn B BOB 1IB8TB B0 IBIZBL STRS J. V. Baaly aad J. C. lodtora

I. mMoocnoi Tte aoorooo diwaaairt la tte praoit otady of tte aoUd aoateo aoatadaatad with traaooraalM alaMato, ara all BQI oontraotor oparatiteo dth tte borid dtaa dao oooooUtod dth OQi fbollittoo. Aa a ooaaogateM, tte waate oharaatoriatioa, tte roUdva aboatelwa of tte ladlvidid —ilHii, ate tte adatiag borid dte oharootoriotioo aad barid prootiooo ay te oaaoNhht dlffaraot fk>«B thalr oooatarporto In tte iji,«tei iilil aodter fad oyolo. Za tha following aaadoaa thooa aapaoto of DOB waate aad aute anifMMat praetiooo will te briofly rovlowod.

II. TIB HtsiB cmAcmmics Tte TBO waataa froa DOB faoilitioo ara widely nriad ia ihipa, fora, and •atarid with oaly oaa thlat ia oooMat thay ara, or ara aaiiaotad to te, oootoBiaatod dth trawjuraalMi diBiili. Ao dth olhor riiltBRUaa, aolid aooto, they aay ooadot of oay Itaa or piooo of aguli—H tohte late a baildlag uharo traaaoradoi daoaota are haadad aad, ofantually, will iaolate all or a pordoa of tte bdldlng itaalf. Aa a raaiadar of tte oe«plaaity of tte Itaaa to te haadod la any waato ayataa, Thbla B-I provldea a partid llatlag of aooe of tte itaaa aad aatarida ttat aay te aaoooatarod. Ooahaotiblo aatoriala oeoor la tte olaadfiaatiooa of roatiaa aeabaatlUo, other oporatlooal waataa, aad la faoility doooaaiaaioaiac, dthoacb aoot attaatioa oa poaalbla traataaat aad wd«a rodoodoa hM baaa fbotetd oa tha roatiaa laboratory waataa. It to aatialpatod that •fafa for laaiaarotiag, or othordoo oaldidiv, oony of tbooo aatarida will baaoaa avdlable, theraby dlaiaatli« thoaa itaaa aa Idaotinada waataa aad aObatitatiag a aoro adfora aah. Bowovar, oatil auoh oqdpaaat to availada aad oparatioad oa a routine teato, thoaa ooahaaUdoa will coot tooa to te boriod. Baduetlon to aah will dd to another problea fowd alaoat aotiroly wito auoh Iteaa aa ehaoaedotb, raga, and atollar aatariato uaad to a laboratory for cleanli«. Thla prodea ia tte iaoluaion of atray roagento aad deoontaainatlng

3-1 tUUB-Z nPZCAL TOBOr lllffll

Boutlno vaato Oallalodoa - popor, ohoooooloth, doth *te ^MMM^r^^^^

(ahaai aaA raapat'bobtloo) OUo ood vaaooo - oattlOB oila ooUdlflod

•I Matala - diada« fUl, otod ("tto") oaaa. aoraa plpa (atalalaM atad, atad, dadani), tedl toou, Slodga -> Iroa alaifo prodpAtetoo ftea tho llqald PUtora • BPA

blaok, iaaaladoa, floor tila, alootriod airlaB* aatd

iqulpaont (obodoto or brotaa) - glovo boaoa, latbaa, drill teataa fToa Pteillty teooaaiaalaaii« teod, oooorato dook, ohoaka of ooaoroto, laoaUtioa, dtetwork, glove I , aotd working oqolpMOt, airias, dadoao, flstarM. m

dth thaaa Itoaa. l>anon>Mi1teriOB • •» IN,, , •<-• »•«> w umiiaiin. anil pooplo, dth UM rpga aad othar 1 dlaoardod to UM waataa. Slcdfloaat qaaatltioo of ooob aatorialo to tte oould roadt to aobUtoadoo of tte traooarodai aloaaato aftor borid. Tte non-routiae Md deoaaalaaloali« waataa raodt larfdy ttm dlaoardag of contaalnated, broken or obaoleto oquipaoot, baildlag ronevation or deoontaatoatlon, or dlalnatlon of ftellltloa no loogar raqalrad. Iteaa waatos ve froquantly vary bdky aad tte praetloe to tte paat baa been to provide paobagoa adaqaato to tranapart to borid or retrlovd dth ao attaopt to B-2 I voluoa by ooapaoting to dialnato void apaoe. ianplaa of thto are donua ohaabere or air duoto froa veatitotlon ayateaa or Oboototo glove boxes. Jandlif^ of thoaa iteaa pooea a problea baaaaaa thay will te dlfflodt to get into a repoaitory, but atteapto to redooe ttelr balk will pooe tte riek of ezoeealve eapoaure to people udoaa opaotol ftellltleo are availabto. Tte void apacea are dao mtealrabla to tte burtol grouad atoeo thoy wmt load to cracking of tte grouad cover when they oollapaa, leading to poadda toaraaod totrusion of water. teokagli^ of waatea for burtol dlffora at tte varlooa loeatlona tepending priaarily upon wtether tte alto baa a borid grooad or tte waataa aaat te abippad alaawhare. For thoaa dtaa dth borid grooMa, tea paakagif« le dniod, oaodly auffiolent to pardt traaaport to tte borid groonda dthout apread of contaalnatlon. POr routine waatoa tte pooiraglng aoy ooaalat of a aeded plaatlo bag Inalte of a cardboard oontatoar dth tte oooaa toped ohut. Larger iteaa aay te enoaaod to plaatlo ahoatlng or a woodoa boa. Pbr thoaa altea wboro tte waatoa aoat te adppad daawbaro for burtol, tte ahlpptog packagoa aoat aeet tte tepartaant of Tlranaportotioa ragatotions. Borad laboratory waatoa are uaually adppad to a atad droa, fraqoondy 59 gdlona (210 Utera). Par larfa Itaaa plfwood boaaa teva boon uood. An aatlaato of tte totd waato vdaaea for all BOB altte ia girmi aa 33.8 s 10* a^ to rotriovado aton^a aad 1.8 x 10^ a^ burled. Tte totd plutonitai content of thooe waatoo ia eattoatod aa i 000 kg. In tte fbtura, about 3 x to a^/yr will te burled and about 6 x 10^ o^/yr atored retrievable. Tte burld and storage will tovolve aaaa 70 kg/yr^ of plutoolua. Tte burled waatea include otter than thoae cant«Ujiated dth flaaion produota, while tte stored waatea mr* all TRO ocntaatoated. It ia iaportant to noto ttet not all of tte waataa m^ aoataatoatod dto tranauranto deaeato. In effect aoy Itaa takaa into aa area wharo traaoormlea are handled la oonalderod to be contaalnated aad ia dlaoardod in the oontaalnatad waato. Thua, if a aaxlaua lidt for burtol ia eatodlahad, a aajor fraotion of the aatarida buried dll te eonalderably lower to ooataalnation with acae tevii« little or no contaalnatlon. For enapto, Dleckhoner noto* ttet, on tte average, greeter than 97S of tte aatertol buried at tte aajor DOt sites is ody slightly radioective or ie suspected of teing radioactive because of where it ia generated. I

III. DOB BOBIAL SIIBS I Slnoe UM preaent propoaed Itolt on ccnoentratlon of traaauranloa to waetes suitabto for ahdlow earth burtol to aeent to apply to DGB waato dlapoad aitea. f It ia appropriate to review briefly UM aajor dto phyaiod obaractariatlca, and their reapective burld practicee. SuHMry Inforaatloa froa aeveral I aourooa^'^** la abown to Tado B-U aad TOdo B-Zn aad diaouooad to aora tetaU in tte followli« aaoti t

A» innitlnn iiwl fliri liBBnrintlnnR | 1. JiSL: Tba Loa Alaaoa Bdentifio Laboratory (LABL) to looatad to Loa Alaaoa County, Bow tedoo. It to altuatod on tte Pajadto Ptotaau at an elevation of about 7 000 feet and adld waato burtol to oorriod out on tte oaaaa I of UM ptotaau. Tteaa aaaaa are oovorod by a waathard toff aad undarlato by 70-160 aetera (280 to 590 foot) of voloado tuff. Tte taff to irregularly broken fay nearly vartlod Jototo whloh aay te doaad or opte M oueh aa 5 oa, dtho(«h UM^ are uaually loaa than 5 oa wide. Tte upper aatar of tbaaa jototo ia uaually filled dth weattered toff. Tte alto baa a aad-arid, ooottoaotd, aountato dlaato dth Udtad praalpitotioa (about 800 aa/yr). Tbora lo UtUe or no roohorga to tte aoaa of ootarotloa flroa prodpiUtloa «a tte p tot oow. Hhero tho aoll cover baa booa datvrbad to the diapoaal areaa, predpltotlon aay tofiltrato to daptta of throe aetara, but balow tola tepto there ia not enough wator to loaoh UM oontaalnanta. Tte burtol alto oaaaa ar* bounded on tte norto and aouto by atoep walled oanyona out 15 to 30 aetera telow I toe aurfaoe of tte aaaaa by totordttent atroaaa. It taaa been estlaated ttet downward eroaiood prooeaaea would roqdre 27 000 yeara to espoaa waatea at ground level, aad 110 000 yeara for toterd aroalcn from tte canyon wdla to reach tte waatoa. If radloacdvo ooataaiaaato raaah tte oaoyona, stora runoff i evento wodd te UM prlnoipd potantid troooport vootor. I 2. Twvi . Tte Idate tetlond Bi«ineertog Laboratory (HBL) ia located in southeeetem Idaho near (20 aUee) Idate Pdla, Idato. Tte alto ia on toe Coluabia PUteau to tte eaatom part of tte Snato Blver Plato, lying wltoin • oloaed topographic depression. Soil cover is thto, (t.5 to 6 oeters), with surface teadtie rock over large areaa. Tte top of tte zone of aeturetion I beneath the eolid wast* burtol ground ia at a depto of aboot 200 aeters. Tte«ft>it

aa MnM, ana caAticnaianca •i«*r rum. Mte* aitiessi u* AiaaM asi^airie Vim at lafaraiLtaa

frMlflUtl** (a) hirruui NiUrlsl deyigr nu AUaHal HMiaaa Oay, aaa.

TklakiMM (sctM**) ••a 0.1 lfit«r,tltlal to «*nsat* •fetlltf U Mt4r ft,o>«.a)

••irort MitarUl talssaH tmtt StnMtNr* flet-lytat Plat-lylag Plat-lylat OroaM Mitar ttpttt te OMllMMSt ••t«mt«S l«M (i ».!

•tpth t* Btat«Ml Ae*tNr (B*t«r*) lM«t tauaam aT MUr SMM Co*««r*) >l arfM* atl«r «• alt* m sit* 1 k> a hi lelty

nan t*tl«* tell. 1. CoaeBta nesi9 tette Ci«a*lty •r Nil«rl*l awUI" •.•-I.0 It rrlMlt*! flaw yoTM la •My trim SarUl •Uy*y nu aarlMMtal Mlawtty 9t now «r M»t«r (•/«) a.] a.at -•-•tUl«i yiiwirttHty MS !«• Mi9**ity oan M ay n«* aiwa fel^ SMWMMllty nu ffdof «a»

••• -eaofi l» o i-^'O ei isfi ea papMa mm « »teMi a irn i •oa fe%s« o fl e« e I eMiem *toMe a ri WMISWI SMMS t«aM «• ntot

i*#aet«M o«io tmi UM 01 nu tTUJJOi heMSisa pSMMsaa e« nU P^«M*m JMMO TWt4 ja adCi te|jats| _ a asnsBi Mt pajiatti as es|«etpej •asti safjBsiisp ssmo IteMffsp ie top tottfi aaiasawt ••*» JSJ towislMj fnni j»u*

fB|to«ten se istee* MMMttwM9 ia«sa as ir ipse see sttte aiua«t«w sue mn—u*9 9% psd»|s imsiji mm nm*"* (•«•« snm »» •VOI«IMJ4

• 0 ««ir iibaia l« ••art • coma l« dtop «'»-i s aiaasi eiaa fwetoO) gttaapiaW I tela f-ri aii-aci > •pm ic-t test fl * *9m C -fan o dssp f a *pi« f ssw «M/aM*^j*ij

K *to»«s«a*i at *«stu leaeiua «aM eutaaf«t asnsiy an fsasitel •§»« a^) toaw OMHSMV viif

lu-a Proeidtotioo to lldtoi (200 aa par yaar), bat tbara to aate oviteaoe of prooipitotioo tofiltrotioa to dopto ot tte borid graite baaaoat tte aadtoenta aro at fiald oopooity.*

It Ite Atlaado-tiobfioid iMfard Ooopaoy dto ia MnMr or tbo atate of iMbiimw, SO ailao oaat of to oa tbo OoltefeU natoaa af tha faaaa iMla, baaaiai on tte nortb oai oaot by tba aaUay of tbo Caltefcia Hoar. bteeatelHatd aUto, oondo, ond pwralo ap to COO aatera tblak teka ap tba aarflald aatartd, «id baloo tbat ara atbar layora of alaya, aangUaarataa, aai aaaia ap to I?0 ia alltf aai *yt «ba mmmaL jrtetjimHai U aaly la tba aufTlolal aadlaaata oooara aater teooaftaai aaaddc dtbooi^ loooUy ooaflaod aoaoo do osiot. Ittor to tbo taadt aaialy ondor ooaflaod ooaditioao. Tte oajor aoaraa of aatard raabarga to tte onoonfiaad aqdfara to praalpitotioa oa tbo opXaada to tta aedb aad aaat of tte raaorvaUoa, tte offboto of prooipltotite oa tbo liwrtaaJa balag aaaaaaorabto due to blfb ovaporotioo looooa. Tte tfaptb firoa tba aui'fbaa to tte watar tabto variaa grootly froa plate to plate dapaarllai odofly oa laod to ovar 100

«. Stm^t Ibo Oak Udgo tetioad Laboratory (OML) to looatad to tte woat oantrd pordoa of oaat«« Taaaaaaaa (15 allaa aaat of BMavilto, Taanooooa). Tho alto ia plaood ia a ridge aad vdlay aottiag abaraoterlaod by oouthweat aortbaoot orloatod ridgoo of aaadatoaa, abato, aad dolodto. ooporotad by valloyo of laoo wootbor raoiotuit llaaotnaa md teals, inaad proolpitotion to oboat 1 300 aa. aaifbaa draiaaga to ooatrolloi by topoyapby, dtb aaay fbadi« lato tba dlaob Uvar. lolid aoato barid to teiag obdo throe to ato aatara teap, ovarlyiag abalao dto olltotoaa bada and leoaaa of gray llaoatoao to tte upper fOw boadrad fbot of tte foroattoa. elevatloo of tte ooae of aatoratioo to oooaUy bataaai 1.9 aad 5 aatara telow tte aorfaoo. It la asauaH ttet aU aT tte aatar tbat aooaa baaaato or tofUtratoa toto tte borid groand diaabargaa lato a aaarby otraaa valloy, but tte teae of thto lood flow ayatea haa not boao teftoad.* Laaatato aprtoga tev« been foond dowoalope froa certain of the barlal altea indicating the' groundwater and toflltrattog aorfhee runoff enter tte treaohea and then aeep

B-T throogb UM rofoao to apiU over aad teargi at tba aarfbte, baaaaw tte paraaabUlty of tte aObamfftea aatoriala to aot adagaato to tUm all of tbto water to aovo oot to UM aubaurfboo.

5. aMtt Tba tevannah dvor Plaat (flV) to dtaatodi to tte Atlaade Coaatd Plato ragloa of aoato Carolina about 25 alloa aootbaaab of iataato, aad ao part to vary far fk'oa a ooatiaaaaaly floaiag atraaa. Aaaroga aaaad ratofbU to aboot 1200 at. Tte bvtol dto to lotetod botaaoa tao tribabariaa of tte Hvaiaitb lia

1- UflM UM P*laary diapood oroa aood ot UO. oiaoo 19S9 to barid Qroond 0 (tboro oro at loaat four waato dapood dtaa no lontar oaad). Tte borid araa oontaina ato large pito, 30 aatara dte, 200 aatara long, and aboot 10 aatara deep, eight aaaller pito of varioua dlaanaioaa, and 80 dlapoad abafto of varioua daptte (anlaaa 20 aatara).^ to atandard prooadora, low-lovd radoaotivo waataa aro plaoed to 30-Utar aatd traab ooao, llaod dto plaatie or to oardbuard boaaa llaod dto plaatto prior to diopood. baatte aro bariod to two aotar tbiok layaro oad oovorod dtb o aasla« of 0.6 aotoro of taff. Pito aro fiUod to dtbto oao aator of tba laad aorfbte and tbaa fillad dto tuff aad aoondod to onbanoo aorfaoo raaoff. Tbo oatlaatod ooatoat of tranauradua deaanto to tte waato aatarid plaood to UM diopoool pito ond atafto of borid Qrowtd 0 aro: ^Pu • 15 CI; *^Po • 332 a; **'te * 20T» CI.' Tbara waa an oatlaatod 5 kg of ^^Pu aooaaaUtod to boriad waatoa prior to tte tlae ratriovabla atorage prooedurea wero laatitutod. Proaaatly treated liquid atroaaa geoM^to about 150 graaa of plotodna per year going to retrievable atorage.

»^ 2. jnU: Aboot 6 000 o^ of TV ooataatoatad aoUd aoato ore atored annudly at nOBL froa tte lortqr ftoto oparatiaa. Tbto aatarid aaa foraarly buried to pita, hot waatoa above tte 10 aCl/ga lovd ara aoa otorod on aaphdt poda under aboot plaatto aad plywood dto a nnnpamad eartbaa oooar. Tte waato ia ooatatoad to plaatio-liaed 210 liter droM or opwtol troatad boaaa. Tte aooaautotod datodaa to tte borid alto aoa aaeonto to ^aat SCO bg (120 kg to rotriovado atorage). Anmaa gaaaratioa of waato pUbodaa trm Baaby Ptoto to aboot 20 kg. TMt aabaaatioa work to ourrootly teiag doM m oortatn provtoody boriod TIO waatoa. Piapoaabla lavd waatoa are boriad to traaebaa or pito. Tte trooobao oro gaaarally 1 to 8 aatara to ddto aad 100 to 990 aatoro long. Pito oro 190 by sro aatara aad 1.9 to'9 aatara daap. Tte rriapbn ara baokfillod aad ooaprooaod. It to oatlaatad ttat tte prlaary burld grooad bM bad dapoood in it aboat 17 000 CI of '^Po. and 26 000 Ci af ^V.'

3. aswawan anara. proa 1966 to 197b, a progroa of ooatroUaation of tte burld groonda to UM 200 oroo woo atartad aad ooaplotod. Tboro aro oow aovao oajor borid grouada (throe ara aeUva). Moat waataa hava baaa plaood to long tranoteot dry aaotaa to traaobaa t aot ara doop, 9 aatara aide oa 19 aotar oaatara; ooataalaatod iadaatrld aolid waato baa baaa plaood to largor troooboo. A atntoaa of 1.2 aotora of oarto oovoro ooeb traoeh. for tto paat yaar or ao (I97t-1976) no waato above 10 aCi/g hava baaa atorod fOr pOMlbto rotriovd in 210 liter atad druaa ataokad on aaphdt pada oonatroeted to ataallow trenctea. Hhen a aootlon of a TIO trenob to ooaploto, tte stack to oovorod dto a large vtoyl aboot and oovorod dto aewd feet of baokfill. btlaated totd plutcdaa to each burid grouad rangoa froa i to t kg.

a. mU! Tbroo aolid waato atorago areaa ware dovolopod, filled, and doaad duriag tte period 19M.1991. Traaebaa wara dog, fiUed dto waatoa, and baokfillod. Tboro to litde toforaatloo aboat UM voluae or character of aatoriala buried. A fourto alto waa opened to 1951 ond olood to 1999- It i* in a poorly aurfaoo-drdaod tondfOm. Tte fill to aot oaly a aatobaant for preoldtotlon but auat reooivw runoff froa tte hillalote aad dratoagowaya and groandwater froa upalope. Moet of tte laadflU ia aaturatod. A fifth alto waa dereloped aa a readt of previoua diffiodtles, dto aoob aoro eore to site seleotion. teetee are plaoed eltter in trenctea 15 to 120 aetera to lengto, 2.t> to 9 oetera in ddto, 2.5 to « aetera to dopto) or to euger bdea (0.6 oeter

s— I dtoaater, 4.5 aotora deep), Nu^ of UM raoord of evly waato diepoed operation waa loot to a fire. r Tbo origlnd burld ground of 76 aoroo bogte to roealve waato to 1953 and waa fillad to 1972. A 119 oora dto ooatifoooo to tto orlgtod oroo waa then opaaad to raaaivo waato. Bogiaaiag to 1969 TIO waato aao oogrogatad toto ratriovabla aad I non»retriovablo waato, aooordiag to aoddty lovd. Bte lafrtovabla waato waa dapoaed of to troaohoa approalaotaly 6 aatoro teap oad baokfillod dto a aldasB 1.5 aatar aoll oovar. lataaaa 1969 aad If?* ratrtovabto atorod waato waa badad to ooaoroto ooatatoora or aaaopoototad to ooaeroto. Aftar 197* retdovabto waato waa atorod to 210 liter droao oa a aoaoroto pad ond, aooordiag to UM dpte ootidty, the druao aay te plaoed to ooaoroto odvorto. Tte pod dto tte druoa aad odvorto to protoetod froa rato poroolattoa oad aoondod dto a ainlaaa t-foot ooil oovor. Aboot 11 350 a^ of no woato ware boriod tefora 1969 ond aboot m oqod I vduae ainoe then. Tte aajor TI0*a buried or atorod ladote approaiaotdy 300 000 Ci of ^Pu, 2 000 Ci of '''pu, Md to 000 Ci of '"c

IT. laORMS A» BKdX GUBACTIIZSnCS I Tte aajority of UM TIO waotoa froa 001 operatic roadt froa weapons work and froa uaa of beat aouroe, or high purity, 238'-^Pu. . teae reaearoh and developaent work to done dto high bumup platodua readtlng froa reactor fuela. to addition, aoaa quantltlea of ladivldud traa^^ntonto deaanto, auoh •• ^''^to, are handed aa aeparatod aoorooa. Tte platodua laotopto ooapodtioa will vary depending opoa tto eaaot oouroe. Tte vdaaa gXymn to TObto b-Zf aro typiod of tbooo aatarida. I to ooatraat to aoaa of UM traaaoroato waatoo prodaod fTea noaaarntol faoilitiee, tboro aro low lovda of toto adttora (oitbar flaaion produota or activatico prodoeto) aad few of tte heavier iaotopoa dto tte aotade exception of ^^Aa, which ariaaa fToa tte decay of ^*Po. Tbto to booauae tte waatea, to genord, ariae froa tte uaa of plutcdaa that to already aaparatod froa toe aany other nuclidoe produced durii« tte irradtotlon of tte fertile aaterid. Tte transuradoa not recovered during tte idtid seperaticn are largely in toe high level waatoo which dll go to a repoeitory.

B-IC TAKI %^ TIPICAL PLOTOmM ooMPosmon

t hTMlrtit It 23Su .

2*P« 0.012 80.3 2.b

2»Pu 93.6 19.9 •7.0 ^•Opu 5.9 3.0 26.0 ^''^PU o.t 0.7 19.9 ^•^Pu 0.013 9.0 ^•*Pu 0.02

Ntoad oaite fbato tlvo fcoa 2.

Tte priaory troaaurade found to tte waato to not tte ody pooaible potentid aouroo of oApuawo for tte loag tiaa period, oiaoo eooh to a parent of a decay aeriea eventually ending to a atada laotopo of load or, to one oaaa, blaauto. Tte decay of each of tto parento aad qoantitiea of daughters at varioua tiaee following purifioation of one oarto of tte parent aro given to Plga. B-1 through B-7. Tto dooay oharaotoriatioo of tto fDor aeriea tovdvad given to Todoo B-f throogb B-fZZZ.^ Tboro aro aov«ral feataroo of tbooo doooy oboiaa whloh aay te of

1. Three of UM four ohalna toally to foond to aature. Thoae are tte laa otato (^^ aad ^*S*). tte tboriaa obato (***Pu, '•^Pu), and UM aotiniua oteln ( 239Pu ) Tte otter ohato (^^, *"pu) has a 237 •p, dto a hdf-life abort eno«^ ao ttet any foraed at tte birto of the wiivorae tee decayed.

B-il 1

rg

N TABU o>m DISTBIBOTICi OP ^^PO II lATS OAf AOD WZTI A MITIATE soLunoa AT 2 DAIS or AOI PIQM 5 10 n IATS

kf at TnfcMfclM •aoropay. Doaa, MSLQtK UTtr miL fiiMiitiint^ Tofc• 1 9mtMii%m

3 180 1.1 0.16 58 28 1.2 10 180 1.56 0.21 0.93 1.7 1.8 I 20 180 1.66 0.2« 0.03 0.01 1.7

140 280 0.53 0.027 0.56 1*0 110 0.65 0.019 0.67 I

*Kntlra oaroaaa, axoludlng GI traot and oontMit.

Tba autbora Indioata tbat tha mm of tba akalatal and llvar ratantion la probably tba baat aatlaata of total asoration baoanaa It ia ballarad, froa parantaral adalniatratlon, tbat tba urina raluaa ara bigb, praauaably dua to faoal oontaalnation. Proa tbaaa data it ia notad tbat tba approxlaataly if abaorption of naptuniui ia aarkadly bigbar than tba otbar aotinidat whlob fall In a ralativaly narrow ranga of about 0.005S to 0.05S. Tba agad ourliai ocida aouroa appaarad to bava an abaorption about tan tlaaa tba fraably praparad •atarial Mhl^ la eonaiatant vlth otbar obaanratloaa of inoraaaad aobillty of bigb apaoiflo aotlTity oaeldaa. Tba diatrlbotion for tba naubom rata ia aboan ia Tabla D-XIX. It ia notad that abaorptloa in tba naw bom ia inoraaaad ormr tbat in tba adult by factors of 50 to 500 axoapt tbat tba inoraaaa for naptuniua ia only about a factor of 6. Howarar, tbia aay ba dua to tba faet tbat tba rata uaad in tbia adainiatration \ffrm 8 daya old. It waa alao notad tbat tba nawboma did not disorlalnata batwaan tba fraab and a<«d curiua oxlda aocgaatii^ tbat tba aaebanisB of abaorption in tba nawbom aay b« dlffarant froa tbat of tba adult. Of particular Intaraat la the high ratantion of actinldaa in tba nawbom anlaala In

:-ifc .A r^" I 5 2 •I

S

a

U.

l»Ma

L*f MtMly (CI) IM MMrilyiei)

f r o«

M m IN* I I cr I ? 3 3

t I I I,, i i 1 1 ' « -I. \ \ ' w^^ ^ • ** •*'V ^m,*^^y >y: f X - / / \ - . / / \ - • AK/ I- \" 4/ /«»T» -a - / *• |. . / ««a . ll t

LM

Pig. B-7. 2»l|y, and Daugbtara.

Plutoniua-2% I, a bata aaittar, daeaya to produoa two aao-aada alaaanta, 241A a aod 23^'Ip7 , whlob ara alpha aaittara. In tba ralativaly short tara ^ 'te la laportaat, raaohiag a aaxiaua laral of about 0.030 Ci par CI of parent in about 70 years. In tba longer tiae period, ^Ip peaka at about 10^-10 yeara and reaaina fairly eooataat at aboot 5 aCi par Ci of parent to about 10 yeara. In tba laterral of about 100 to 10,000 yeara, both iaotopas will be preaeat. Theae tuo alaaanta ara of iataraat beoauaa they do not ooour naturally, aad tha aaouat of laforaatioa oa their brtwrior in the eorirooaeat ia aaall, although what la aTailabla iadioataa they aay be takao up ia plaota to a higher degree than plutoniua. The problea la aapliflad. froa the praotieal atandpolnt, ainoa noraal aaaauraaenta of plutoniua by alpha aalsaloaa will aot detect the Pu parent and the aensltlTlty of aaaaaraaaat of tba low energy beta in tha praaaeoe of tha alpha partlolaa frca tba otbar laotopea of plutoniua la poor. (The currant detection llait of the alpha aaittara in •irrironaenta] saaplaa is on tha order of 0.01-0.02 pCi per aaapla. To aeaaura tha tvantua* 'Aa buildup to tba saaa loTel uould require a aanaltlrity of 0.«.0.8 pCl.)

3-1: i

TABU B-?

OIANIOM CHAH HITB PLOTOKKBI PUCOISOiS r

£tiiijftiM i llMH^tlni i 1 (MiT).! 'Vi nmn^t^ ^^,aJb Bata^ l2MBAi 2*2^ 3.8Txio'y 23«o «.89 • . 238„ «.«68xi0^ «Sh «.20 . - 23*Th 24.i0d «*p. . o.ou 0.008 23*p. 1.17a 23'4, „ 0.82 0.011 23«fu 87.75y 23*0 5.*9 _ . 23^ 2.M5xloS 230^ *.76 .. « 230Th 7.7xl0*y 22««a 4.66 ^ ^ 222i„ 226^ i600y «.n_ w 0.006 222te 3.8235d 2^«Po 5.«9 „ _ 2^«Fo 3.05a 2^*Pb 6.00 . . 2^*Pb 26.8a 2^*B1 • 0.22 0.23 2^*Bi 19.9a 2^*Po . 0.63 2.03 2'*Po I.64xi0~*a 2^0pb 7.69 « . 2^0pb 22.3y 2^0B1 . 0.007 0.002 2^0BI 5.0i2d 2^V _ 0.39 _ 2'Opo I38.378d 2^Pb 5.31 (Stable)

^nranobaa <^% not inoloded. ^AToraga energy. ^'Total energy aalttad par dislntagratlOT.

3-lt TABU B-f I

npTonQM oun nn pBBCSBaoBS

UJM llatima (Itef)* ^^c Tyitffltt ^V? DuiBbtac n^^t^ Ell i«.»y 2»'A. — 0.005 . 2*1^ «33y ^w. 5.M ^ 0.022 '^MU 2.«xi0*y 233p. 4.69 ^ 0.021 233p. 27.0d 233o . 0.068 0.155 233^ i.585xi0^d ^rt «.8i . • . 225„ 229Th 7.3*xio3y ».87 ^ O.OAO 225,ta iA.8d 225*0 . 0.09« 0.012 225io 10.Od 22^ 5.75 « 0.012 217^, 22^rr l».8a 6.35 . 0.028 217^, 0.0323a 2^3BI 7.07 . • 2^3BI 209^1 «6.65a 5.85(2. I6t} 0.019 2'3po - (97.8AS) 0.«32 0.132 209^1 2.20a 2<«Pb ^ 0.658 2.10 2^3po «.2xl0'*8 209pb 8.38 ^ ^ 209pb 3.3ih »«Bi . 0.196 . (Stable)

*Branobea

tllflhinlM I' Mobilisation of TBO by ooaplaxing agaata. The phyaioal and ohaalcal fonaa of TBO in aolld waatea, both initially aad over tiae, oan ba expected to be extraaely varied, ranging from the aoat inaoloble foraa, auob aa PuO,* to highly aolubla foraa reaulting frca intaraetiona with tfaooataalnation obaaioale la tha waatea and a vaat array of bioehaaieala produaed ia the ocapociting waatea. 3 i )c«y oonaideratlcn in tba analyaia of tba ohaalcal behavior of TIO in tha waata pita and in the anvironasat (Ita biogeoobaaiatry) ia CKldatlcn ataU. It ia CKldation atate rather than alaaaat (Z-nuaber) which 20 governa ohaalcal behavior. Tha aoat atabla oxidation atatea of tba tranauranlua aleaenta are probably Bp(V), Pu(rr), Aa(in), and Ca(IU), although in aolutlona Ip, Pu, and Aa oan axiat in at laaat A oxidation atatea (III, IT, T, and n). Of theae only Bp and Pu are likely to exiat in aore than one atate envir anaantally. The acidity of the eolation and the preeenoe of ocaplexing ligaada (organic or inorganic), however, aignifloantly affect the relative iaportanoe of each of tha varloua oxidation atatea. tor asaapla, ccaplexaticn and hydrolyais abift the oxidation potential of tha Pu(III) - 19 Pu(IT) couple towarda poaitiva valoaa favoring tha cacidation of Pu(III). Onder acidic enviroi»antal oonditiona, tha ferric-ferroue ayataa charactarising tha anvironaantal ohaaistry of iron aigbt ba a auitabla aodal for tha radootlon of Pu(I?) to Pu(III), but tha reduction ia not likely in alkaline, aerobic anvironaenta dua to the atabillty of hydrolysad or coaplaxad fores of catravalant plutoniua. Like Np(T) and 0(TI), the higher oxidation states of aeveral poaaible aaelMBiaaa iaeludlag, bat aot Uattad tat a) relaaae of TKO into infiltrating water hy aolublliaatiea or auapaasloa af TBB whloh ia alreedy in eultahle ehaatoal or physiaal fam, h) direct alaroMal aad fta^al action on TBO contaainant in biodegradable waata rendering it traaaportable in laeobata; c) ohaalcal intaraotloaa between TBU ooataalnaBta and argaaie and inorganic reaetive ocapounds produced during daocapoeitioa of orgaaio waatee; or d) radlolyala enhanced dieaolutlon of refractory faraa. The geoohealeal character of the aoila la which borlal ia aade ia an laportaat boandary eoadlticn of theae prooeeeea. Bach of theae typea of aaohaniaaa will be ooaaidered In acre detail la tha followiac paragrapha; la reality, of ooarae, probably all or OOBB of theae will ba alaultaMoaaly affaotli« TBO aobillty at a site.

flBflfHUlM 1" Phyaioal tranaport (particle cr colloid). Phyaioal tranaport of TBO in aoil oan occur by a variety of aechaniaaa including, bio-radlatributlon oauaed hy feeding aoil organlaas, aaeh aa woraa or aioroflora; burrowing hy aaall aaaaals; the eyelea of growth and deoey of plent roota; aad traaalooation of TBB by aoil water aa aaall partlolaa cr aaaoolated with olay Araeticas of aoil aiaMvla. The aaaa af tha paaatratlea of vary fine partiola aiaa fhlloat plotonlaa (0.0« ^) into lOM^r aoU baa been aodalad aa an exaaple of thle fora of transport. The reault ia a projaetad aaaa veloelty in the raage 0.8 - i ca/yr for tbia prooeaa. Tbua tha algratioa veloelty la two ordara of aagnitude below the expected percolation veloelty of Infiltreting precipitation in the eaaa looay eoil (100 ca/yr) in a wet cllaate. Laboratory studlaa of the tranaport of radloaetivity attached to aaall kaolin partlolaa and to baotaria ahow aiailar reteatioa and tranaport properties through peeked eand coloana.^ It waa found that an inoraaaa in atreagth of ionio speeiea In the lnfiltratit« water cen oaoae a large releaae of radleaetlvely oontaalaated bacteria or olay frca the retaining eand ooloan. Since the retention aaohaniaaa for particlee ara dependent In part oa aiaa. It would be eapected thet larger slse particle fraotiona would not be aa aobile; thie offset aight explain the Halted aobillty obaerved in the atadlee of the tranaport of partioulata plutoniua in the Banford Z-9 trench. Particulate platonioa in the else range of 2-25 sa waa found to have penetrated not auob aore than 30 oa in the 7 year life of tha trench. However, leeching atudlea will be required to aacertaln thr algration ratea aa a function of preaent and projected environaentai oonditiona, so that caapi«t« ecaparlaon with anvironaantal proeeaaas affecting I surface elevatioa aad Inoreoaed Inflltratica rate, thus raiaiag tha groundweter table becauae of the change in topogr^hy aad paraeability.^ The reeulting saturated oonditiona iaareaaed the tranaport of ^9t flraa tha buried waata. Little la known about the non-radioactive ocaatitoanta in low-level solid waatee containing tranauranlua aleaenta goli^ into ahallow land burial sitae. Only apprcxiaata valaae for the radioaetive oonatltuant lapata have been reeordad for aoat DOB and ccaaarolal aitaa.^*^ Oftea only general deaignationa auob aa "alxed fiaaion prodoota* (WP), •apecial aaolaar aatarial* (SBN), or "low apaoiflo actlTlty* (LSA) have baea used.* CharaoteristioaUy theee waatea inoluda, in addition to paper prodaeta (aoaatitutiag as anah aa 70f of the waata volaaa), eaoh Itaaa as paeklng aatarials (wood, plastls, or aatal), proteetlva clothing, broken glaaswara, rubber and plaatie ahaetingt gloves and tubing, oaroaaaae of aaperiaantal anlaala, ocntaainated eqaipMnt, aad eontaainated buildup aatarial. A detailed breakdown of one DOB plvtoniia prooeaa fMllity TBO aolid waste ostatorias is svailahla as sn anapla.^ Vlth low denaity aateriala saob as these going into the pits, it is aaderstandabla that ocapaotable void epaoea of J0$ to SOf of the trenoh voloae could ooour, and aubaaqaent aettliag of trenoh contents sad oraoking of cap aateriala aa wall. The results of stadias of saaltary landfills ia northsra Illinois provide aaaa perapectlve on the long-tem aging affeota en land bnrial in tauald cllaatea. Theae atudiee ebow that: i) approalaately oae half of the yearly precipitation Infiltratee the cap; 2) port lone of thia wat«>, In tha fora of laachatee, leave the diapoaal elte aa aubeurfaoe cr aurfaca (aeep) flow; 3) tba greateet deoreaae In effective poroalty of waata (•<>90f) cocura during tba firat five yeare of burial, but aay coatiaaa for 30 yeara cr acre; A) groundwater aovida oftea fcnt below trenohea as a result of infiltration followed by •downward aovasaat of water, aad aorfaoe aaeps osa ooour aa a reault of auob aoands} snd 5) deocapoaltion aad aettliag of the wastes osa ba expected to ooour for 30 or aore yeara.^2 Beeauae it la water (leaohate) aovlng laider tba influence of gravity and oeaotlc foroee through aubaurfaoe eolla that is tha aajor natural driving force capable of tranaportlng aignifioaat qoaatlties of radlonuclldea away frca a burial elte under aaturated ocnditloaa, oonaiderebla 13 raaeerch ie underway on leeching proceaaee and aolute tranaport by water.

III. PACTORS APPSCTIBG TIABSQRABIOM BLO0T MOBILm Tranaurenlua aleaenta aay ba aobilised frca tha waata aatris by ar.y of APP88BIX C

SUB8UBPACB MIOBATZOl OT TBABBOBABION BUMBTR fBGM BOOBD BOLIB BIASTB John C. Bodgera

I. IVTBOOUCnOB The fooaa of tha following review of ourrent laforaation oeaoemlng auhsurfaoe algratioa of trsnsuraniaa radioaaelldas (TW) trom shallow lead burial aitaa ia ca asohanlMi wharaby a aobila apeeles of TBO ooald be geaerated either ia harled aolld waste or aarrounding soil and alBrhta thraaok iaterveaiag aoil or rook to baooaa aa aeaassihle aoaroe of TBO ia the aavireas of s solid waste disposal site. It is the biogaeahaaistry of assr asutral, dUuta aolutlona of TBO in the envlroaaanta of the deeper horiaoas of soil snd rock thst is of apseisl iaterest hsra. Nigratioa of plutoaiai sad ethsr TBO*s bsve 1 2 ^ been reported ia s range of aedia iaoladiag voloaaie toff, baaalt, *^ alluvitai, aad deeert eoils.' Ths varied asnhsnlww of transport rsported in theee laboratory aad field atadiee rsasin to be frilly explained. Pieoea of the paasle are la plaoe, howaver. Ihase will be the sabjaats of ths followiag sections. II. CBABACTBBIZm TBB SOOBCB There ie eoneldereble diverelty in elte oharaoterlatlca (cllaata, geohydrology, aoil characterlatioa, etc.), trenoh preparation and filling, and final covering at tha DOB lo»-level ahsUow Isad burial sitae aoroae tba country. But no aattar how varied the aites aay ba, burial universally tskea plaoe at shallow deptha, in the traasitioa aoas bataaw soil aateriala and deeper aobaarfaoe geology. Dae to a laek of wall devalopad inforaotlcn about thia sone, there are often aajor sMertaiatles related to sahaurfaoe oonditiona within the burial ground. In the oaae of one elte underlain hy aquitarda of low peraeebility aad of a fractured nature, and looated la a hiaid cllaata, it aay not ba poaaible at any reaaonable coet to obtain qaaatitative definition of tba hydrcgeology of the region. Bven if the hydrogeology of e dlepoeal site wer« raaaonably well understood, engineering operetiona incidental to tha diapoaal of waatee cen algnificantly altar the ccnditlcne of the elte aaeta that radionuolldc algration caa increeee. In one oaae, a burial ground aree waa used for dlepoeal of uncontaainated fill after burial waa ocaplated. reeulting in increased I i i

3- Although the eveatual prodoota of aaay of tha naalidee are tboee found I In nature, they aay entw the decay ehain at a different laotopa than the nattiral chain reeulting in different retloe than are found in netiure. Por I asaapla ^38p„ tf«oaya to ^3*g «hieb ie a praeoraor of tha radlua eeries. BoraaUy the quantity of tba 226||^ ^g^ nature U ooatrolled by the half-life of 238, , the ^3*0 half-life ia about 5 x lO"* of tbat of the ^3*o «> tbat a givaa weight of thia laotopa will reeult in higher daughter aotivitiaa I than will the natural aatarial. I r 1. J. B. Dieckhoner, BBDA, Private Ccaaualcatlcn (Peb. 8, 1977).

2. Bnergy Beeearob and Oevelopaent Adainiatration, "Alternatives for Hanaging Haatee frca Beaotora and Poat-Pleaicn Operationa la the LMB Puel Cycle," Beport BBDA.76U3 (Hay 1976).

and Hoore, "Pinal Beport, Bevelopaent of Omeric Honitoring for BROA Owned Low-Level Iteate Burial Sitea" (May 1976).

Bational ioartasj of Solencee, Battonal Baaasrab Co«Mil Panel on Land Burial, Ccaaittee on Badloective Baste HanagMant, Ccaaiaaion on Batural Reaouroee, "The Shallow Land Burial of Low-Level Radioactivity Ccntaalaatad Solid Haata" (1976). r 5. V. D. Purtyaun and V. R. lennedy, "Geology and Bydrolcgy of Haalta da Buey." U-4660 (1971).

6. D. C. looher, "Boolear Oeoay Bata for Badlcnoclldea Occurring in Routine Beleaaes froa Boclesr Puel Cycle Paeilitles," Buelesr Begulstory Coaalsslon Docuaent (MBn./BDBB0/TB-i02 (Aug. 1977). TABU B-flll

TBORIUN CHAIB HITB PLOTOBIOM PRBCORSORS

*^*Tl1llll1 Hlf fMeV)* TBOtffiPt ha T)mumht,mF Bets' 2**f|. 8.26xi0^y 2*Oo 4.58 ^ ^ 2% lA.ib 2*«.P — 0.102 • 2*o.p 7.«a 2*<'pu - 0.631 0.328 "%i 653Ty 23^ 5.16 - • 23«o 2.3*i5xio'^y 232Th 4.49 ^ ^ 232B, 1.405x10% 22«i. 4.00 ^ ^ 228^ 5.75y 22«*c « 0.010 ^ 228*0 6.13b 22<4h 0.376 _ 0.915 228,fc i.9i3iy ^'•Ba 5.40 _ 0.002 22S. 3.66d 220fc 5.67 — 0.009 220Rn 55.6a 2'6po 6.29 - . 2^So 0.15a 2^2„, 6.78 — _ 2^2pto I0.64h 2^2BI «• 0.100 0.117 2^2BI 60.55a 2«8T1 6.04(35.93*) - 0.003 2^2po - (64.071) 0.717 0.281 208^ 3.07a 208p^ ^ 0.561 2.37 2'2po 3.05xlO"^s 20«Pb 8.78 (Stable)

Branchea <^% not included. Average energy. 'Total energy aaitted per disintegration. TABU B-TII

ACTIBION CBAIB HITB PLOTOBIOM PRBCORSORS

Priiial—I Isdistiaia (IMV)* ^,,j^b g^^O Te«rtlWt ha AUB&fcBC Bata'° ^^'fH 2.439xio*y 235o 5.15 — „ 235o 7.ixio8y 23'Th 4.28 . 0.140 23^Th 25.52h 23V - 0.078 0.017 23'p. 3.248x10*y 227*0 4.92 - 0.030 227*0 2i.773y 223rr 4.19(1.38») - - ^^Tt - (98.62S) 0.010 - 22TTh I8.7i8d 223,. 5.67 — 0.010 223yr 21.8a 223., - 0.345 0.051 223i. ii.434d 2^9Bn 5.70 - 0.087 2'9te 3.96e 2'5po 6.81 - 0.054 2^5po i.780xlO'3« 2^V 7.39 „ ^ 2^'pb 36.1a 2"Bi - 0.453 0.050 207^1 2^^Bi 2.13a 5.55 „ 0.043 207^1 4.77a 2<'7ph 0.493 0.002 (SUble)

"Branchea <^t not included. Average energy. °Total energy aaitted per disintegration. J

plutoniua arm expeoted to be aore aobile la the eavirosMnt thaa the tetrevalant states, particularly in the preeenoe of carbonate cr bloartonate lone.2^ ikwever, the atahility of theee higher OKldstion ststes, psrtlealsrly in soils having an abundsnoe of crganlca baa been qoeetlcned,^ on the ground that at near neutral pB the cKldstion potentisls of both Pu(f) snd Pu(?I) relative to tetrevalant plutonlia tend to fiver reduction to Pu(I?), and to preclude foraation froa the reduoed fbra. The foraation erf stable orgaaio ocaplaxee of traasoraniaa aleaenta, auob as plutcniia for whloh Pu(Z?) anaplaaaa ara thought to ba atrengeat,23 i^a been euggeated as s possible node of aohilising plutoniua. This hypothesis baa been advanced partly oa tha baala of analegJ vlth the kaoua ability of biaiio ocapounds to eahanee eolObilltles of aetal ioaa sash aa sltBlnMi, iron, copper, sine, and lead in the envlronasnt,2* ant partly by laplioatioa in the oaae of TBO appearing neer a burial groond at Oak Ridge.2^ m the latter oaae, gel en Co filtration ohroaatogrsphy was used to daaonatrate that orgaalosUy ohelated P water was dos to the setion of BDTA present in the waate. Tba aobilised in eeep water was dos to the setion of BDTA present in the waata. affect of BDTA on ^Co •ohillty is lUostrated by the fact thst while the K^ of ^Co in weathered rnnsaaini ahale at pB 6.7 la approKlaataly 10*, in the preeenoe of 10,-T '.H BDtt ia the aeep water, 1^ ia to the 7-70.* Since all the trlvalent rare eartha and aotlaidee posssaa st Isast ss high or hlgfaer ccaplaxlty constsnts for BDXA am Co^, snd sines 238p„, '*%, and 2**CB were faund ia the aoil of a aeep, the evidence suggests, but doss not prove, that BDTA ia alao contributii« to tha algratioa of theae TBO*a as wall.2' Contradictory evidence to the hypotheala of inoraaaad aobillty dos to organic ccaplex foraatlca baa saargad f^oa aeveral directions, however. In one atudy of the differenoea in the aobillty of plutoniua in a variety of eolla uaing Pu(BO.)^, am deteralned hy water aitraetioa aad aubaaquent filtration ttsii« anibrsnee of different pore else, it waa fMsid tbat the aobile apeoiee waa aoat likely particulate Pu(OB)^ or bydreted caidea, not organic fOraa ccaplexed by eoil htaic ocapounda. 3 A aiailar finding reaulteC frca a study of the aolubllisaticn of plutcnliai aad aaarlclua by fulvlo acid - the aore aoluble btadc ocapound. PUlvlc acid aolutlona were added to asaples of eontaainated eoil at pB valuea selected to anccapaaa tha range of ccnditlcne tc be expected in groundwetera, and extraetiona ware aade repeetedly for periods a)« long aa 357 houra.2 The reaulta indioated very little aolubllisaticn oeeurroti if fulvate coaplexes were foraed they were unstable, reaulting in slob Reduotloa to the tatravaleat state oooars both ia tba salarioas aeaUiaii« plant roota (dua to root aaadatee), end in the plutoaiva aaalailated by the plente, appearing in the xylea aaadate. Although Pa(fl) la aeUtiea wae epparently asslallsted by plsnts aore repldly than Pu(IV), It waa reMeed to the leea biologically aobile Pu(IT) atate in the plant bioobeaieal traaaforaation

la light of preaeat liaiited aadaretaadiag of blologieally aediated aebiliaatioa of TBO la the envinwiiii it la difficalt to reaah a generalised, bottca line eetiaate of the poteatial Par greatly tnariand aohiliaation of theae elanaata ia hiologloal syataas ever very lasg periods af tiae. At preaeat, the availsMa evideaae indioatee lltUe lairmH MhUity in natural aystaas. For exaaple, plutoniua saaoeistad with aaU ispiHlo astter for 30 yeare in the eavirooaeat of Oak Bidge was sabjaatad to estrastiaa by solid ^MlstiaB main to dateraiaa ita dasorptiva prapartlsa. Xt aas foaad that a fractioa of tha orssnioally bound Pu waa readily diaarbH (ahoat tf af the aoil Pu) aad ths IMBIIHIM ass aaeh aors slowly daasrhsd, appraashlng itf af the eoil Pa after 14 aaeha.^ Thess stadias with raslaa wdar saaditioas fhvaring ashaaativa reaoval iadlaata that after SO yaara a sdBstsiHlal fraatiea ^ Pu in aeU doaa aot readily dasarb. Bnathw wple, ahleh alao sagBMts the low biologlaal availahiUty of aaaa orBWioally aodified Pa, is ths stady of the aohUity of Pa Intradnoed to a nonflawtaB, highly eatraphie pond far over 30 26 yeara on tha Baafard reeervatioa. Bsdiaaats play s daalasat role in the Pu inventory of thia eoosystea. They have the hlgheat oanoentratioaa of Pu in the pond and contain greater than 99S of tha entim inventory of the ayataa. The highly earlohed autrlent anpply of the pond eupporta Ivonriaat p-owths of algae and aaorophytee whioh foraa a aadlaeatary arwmtim flam. Sediaaatstion la rapid alaae the paad hsa ao marfama aatfloa sad short reteatioa tiae (bO boors). Naaa balaaoe aaloalsUoaa iadiaats that ths poad hss reeaived sboat i Ci of Pu In Ita 33 yr history, and aoat of thia has been retaiasd hy ths aediaaata. Preaently the aeaa inventory of Pu In biota la nearly 3 ordere of aagnitude aaaller than in the aediaenta, aad saong theae biota, diatoae aad poadsaed sosoaat for aoat of the blotic inventory, fcergant Inseote, the aoat direet biologloal route of export frca the pond, contain 5.5. The equlllbriua conoentretlcn, charge, and ionic state sgree well with Hhite Oak Lake water plutoniua field data which charecterlae the eolutlea phaae Pu in this lalce as being low aolecular weight, in the Pu(III) or Pu(n) atate, aad anionic. Indeed, reported ocnoentratlone of eoluble Pu from a variety of environaentai oonditiona Md pB*a ocapare rather well with the iadioaticaa of tbia alaple aodel 18 Although the iateat of aot to auggeat oryatalliae PuOj coatrola aoiable Pu in natural, trace itratloB oeaditlcna, it doee indlcete, along with the prevloualy rsvlewed atudiee, thet the effecta of biologloal aodlfioation (directly or indirectly) on the eolublllty of Pu are not slgnlfloaatly greater ttuai would be expected frca the aolubllisstlcn of Pu (IT) speciee fTca a refractory aource.

M»fth«ni^ ^; Badiolytic transfomaticns. Several laboratory studies of tba diaaolution of PuGj in near-neutral aolutlona have found that Pu appears to diseolve faster (in the csaae of 3^Pu) and yield aoluble concentrations greater TABU D-n

OABTBOIBTBSTIBAL ABSORPTIOB Of 23^P0 AHD 2^* HITRATBS BT ADOLT UTS. OOIBBA PIOS AHD DOOS

Daya Skeleton Until Bo. • luflUdf PQ#e aBflflflflB 2fiflfilfil inlBBli ftaliiflo UlBC LlTtr • lIClAt IfiUI. (uCl)

Pu 5 7 Rat 21 0.010 0.001 0.011 0.018 0.029 Pu' 7 3 0. Pig 10 0.011 0.008 0.019 0.008 0.027 Pu' 6 3 0. Pig 5 0.018 0.027 0.045 0.010 0.055 Pu' 300 3 Dcg 2 0.007 0.0006 0.0076 0.028 0.036 Pu' 300 3 Ocg 4 0.002 0.0005 0.0025 0.021 0.032 4 7 Rat 11 0.014 0.003 0.017 0.044 0.061 5 3 0. Pig 9 0.006 0.008 0.014 0.021 0.035 Aa 15 3 0. Pig 6 0.004 0.007 0.011 0.006 0.017

•651 Pu (IT) froa TTA Ratractlcn.

^5* Pu (If) froa TT* Bxtractlon. contained only 1/3 aa aaeb aa the auaele. The reaulta of the tleaue analysis are given in Table 0-Xf. The ebeorption did not differ algnificantly aaong any of the epeclee. Abaorption aay have been eoaeahat higher in gainaa piga receiving the 95S Pu(If) aa ooapared to tboee receiving the 65t Pudf) but the oppoaite effect occurred with doge. Thia aay IndicaU that the effect waa das to acaetbing other than the valeaoe atate. The rat abaorbed twiee aa auob aaerloioa aa plotonlua but the abaorption by tha guinea pigs was sboat the eaaa for tha two nuelidea. An interapeclea ecaparieon of the behavior of plutoniua In the neonatal aniaal waa doaa by Sttlllvan2^ ueing both rata aad awiaa. Aoid aolutlona of Pu(I?) altrata ware adjosted to pBB aad adalaiaterad either by ptvage ia a 1 aL voliaw to day old pigs cr by gsvags la s O.i aL veluas to 1 or 2 dsy old rata. Two aeparate littera of awlne were uaad, one with a high doaa of 400 «Ci/kg and the other with a low doee of 25 »Ci/kg. The Utter were bottle fed. The diatrlbuticn of 238Pu in neonatal rata ia given la Table D»xn. At 3 daya, 75f of the doee reaained in the gut and i.i8f waa depooited in the liver and skeleton. At 10 daya 2.7S r—Insd in the gut with only a aaall inoraaaa in liver and akaleton. The data nroa the swiae are ahoua in Table D-zm. Diatribution of tha abaorbed 23^^^ indioatee that 15 - 25f of the Pu waa atiU in the gut of the hlgh-doee auokled pig at H) daya, while 5if waa preeent in a bottle-fed eniaal that died at 3 daya. About one-half of the ^^fn abaorbed waa in the akaleton and about one-fourth in the liver. Proa theae reaulta, it appaara that -^Pu is aore highly abaorbed frca the (21 Tract of the. awlne than flrca the rata. Qoaure of the inteatine to the paaaage of aaorcanleoulea cocura within a day after birth in awlne, as it doee in aaa, while, for the ret, cloaure takea 3 ueeka. The abaorption of a noaher of nuelidea frca the 01 Traot of the edult and newborn rat waa studied by Sullivsn and Croaby.23 The "eoluble* foraa were prepared by diluting nitric acid aolutlona and adjuating tha pfi to 2. Aaerloiua oxide waa auapended in water a few daya before adalnlatratlcn. Curltai oxide waa adalnlatared either aa a freeh auapenaion cr after atandlng in water for a few acntba. Adults were ecteiniatered 5 to 8 sCi contained in 0.5 to 1.0 aL of solution by gevage. Two day old rats received about 2 vCi in a voliae of 0.05 to 0.1 BL. Excreta were collected frca the adult rats and the aniaals wer« killed at 7 daya and the tisauas aaapled for analyaia. The data for the adult rats are given in Tabla D-Zflll. reta2\ « aiailar finding was observed but the baaatolegie daU iadleeted that the anlaala auat have received en Inadvertent (Jalnlatratica tf iron. Proa theae data tha euthoro conclude that rets and aloe are dlatiaetly dlffaraat in regard to the effect of iron deficiency on their plutoniua abaorption and retention. Sullivan2^ atudled the influence of apeelea by tha uas of rats, guiaea pig (herblvorooa) sad besgle dogs (oamivoroas). Bitrio aoid solatioas of 3"^^ ^^ 2*^in were adjusted to pB 1.5 with BsOB sad either injeoted iatragaatrloally Into rata and gulnee piga or alxed into a HK) s bolua of aaat and fad to doga. Anlaala were houeed in aetabollaa cagee and the urine and the feces were collected aeparately. The dlatrlbatien of the abaorbed platoaiua ia the doga is given in Table D-ZIf. The ooaaaatratioa la the taates was higher thsa thst in any tiasue with the exception of the akaleton. m total qoaatitiee the akaleton

TABU B-IIf

DISTBIBOTIOB OP OASTBOIBHSIIBALLT ABSOBBBD PLOTOBIOM-238 IB BOBS

Skeleton 7 2.21 Liver 0.65 0.58 Kidneys 0.04 0.03 Spleen 0.02 0.02 Lung 0.02 0.03 Adrenal 0.01 0.001 Teatea - 0.04 Noacla 0.76 6.49 Blood «» 0.02 Orine 28 21 Pecea 96 000 97 000 Total Percent 96.5 97.5 Recovered

*Two doga, killed four days after Ingeetlcn of ^^fv (65f If-valenoe, aa daterained by TTA extreotion) •

Four doga, killed three days after Ingeation of ' Pu (95f IT-valence, as deteralned by TTA extraction). TABU D-ZII

ABSORPTICH OP '^VM IB SKLBCTBD TISSOBS OP IBOH-OBPICIBHT AHD COHTBOL NICB

?4 h 06 h Iron Iron Canti»nl ^fifllWt DeflelMt

Spleen 0.0015 0.0038 0.0003 0.0004 Kidney 0.0005 0.0048 0.0002 0.0008 Blood 0.0009 0.0055 0.0001 0.0004 Paaur 0.0005 0.0021 0.0005 0.0031 Uver 0.011 0.025 0.01 0.012 Caroaaa 0.018 0.065 0.012 0.098

TAnjt D-nii

ABSORPTIOB OP PO CTTUTl BT IBOH OBPICUBT ABD COBTBOL UTS

niitBnd DoBR After After

Iron Deficient 0.036 0-030 Control 0.046 0.026 TABU D-n

GI OPTAO IB TBB UT HITB

i iBtiBtlan nr imrtilfln PTPA fiiUltB PlfAtCUrBtt

Uver 2.1x10 1.3x10-3 1.8x10' 3-1x10 -3 Skeleton* 9.2x10 -4 1.61x10*3 7.4x10" 4.8x10 Total Betained 1.1X10 -3 2.9x10*3 9.2x10' 7.9x10' orine 0.014* 0.79 0.099 1.7 Body • Orine 0.0011 0.79 0.19 1.7

Hatiaatad aa 23 tlaee the content. b 'Believed to have oontaBinated frcm feoea and not Included in total.

half of the aloe were kiUed at either 24 cr 96 houra after adalnlatratlcn- The analyaia daU frca aeleoted tiaaoee are givea ia Table D-UI. The aeon plotonlua content of the Iron-defielent aloe waa higher than the iron-replete nice at 24 boora. By 96 houre, the aoft tlaaoa content in the iron-deficient aloe bad deoreeeed aarkedly and the bone bad increased, suggeating tranalocation fTca aoft tlaaoa to bone. Total abaorption after 24 houra waa 0.108 t 0.02if in iron deficient aloe and 0.028 t O.OOTf in iron-replete aloe. Oorreaponding valoaa after 96 hoore were 0.117 t 0.02if and 0.024 t 0.009f. In a fallow ap atody with rata. Began^ fM two groupa of waenllf^ rata an iron deficient diet untU they were about 70 or KX) days of age. At that tiae. the rata were adainiatered freahly prepered 239^^ eitrata at a p8 of 3-5 by Intragaatrlo gevege. One group wee killed at 48 houra after etelnlstration and tha other 96 hoara later. Lltteraatea, aaintalned on e control diet, ware gevaged with plutoniua and killed at the aaae tiae aa tba experiaantal group. There was no dlfferenoe in the intake of plotonlua in the control and Iror deficient groupa aa ia shown in Table D-HII. In the previous study with TABU D-I

OPTAO OP PLOTOHION IB TBB UT PBOM 0.5S SODXON CITUTB SOLOTIOH

itet>te«-« af AOm^^imtLmoma n.%^ Bon-Pastsd Pastsd Tissue AQIBBLB inllBiLR

Out 0.39 27 Lung 0.01 0.04 Skin 0.19 0.73 Uver 0.02 0.07 Skeleton 0.06 0.07 Csroass 0.04 0.17

The effect of ohelstiag sgents on ths uptake of plutoniua nitrate was inveetlgated by Baxter and Sullivan. Poor groopa of 9 feaale, albino rats were ueed with aolutlona adainiatered by gavsge. The first group reoeived plutoniua nitrate; the eeoond, plotonlua in s lOf solution of OTPA; the third, plutcniia in s 4.99 aodi«B citrate solutiont snd ths fourth, plutoniua in a solation oontsining both lOf OTM snd 4.9f soditaa citrate. The gavage solatiooa wera at pB <2 with oae or too aL of solotloa adaiaistered. The total qosatity of platonisB was 1270 «C1. Ths qoMitity aoBorated ia the ariae waa aaaauisd for two daya following atelnlatratlcn and the retention in the liver and faaur was deteralned after 5 daya. Theae reaulta are given in Table D-XI. The uptake in the liver and akaleton of the nitrate ia siallar to that aeasured in other experlaenta with the uptake froa the 4.59 citrate about 80 tlaaa greater. Bowever, the retention of the OTPA chelate ia only about 2-3 tinea greater than the nitrate, in accordance with the view that thia stable chelate la aot aetabolsled and la readily excreted. The coablnaticn of both citrate end OTPA reaulta In an Increaae in retention of about 7 tlaas

TABU D-n

RBTBBTIOB Of 23

ABB fltBaa « a«fce<„>d 8OH Liymr 1.02X10"* 8«f Uver 9.2x10"'' 80M *Lyaph Hodea 1.54x10*^ BIN *Lyaph Hodea 1.14«10"^ BOH Spleen 1.73x10"* 8 IN Spleen 2.30x10"*

* Several Modes. TABU 0-TIII

ABSORPTION OP ^^^PO PBOM NIC1I08PHEIES BT NiBATvn ama

IlBAUl GniBhtti (S of AdBlniatered Doae)

LlTer 9.5x10^ 2.3x10 -7 3.0x10 -5 2.7x10- 7 ,-7 Spleen 6.0x10"^ M.SxiO"^ 8.2x10 1.1x10' Kldneya *.*xiO"* 9.8x10'' 3.2X10-* M.OxlO' 5.0x10"* *.2xl0"' 3.txH)*'' BMTt «.OxlO"' 2.1x10- 9 1.3x10"' Muaole e.^xio"*^ 1.8x10 1.0x10' -10 Orariea 1.9x10 *.3xiO 7.0x10-1 1 Skeleton 3.5x10 -7 2.6x10' 2.8x10' 7.1x10- 7 Other 5.2x10" 7.*xiO>- 9 4.3x10' 1.6x10' Total Tiaaue 6.5x10" 3.0x10' 4.6x10' 3.0x10' Orine 7.9x10' 6.0x10- 7 «.OxlO'

In a ooBparison study with ^'PuO. •loroapfaeres It waa found that the aTerage uptake in the lirer and skeleton waa about 0.15 z 10"^$. Onoe again there waa oonaiderable variability in the reaulta and the authors noted that the hlgheat aeaaared Talue for ^^tn abaorptlon waa only a factor of two lower than the aTeraga vmloa for 239Pu . In a further atudy of the ingestion of aaterlal froa •Icroapheres, 12 oleanaed 23"^'PiK)9 , aloroapbarea were ground under etbanol to produoe irregularly ahaped pau*ticlea aoatly 1 v* on the longest diaension with a range in this sise froa H) to 0.01 wa. These partiolea were adainiatered In capsiiles by stoaach tube to adult feaale pigs held in aetabolisa cages. After 14 days the snlaals were sacrificed and the tisaues analysed. The average results for the thr«« pigs are given In Table D-VIII, last ooluan. While it waa expected that the absorption froa this crushed aaterlal would be considerably higher than for the •icrospheres, the tissue rvsults are coaparable to, or slightly below the raloes for the Intact spheres. This was attributed to a possibly faster paaaag« tla« through the GI Tract for the crushed Baterial allowing less tlae for absorption. TABLE D-n

RKTBIITIOi or PLOTOaiQM H THE 000 APTBI AOHIIISTtAnOE n CITIATE

(f/graa)

Luag 0.008 Uvar 0.063 Skaleton o.oso Lyapb Hodea 0.033 Turbinates 0.014

TABLE 0-TU

RBTBHTION OC.ORALLT AIMIinSTBRKD 23Vpo iin) 2*^iM n AIWLT RATS

Uitttl 2' 2*\

Liver 0 .015 0.2 Spleen 0 .004 0.01 Kidney 0 .01 0.02 Feaur 0 .03 0.0* TABLE D-T

RBTEMTIOH QT PLPTOMICM IB T« LITER AMD SXELBTOM OP HnATORB SHUB

Aaount Tlae To Adltftlitiml JLlUC Bone Tot^l (aCi) (Oaya) 613 694 0.0003 0.0003 0.0006 579 664 0.0001 0.0002 0.0003 615 29 0.0002 0.0003 0.0005

72t3S ultrafiltarable tbro««b Tiakii« tubli«. Tba dog waa aaorifioed after 3 daya and UM tlaaoaa vara analysed. Ihaae raaulta are glvan in Table D-TI. Taylor *' parforaad a ooaparativa atudy of tba dapoaition of plutoniua and aaerloiua by aevaral routaa of adalniatration after noting that rata given 2.95 yCl -"Pu/kg by intravetKMaa adainaitration davelopad about 80S bona t\aK>ra in 12-18 aonttoa while very few bone tuaora were obaanrad in alailar groopa of aniaala given 2.5 or 5.8 »Ci/kg of ^*^Aa. Dapoaition in tba tiaauea of both ^^Pu and ^ ^Aa following oral adalniatration in 0.02 M HK). are given in Table D-fXI. Tbaaa valoaa wara read ffoa a bar p«pta la tiM TlM uaa of ^^fn la ttaa fora of aloroaptiaraa aa a tharaal power aooree for tba ganaratloB of alaotriolty in apaoa waa tba lapataa for study of the paaaage tlae through the gut of experiaantal aniaala and the aaasureaant of the fraction abaorbad frca the gut by Salth et al.^^*^^*^^ In the first study, three batches of production-run aicroapheres were used with the third batch cleaned ultra-aonioally to raaove flnea. Tba aioroapberea ware adainistered to ainature swina by gavaga and tba aniaala ware aaintained in aataboliaa cages for i4 daya following atelalatratlon. Total urine output waa aaaaured during thia period and the tlssuaa ware aaapled at necropay. A auaaary of these reaults la given in Table D-TUI. In reviewing Table 0-TIII it aust be i saaabsriil that the quantity of plutoniua adainistered to each anlaal ranged between 0.3 and i.i cur lea. the valuea given in the table are averages and do not fully reflect the wide variation found between individual anlaals. Particularly puszling was the very high absorption and transfer to tissue In batch 3 which had been clean*c However, the average transfer to tissue In each batch of three aniaala varied froa 5 X 10"^» to 3 x iO"*f. TABLE D-IT

EPPBCT OP TALBMCE AMD CITRATB OM THE RETCMTIOH OP PLOTOMim APTBB IMTBAOASTRIC AOHIMISTUTIOH

At 4 Deva At 80 beva Soft Soft ABDt Livy Tlaam flOBt UXK

Nitrate 1 68S n 0.17 0.09 0.015 0.14 0.01 0.01 Nitrate 1 100S TI 0.94 0.81 0.12 1.3 0.27 0.09 Nitrate 2 90S III 0.0041 0.0016 0.006 0.01 0.0004 0.0009 10S IT Nitrate 2 7S III 0.0027 0.0015 0.0008 0.0026 0.0002 0.0003 93S IT Nitrate 2 96S IT 0.0007 0.0005 0.0001 0.0010 0.0001 . Nitrate 4 97S IT 0.0011 0.0005 0.0001 0.0003 0.00003 - Citrate 2 99S IT 0.017 0.009 0.003 0.0037 0.0008 0.0006 Citrate 2 96S IT 0.18 0.064 0.023 0.14 0.013 0.0008 4S TI Citrate 2 85S IT 0.26 0.14 0.012 0.21 0.026 0.0019 15S TI the oonoantratlona in otbar organa wara nagllglbla in tba 460-695 day tiae period at wblob tba organs wara analysad. Plutoniua (IT) nltrata waa uaad at a pH of 2. Quantltlaa of tba plutoniua adalniatarad and tba fraetlon la tba two organa are given in Table D-T. Ttaa raaulta of a oontinuoua feadlng ezperiaant are given by Hoakalev et o al. in the fora of equationa. Plutoaiu»>239 waa adalniatarad in a IS aolutlon of aodiua citrate (pB a 6.4) by placing the aolutlon on the root of the tongue wbere it waa qulokly awallowad. Ttaa oxidation atate waa not dataralnad but was believed to be IT. Ttae reaulta ware glvan in the fora of aoouaolation equationa relating tba quantity in tba organ, q, to tba tlae over wbiob the feeding oocurrad. Skeleton q > 0.0478t°'''^^ Uver q « 0.0129t°**°^ Kidneya q « 0.00245t°-®^

The anlaals used were adult rats. Unfortunately, the actual data were not given so that the scatter and goodneas of fit cannot be •alned. Ballou et al.^ adainistered 580 yCi of ^^^'p- u In a •S citrate solutio bufferad at pB 3.5 to a single feaale beagle weighing i2 kg. Ttae solutlor was In an extension of these ezperlaanta, Heaka et al. invaatigated the effect of several variables on the uptake including tba poaalble aass influenoe, the use of a different speoiea of aniaal and the infloenee of the valence state of the plutoniua. For tbe aaas effect studies, -"Pu was uaed in concentrations ranging froa 0.00015 ag/aL to 1.1 itg/aL reaulting in total quantities fee ranging froa O.O19 to 140 ag. Solutiona and prooadurea were tbe aaae as for the earlier ^^^Pu work. Reaulta of this experiaant are given in Table D-II. Theae reaulta, in coabinaticn witb tboaa obtained earlier with ^ Pu at low aass levela, indioate no atatlatioally aignifioant effect of concentration in tbe range of 10"' ag/aL to 1 Hg/aL. In order to invaatlgata tba dapaadenoy of tba uptake on tbe species of aniaal, a alagle doaa of plutoniia (IT) nltrata aolutlon, pl2, waa adalniatarad by stcaMoh tube to three faaala plga waighing between 30 and 45 kg and to 15 young-adult, faaala, Spragua-Dawley rata. Ttaa plga raeaivad 20 BL of a solution containing 0.45 ag/aL and tbe rata raoaivad 1 aL aaob of tba aaae aolutlon. Single rata wara aaorifioad at 2, 3i 4, 5f and 7 daya after atelniatration and the reaaining 10 rata and the plga were aaorifioed at 9 days after aAdnlstratlon. Tbara waa little dlffaranoa batwaan tba raaulta froa tba rata aaorifioed before 9 daya and tboaa aaorifioad at 9 daya ao tbat tba daU were pooled. Staaary reaulta of theae exparlaanta are given in Table D-III.

TABLE D-II

RETBMTIOH OT PO IN TBE RAT APTBR CHBOMIC AOHHISTRATIOH AT DIPPBIBR M38 LETELS

Cono. in Solution Total Pu Pu BefcAlned Pad Total (u

0.00015 0.019 0.0022 0.00001 0.0022 0.0021 0.27 0 0 0 0.011 i.« 0.0011 0.00036 0.0015 0.11 n 0.0028 0.00017 0.0030 0.22 21 0.0028 0.00035 0.0032 C.«* 55 0.002* 0.00018 0.0O26 1. 1 i»0 0.0028 0.000*6 0 X'r J

gavaga. Initially ona doaa waa adalniatarad per day but, to alMrtan tbe tlae of the exparlaent, tba faadlnga ware later incraaaed to two doaaa par day, then to three and finally to four. Ttaa total tlaa of fbadlag waa 9-1/2 aontba during which tiae 517 doaaa wara adalniatarad. Ttae aolutlon used was tbe nitrate at a pB of 2 wltb a voluaa of 1 aL per doae. At tba and of tba faadli«a, SO rata in tbe blgbeat doae group wara aet aside and aaorifioad at 90, 160, and 250 days to deteralne if loaa bad oocurrad fk-oa tba tlaaaaa during tba period of feeding. All otbar aniaala wara. aaorifioad at 4 daya after tba faadiag bad atoppad and tbe tlaauaa wara aaalysad. Ttaa raaulta of tbls axparlaant are glvan in Table O-I. Ttaara was ao dataotabla dlffaraaaa aaonf tba valaaa found witb tbe exoaptlon of Group ZTb wbiob appear ad to bava a blgbar ratantlon. This waa attributed to axparlaantal error and tba low lavala of aetlvlty present in the anlaals ublob wara dlffloult to dataet wltb tba InstnaaaU tban available.

TOU O-I

miEiim or '^ UTIAII m TISSMS or UTS FD PQi 9-1/2 MORB

Total Tlaa ^ttm iroup JMrifin JkllBliflB Saft Tlaaues I&UI "• (d/n) (daya) (S) (S) (S)

I 18 820 * •MD ND ND n 56 700 4 0.00194 BD 0.00194 III 188 710 4 0.00246 0.00044 0.00290 IT 560 000 4 0.00293 0.00022 0.002T5 na SMa 90 0.00234 0.00020 0.00254 ITb SMe 180 0.00208 0.00060 0.00268 ITo Saae 250 0.00226 0.00050 0.00276 IT-all SaM _ 0.00234 0.00021 0.00261

*HD - Hot Detectable. AfPEIDn D

TRAHSORANIW ELnSR ABSOBPnOH PBOM TCE 01 TBACT - A HBTIBH

J. M. Baaly

I. INTBODOCnOH The abaorptlon of plutoniua froa tbe gaatrolntaatlnal tract (01 Tract) baa been taken aa 0.003S alnce tba iaauanoe of tbe praaantly uaed Haziaua Peralaalbla Conoantratlona (MKa) for air and water by tbe Bational Council on Radiation Protection and Maaaureaenta (BCBP) and tbe International Council on Radloloffloal Protaetlon (ICW). Ttala value raaultad froa tba axtanaive ohronic feeding axperlaenta at lanford^* in whlob tba quantltlaa reaaining in the akalaton and liver after feeding for 9-1/2 aontba were aaaaured. Itaeae data alao provided tbe basis for tbe asstaptlon by both tbe ICIP and the ICRP that 90S of tbe plutoniua la depoalted in tbe bone. Beoantly, tbara bave been propoaala to inoreaaa tbla value and to aake it acre reaponaive to varioua envlronaental conditiona. The Environaental Protect ion Agenoy' propoaas valuea of O.lS for aon-oslde ooapounda, O.IS for ^^Pu as oxide, O.OiS for ^^Pu as oxide and 0.5S for eltber, aben biologically inoorporated. Ttaere was, bowaver, no attaapt to Juatify tbaaa valuea by a review of available data. Laraan baa aaaaured tbe valenoe atate of plutoniua in water and auggeata tbat tbla treataent will oxidise Pu(IT) to Pu(VI) reaulting in GI uptakes scae three orders of aagnitude greater tban that of tbe Pu(IT). In addition, other tranauraniua eleaenta are beccalng of greater iaportanoa and vmluaa for the transfer acroas the GI tract are badly needed for tbeae aateriala. Tbla report revlewa tbe inforaation tbat is available on tbe uptake froa tbe 01 traet under varioua experlaental conditiona and derivea values to be used in eatiaating radiation doaes.

II. RBTIEW OP THE DATA One of the aor« extensive ezperlaents on the deposition of pxutonlua following chronic adalnlstratlon waa that of Katz et al.' A prlaary objective was to aeasure the uptake at aaas levels approxlaatlng that of the Naxlaua Peralsslble Concentration In water. Toung, adult Sprague-Dawley rats m four 2i8_ groups, with 20 aales and 20 feawles In each group, were adalrlstcr^ - ?u by 22. J. N. Cleveland, "Itae Ctaealatry of Plutoniua,* Oordoa and Breaeb Science Publiabera, law York. IT (1970).

23. B. E. Iflldung, B. Oruokar. and P. B. JUi, "Itae BaUtloaablp of Mlorobial Prooeaaaa to tba Pate ot Traaauranlo Eleaenta In JtoU, Hi Transuranics in Natural Envlronaaita, A Syaposlua at Qatllnburg, n, Oetobar, 1976, N. C. Mtaite and P. B. Dunaway (Eds.) (19T6).

24. J. M. Cleveland and T. P. Baas, "Invastlgatlan of Solublllsation of Plutoniua and iaerioiui In Soil by Natural Iwlo Goapounds,* bivlronaental Sclenoe and Taebnology K), Bo. 8, 602-606 (Bufust 1976).

J. L. Means. D. A. Crerar, and J. 0. 0i«uld, •Migration of Badloactive Hastea: Badlonuolide Mobilisation by Coaplaxli^ Agenta,* Science. 200, 1477-1461 (June 30, 19T6).

26. V. P. Beekart and P. B. P. Au, •Platonlua Optaka by a Boll Pungua and Tranaport to Ita Sporaa,* In Tranauranloa Baelldas in tbe Envlronaent, IAEA SyapoaiUB Beport IAEA SM 199/72 (1976).

27. B. M. Baery, D. C. Clopfer, and M. C. MoSbane, "Tbe feologleal Beport of Plutoniua froa a Baprooeaalng Haste Pond,* Bealtb Pbyaloa, 34. 255-269 (Nareb 19T6).

28. H. L. Polsar, •Solubility of Plutoniua in Soil/Hater Bnvlronaanta," In Pronaertlnga of tbe Boeky Plats Byaposloi on Safaty la Plutoniua Handling PaolUtlaa, AprU 13-16. 1971, HSAIC Beport, OGHT-TlObOl, 411-429 (1971).

29. D. Bal and B. J. Scae, *Plutanlua Aetlvltlea in Soil Solutiona and the Stability and Poraation of Salaeted Rlnerala.* Journal of bvlronaental Quality, 6, 1 (1977).

30. J. H. Patterson, G. B. Helaon, and 0. M. Matlaok, "Itae Diaaolution of ^^^Pu in btvironaental and Biological Syateaa, Los Alaaoa Solentiflo Laboratory Report LA-5624 (July 1974).

31. R. L. Plelaeber, "On tbe •Diaaolution" of Reaplrable PuO. Partiolea," Bealtb Ptayslos, 29. 69-73 (July 1975).

32. B. A. Bondletti and S. A. Beynolds, •Field end Laboratory Obaervationa on Plutoniua Oxidation Btataa.^ In Prooeadlaga of an Aetinlde-Sediaent Baaotloaa llorlcli« Meeting at Seattle. Haablagtoa, February 1976, L. L. Editor, Battalle Paolflo Hortbweat Uboratory Beport BML.2117 (1977).

33. 0. G. Raabe, G. M. Kanapilly and H. A. Boyd, Inhalation Toxicology Beaeareh Inatitute Annual Raport, Lovelace Foundation Beport LP-46, 24 (Deeeaber 1973).

^*. M. S. Delaney and C. M. Francis, "The ReUtive Optake of ^^Pu (IT) and Pu (TI) OKldaticn States frcia Water by Buab Baana," Baalth Physics, ?«, «92..49Ji (Hay 1978). 10. B. Mann. B. Oaldberg, H. •andrleks, nam leeal SolM iiileaetlve Haate in tbe Huolear Fuel Cyole.^ Beport preaanted at tba fcartni Baolaar Society Winter Meeting (•oveaber 1975).

11. M. F. O'Conaell and H. P. Bolooab, *A li—si j of Loa-laval Hbstas Buried at Coaaarolal Sites Between 1962-1963, vltb ProJeeUeas to tbe Tear 2000," Radiation Data Reports, 15 (DeoeMber 1974).

12. 0. L. Meyer and M. F. 0*ConnaU, *Potentlal Iivaot of Current COMSI aial Solid Low-level Badloaotlve Haste Dlapooal Praotloas on the Bpdrogaologio Enrlrooaent,* Presented at tbe International SjMpooi** on OMerground Haate Manateaent and Artificial Baobarse, Hew Orleans, Louisiana (Septeaber 1973). 13. P. Coloabo. A. J. Halss, aad A. J. Plr«nol«, ••valaitlon of Isotope MigroUoB - Laad Burial, Hbter Cbaaistry «t Pi—iiiUbllf Operated Low-leval Hadloaotlve Hbata Oispeaal Sites,* Huolear Huta llHM««MBt Baeaareh Group. Brnnlrtiafan Bational labiaatnrj Profraaa Beports ML>MMn-S06t3. 50666, 50670, 50695, 50739. 50633, and 50661 for tbe period AprU, 1976 - Deeeaber. I9n.

14. A. T. Jakoblok, *Ni«rotlon of PlatonlaB la Hatvral Soils,* In Tiranauranlua Huolldas In the ftnrlronsent, Prooeedlngs of tbe EBM/IHi Syapoalua in San Franelaoo (Hoveabar 1975).

15. J. B. nwMia Chaplin, "«ha TIanapiat of Badlnl ant opes by Flae Partioulste Hitter la A^afara,* Geoi«la laaUtuU of Toehaoldiy Hater Beaouroee Center Beport HIC-1169 (DeoeMber 1969).

16. S. N. Prloe, L. L. teea, *Gharaotansatloa of Aetlnido-Saarlng Sadiaenta Onderlyli« Uquld Haste Olaposal FMllltlea at Hnford,* Atlaatlo Riebfleld Hanford Ooapany, Raport ABH-8A-232 (Septeaber 1975).

17. M. H. Uoyd and B. G. Balra, *Stodlaa en the Cbaaleal and CoUoldal Nature of Pu (IT) Polyaor,* OSAEC Beport OOHP-730927 (1973).

18. J. B. AndalMB and T. C. BosseU, "Charaeterlstlos of Aqoaous Plutoniua In Radlonoelldas In tbe Envlronaeat,* A. Cbea. 800. Syaposlia, San Franolaoo, California (1968).

19. B. A. Bondletti, S. A. Baynolda, and M. i. Bhanks. "Interaction of Plutoniua with Coaplaxlng Subataneaa In Soils snd Hatural Uatera." In Tranauraniua Huolidea In the Envlronaent, IAEA Syapoalua Report lAEA-SH-199/51 (1976). 20. E. A. Bondletti and P. H. Swaaton, "Tranaurt e Speoiatlon in the Envlronaent." In Proc. Syapoelias on Tranauranloa in rerraatrlal and Aouatlc Environaanta, M. C. White and P. B. Dunaway (Bda.), MTO 178 (1977).

21. W. L. Polser and P. J. Miner, "Plutoniia and Aaarlolw Behavior in the Soil/Hater bivironaent," In Proceedinga of an Aetlnlde Sediaent Beectlon^ Horkii« Meeting at Seattle, Waahington. February, 1976. L. L. laes editor Battelle Pacific Northwest Laboratories Report BHHL-2117. I poaalble at preaent. C^. tbe diatrlbutlon ooeffiolaafc, is ths aoet widely uaed generalised aeasure of aobUlty in eoU. But It Is reoegnlsed that this paraaeter, and tbe usual laboratory aatboda for Ita aaasMraasnt, are not adequate to aeoount for all tbe faotora diaouaaed above aa they affect aobility tn-aitu. Probably tba aost probleaatlo aapaot of aobility to aeoount for by K^ Is tbe aoveaent of partioulata foraa. The aoet notable finding of tbe aany recent atudlaa of organio/blolotloal aodlfieatlona appeara to be tbat while tbeae prooeeaae nay have a aignifioant role la Inoreaaing the releaae rate frca tbe waate aatrlx, there la little or no eapeoted laereaaad aobility In natural aoU/water syateaa near that eablhitad by natural thoriun.

BEFBBBCB8 1. C. H. Chrlatanaon and R. Thoaaa. •Movaaant of Plutoniua Through Loa Alaaos Tuff," OSAIC Report TID-762e (1962). 2. S. Fried, A. M. Frledaan, and L. Quarteraaa, Annual Report for FT1974. Argonne national Uboratory Beport, AHL-8115 (J«ay 1974). 3. S. Fried, A. M. Friednan, and L. QuartenHB, Annual Beport for PT1975, Arcoone HaUonal Laboratory Beport ABL-75-6B (Septeaber 1975). 4. S. M. Prloe and L. L. Aaae, •Cbaraoterlsatlon of Aetlnldea-Bearing Sadiaenta Onderlyiag Uquld Haate Dlspoaal FaolUtiee at Banford." In, Tranauraniua Buolldea In the Envlronaent, IAEA Syapoalua Report, IAEA-aM-199/8T (ARB.SA-232) (1976). 5. E. B. Eaalngton. R. 0. Gilbert, L. L. Eberbardt. and E. B. Fowler, "Plutoniua. Aaerloiua. and Oranioa (kxtoantretlona In Bevada Teat Site Soil Saaplea.^ In TrenauranivB Huolldaa In tbe ttnrlronaant, IAEA Syapoaitai Report. lAEA-SM-199/76. U-OB-TS-1770 (1976). 6. S. S. Papadopoloua, and J. J. Hinograd, •Storage of Low-Level Badloaetive Hastes In the Ground, Bydrogeologio and Brdroohaiieal Fbotors, witb an Appendix on tbe Maxey Plata, Cy., Badioaotlva Haate Storage Slte,^ BRvironBantal Protaetlon Agaaey Beport 6^4-520/3-74-009 (1974). 7. J. 0. D««uld, •Status Report on Radioactivity Movaaant frca Burial Grounda in Melton and Bethel Talleya," Oak Ridge Bational Laboratory Publleatlon 0RHL-50rr (July 1975). 8. 0. Oat. J. 0. Ttaoaaa, and D. T. Clark, "Badioaotlva Wbste Inventory at the Maxey PUta Nuclear Waata Burial Site," Bealtb Pbyaloa, 30,, 281-289. (March 1976). 9. R. Nulkin, "Characterisation of Tranauranic Solid Hastes frca s Plutoniua Prooeaali« Facility." Loa Al^na Scientific Laboratory Report LA-5993-MS (June 1975). tban that predicted by elaple ehaaloal aoIubUlty.^*^*'^'^^ Mhetber tbe solubility of PuOj lavolvee a reveraible reeetlon eo tbat true equllibriua can be aoblevad in tbe preeenea of water baa been questioned.'^ hut eoaa aort of equllibriua ia aohleved, if only wltb tbe bydroua oxldee praelpltated frca solution. Ttae rate of diaaolution la dependent on aany faotora inoluding teaperature. oxidising, reducing, or ocaplexlng agents and apeelfle activity of tbe Pu iaotopa.^*^ Teete for the preaenoe of nrmped apaelea of Pu bave been 32 ravaallng the preaenoe of aiAatantial aaounta of Pn(f) or Pu(TI) m neutral aolutlone oontaotlng bl

IT. DISCOSSIOH Several aeohanlaaa for poaalble aobilisation frca a waate aatriz and factors affecting aobility in the subsurface bave been reviewed briefly here. Naturally, it would be useful If theae qualitative deacrlpticna could be r«duce<< to quantitative fora, perhapa in teraa of ftatoticnal relaticna between releas* and tranaport rates and the aany factors diaouaaed, but this does not appear TABLE D-XTII

DISTRIBOTION OF 238P O IN NEONATAL SVINB GATAGED AT l DAI OF AGE

238P y DoM Tiae of Necropay, 3 7 9 10 12 21 daya Dose, yCi/kg 25 29 480 355 27 26 No. of Pigs 1 1 2 2 2 2 Tiaaue Skeleton 15 14 13 16 Liver 6.7 6.9 3.4 3.4 5 5.0 6.4 Muscle 4.7 5.1 4.0 1.67 Kidneya 0.62 0.43 0.15** 0.28 0.23 Spleen 0.20 0.15 0.14 0.13 Heart 0.15 0.05 0.06 0.10 Lungs 0.51 0.49 0.06** 0.48 0.61 Testes 0.04 0.02 0.02*' 0.0 1 0.02" 0.0*" Lyaph Nodes 0.65 0.90 Skin 3.3 2.2 1.* 1.5 GI Tract 51° 4.1 15 27 1.4 0.79 GI Content 1.6 9.1 2.• 3 0.08 0 Carcaaa* 75 38 Total Pu Retained 31 30 79 41 26 29 (excluding GI tract)

'Entire oarcaas, excluding GI tract and contents. ^Single aeasureaents. 'GI tract, including content. TABLE ZTIII

DISTRIBOTION OP RADIONUCLIDES IB ADDLT RATS SBTBN DATS AFTER ADMINISTRATIOH BY GAVAGE OF NITRATES AND 0XH«S OP ^"^0, ^^^Np. 23«Pu. 2*^*.. 2**ca. AMD 253 Bs

Skeleton Radio- Nuaber of Skeleton • Liver Llvaf OrliM Nitrates 233D 11 0.03 0.003 0.03 0.13 0.16 237NP 11 1 0.06 1.1 0.4 1.5 238pu 12 0.006 0.001 0.007 0.02 0.03 2*V 11 0.012 0.003 0.015 0.05 0.06 2**cn 14 0.04 0.004 0.04 0.08 0.12 253E, 6 0.014 0.001 0.015 0.02 0.0* tea ^ 'a 6 0.003 0,01 0.013 0.11 0.12 ^•'^c 3 0 0.003 0.003 0.03 0.03 li** (0.02) (0.014) (0.04) (0.06) (0.1)

'skeleton estlaated as 23 Z single feaur content. Valuea In parentbesea obtained using curlva oxide suspended In water for * aonths prior to adalniatration. Values not in parentheaes were obtained using freshly suspended aaterlal.

the intestine - both in the contents and within the intestinal wall. At the high levela used for the experlaents providing autoradlographs (doses adainistered were not specified but were higher than those used for the absorption experlaents) substantial daaage was observed, particularly in the lower saall intestine. TABLE D-ZIX

DISTRIBOTION OP RADIONUCLIDES OVEM OATS AFTER ADHIIilSTRATIOM BT GATACS TO TWO-DAT-OLD RATS OF NITRATES AMD OIIDBS OF ^^'^Np, ^^^Pu, ^^^Aa, ^^^Ch, AND ^^^Es

Percent of Oavace Doae Radio­ Nuaber of Intestine Total'* nuclide Rata UTtr. toll Conttnta Absorbed Nitrates 237NP 10° 3.6 0.10 5.5 7.5 6.6 23fipu 11 2.6 0.3 13 2.9 '''MM 8 4.5 0.3 11 11 5 2**C 7 1.8 0.2 2 253,. 8 4.4 0.4 0.8 6.8 5.1 Oxides 2*^A. 10 0.14 0.02 0.8 0.8 1.1 2**C 5 1.9 0.16 2.2 2.8 1.7 (*)^ (2.3) (0.16) (7.0) (11.) (1.8)

'skeleton eatlaated *a 0.22 x body wt (g) x concentration in feaur (S/g). Total absorbed eatlaated aa sua of separate analyaea on feaur, liver, and residual carcass (not including intestinal wall or contents).

^Gavaged at 8 days of age.

Values in parentheses obtained using ourlua oxide suspended in water for * aonths prior to adalnlstratian. Values not In parentheses were obtained using freshly suspended aaterlal. Hahl\ai and Slkov '^ followed up a finding by Ballou that very young ra:.s retained a substantially greater fraeticn of orally adainistered plutoniua than older rats at 21 daya poat-feeding. They adainistered nonpolyaeric plutonlua(rv) citrate, with a i4-fold citrate exceaa, by gavage to rata of i, 20, 21, and 35 days of age. Ttae 20-day age waa choaen becauae It was one day before weaning while tbe 2i daya is one day after weaning. Anlaals were sacrificed at tiaea ranging fTca l h to 20 daya poat-adainiatration. Data frca this exparlaent for tbe aniaala at 4 boura poat feeding and 6 days post feeding are given in Table D-XZ. Ttaeee data were obtained by reeding frca the bar charta in tba report ao tbat aaae error exlata. Ttae data indioate that there waa a blghw initial abaorptlon at * h in the one-day-old rata tban in the older aniaala. However, there waa no significant difference In the abaorptlon at the older agea. Ttae liver of the cne-day-old rat had a pronounced uptake tbat waa aucb greater than tbe older rata. At 6 daya poat adalniatration, tbe retention waa higher in the 1 and 20 day old rats tban in tbe others. Ttaere waa a tendency for ttae plutonloa to translate to bone In the pre weanling rata which appeared to deoreaae with age. Buldakov^ Inveatigatad the optaka of ^^Pu by three auokling plga tbat ware 2.5 aontba old and weighted 10-12 kg. 33 aCi of plutoniua were adainiatered in a if citric acid aolutlon at pH 6.5 and tbe aniaala were sacrificed one day later. Ttae reaulta are given in Table D-ZZI. The plutoniua concentration In tbe akalaton waa deteralned by the analysis of 11 different bones with the total weight of the skeleton taken as 20 tiaes tbe weight of the feaur. Ttae weight of tbe auacle waa found to be 30f of tbe body weight. (Thia decreaaed to 20% at 640 daya.) In diaouaaion of tbeae reaults, Buldakov noted tbst tbe ratention value doea not differ significantly frca that obtained with a 3t aolutlon but is three tlaea aa high as after adalniatration of a 0.5f citrate solution to rata. This SMy be due to the younger age of the suckling pig. Hoakalev et at reported on studies to deteralne tbe Influence of age on the abaorptlon of ^^^Aa. Hon-inbred white rata witb weights of 15-17 g for 7-day old, «5±5 g for 30-day old and l80ti5 g for adult anlaals were used. Th* 2*1 rats received a peroral adalnlstratlon of a solution of Aa chloride at i pH of 3 In doses of 30 uCi for adult rats and 8 »Ci for the younger anlaals. T^- anlaals were sacrificed on the first, second and fourth day following -r.- adalnlstratlon. It was found that the absorption depended upon the age of tt» TABLE D-XX

EFFECT OP UX UPON ABSORPTIOH OF PLOTMIUM CITRATE IN THS RAT - 3 MTS PER OROOP .

4 h Doat feedlnc 6 dava ooat feadlna Ag£ Total UZfiC IMUC Total UIBC Iflauc (days) • 1 0.*3 0.14 0.0043 0.35 0.13 0.019 20 0.14 0.019 0.0032 0.16 0.007 0.011 21 0.10 0.015 0.0040 0.04 0.005 0.005 35 0.13 0.013 0.0078 0.06 0.002 0.004

TABLE D-ZZI

I^KTK'^Qi^P' ORGABS OP SOCILIHG PIO FED *^PTJ IB If CITRIC ACID

Qraan Diatrlbutlon (f/organ) (f of Total Retained)

Muscle 0.007 3.8 Liver 0.012 6.5 Kidneys 0.0009 0.49 Spleen 0.0010 0.54 Lunga 0.0027 1.46 Ovaries 0.00026 0.14 Skeleton 0.161 87.07

Total wO. 185 100 aniaal, with 0.88$ absorbed for the one-week old rats, 0.34t for the aonth-old rats and 0.07f for the adult rats. Tbe absorption of ourlua and callfornlua by both newborn and Adult rats waa 27 24* 2S2 investigated by Sullivan. Solutions of Oa and " Cf were aade by diluting 24* a nitric acid solution and adjuatlng the pH to 3. The ^2^^ ^^ ^*'' suspended in water * aontba prior to being aixed with 5f carbcxyaetbyl cellulose and adainistered by gavage. Two day old rats were adainistered 2 uCl in 0.1 aL and adulta ware adainiatered 5 aCi in 0.5 aL by atoaach tube. All anlaals were sacrificed 7 daya after adalnlstratlon for analyaia of tiaaue. Excretion and distribution data are given In Table D-ZZII. Tbeae data, while preliainary, show relatively low uptake in the adult and high uptake in tbe newborn. 28 Sullivan provided additional data on tbe uptake ot plutoniua and neptunluB in the adult and young rat and alao included data on the uptake of "biologically bound" plutoniua. Solutions were prepared by diluting nitric acid solutiona to a concentration of 20 uCi/aL and adjusting the pH to 2. Tbe oxides were adainiatered as water auapenalona of equivalent activity. Two day old rats received 0.05 to 0.1 aL, 8 day old aniaala 0.1 to 0.2 aL and adults 0.5 aL. Higher doaea were alao adainistered Intragastrlcally or intraperitcneally to 2 or 8 day old rata wbiob ware killed 5 houra later and fed, in toto or lower saall inteatine only, to faated adult rata. Tbe dose adainiatered to the adult was deteralned by analysis of other injected aniaala and uneaten bone fragaenta were analysed ao that their content oould be subtracted froa the adainistered dose. All anlaals were killed at 7 days after gavage and the tissues analyzed. The data for the adulta are givwi in Table D-ZZIII. Ttae authors concluded that the skeleton and liver contained the aajorlty of the abaorbed activity. Ttae biologically inoorporated neptuniua was abaorbad 10 - to 20 tiaea leas efficiently than the inorganic neptuniia but the biologically Inoorporated plutoniua appeared to be Incorporated 1 to 10 fold acre efficiently depending upon the groups coapared. They also concluded that the urinary output waa not affected by contaalnatlon froa the feces because the urine of the restrained rats tms aore radioactive than that of the unrestrained controls. The data for the young rats are given In Table D-XXIV. Once again, the authors conclude that the levels retained In tbe skeleton are greater and the aaount in the Intestine lower with Increasing age. They also noted that it* skeletal estimates for the young anlaals are quite uncertain and that aore significance should be attached to the values for the total absorbed. TABLE D..ZZII

DISTRIBOTION OF RADIOACTITITT IN ADDLT AND NEONATAL RATS GIVEN ^'*CM(NO-)-, ^^'CMgOj, OR ^^Cr(MO^)^ BT GAVAGE

Percent of Adainistered Doae (Average Values for at I.eaat Six Bats) 244 244 Ca(N03)^ 252CfCNO^) ^ Tissue ^2^3 or Rxcreta IduLL Adult* Neonate

Liver 0.005 0.16 0.02 0.003 0.18 Skeleton** 0.07 1.8 0.03 0.0C2 3.1 (Uroass 6.2 4.1 Lunga 0.0 0.006 Skin 0.15 Orine 0.07 0.07 0.1 Feces 95.8 1.7 94.4 Total 0.15 6.3 0.12 0.11 *.3 Abaorbed

Total 96 6.3 91.8 94.5 4.5 Recovered

*No significant radioactivity was found in the inteatine, kidney, spleen, blood, or auacle.

**Adult akeletal content « single feaur content x 23, neonate skeletal content calculated frca an analysed weighed feaur on tbe aaaiaption tbat total akeleton waa 22f of total body weight.

Includes skeleton.

I I TABLE ZZIII

DISTRIBUTION OF RADIONUCLIDES IB ADOLT RATS SEVEN DAIS AFTER ADMINISTRATION BT GAVAGE OR PBEDIMG P9ro9nt Qf AaBlnlaurtd-aaia Nuaber Skeleton Radlo- Fona of Rats Skeleton * Liver aasusax skeleton' uxtr * Liver fldog t nrlflt 237 Np Nitrate 15F 0.63 0.07 0.7 0.45 1.15 237 Np Biologically^ 6F 0.03 0.003 0.03 Inoorporated 237 Np Bltrate 7M 0.54 0.02 0.56 237, Np Biologically^ 7M 0.05 0.003 0.05 Incorporated 238 Pu Nitrate 15F 0.007 0.003 0.01 0.02 0.03 238 Pu Nitrate^ 3F 0.003 0.0003 0.003 0.02 0.02 238 Pu Nitrate" 3F 0.003 0.0004 0.003 0.01 0.01 238 Pu Biologically* 4M 0.03 0.0007 0.03 Incorporated 238 Pu Biologioally 3M 0.01 0.004 0.01 0.03 0.04 Inoorporated 239 Pu Bltrate 6P 0.016 0.0007 0.017 0.005 0.022 241 Pu Nitrate 6F 0.018 0.009 0.027 0.005 0.032 238 ?u Oxide 6P 0.004 0.0006 0.0046 0.007 0.012 238 Pu Biologically* 5F 0.009 0.0003 0.009 238 Incorp

'skeleton eatlaated aa 23 x single feaur content. ''Radionuclide aa nitrate adainistered by gavage to 8-day-cld rat that was killed and fed in toto to adult.

Rats aaintained in restraining cages after gavage.

Control rats aaintained in aetabolisa cages for coaparlson with (g) •

'Radionuclide as nitrate injected intraperltoneally into 2-day-old rat that was killed and fed in toto to adult.

Radionuclide as nitrate adainistered by gavage to 2-rlay-old rat three days later the ileua was fed to adult.

^Radionuclide as oxide injected intraperltoneally to 8-day-old rat that was killed and fed in toto to adult.

"SNS-grad# ''-^PuO^. TABLE D-ZZIT

DISTRIBOTICH OP RADKWUCLIDBB IB TOOHB RATS SEVEN DATS AFTER ADMDTISTRATIOH BT OATAGE

Radio- Fora Nuaber Inte Total^ Muni Id* Adalnlater»4 of Rata JD"Og a AER. Skeleton* Liver Hyll £|y)j^^t S Abaorbed

237gp Nitrate 5 2 1.0 0.02 18.9 13.7 0.8 .237gp Nitrate 6 4 0.7 0.01 11.3 9.8 0.5 237gp Nitrate 10 8 3.6 0.10 5.5 7.5 1.2 23«Pu Bltrate 7 2 2.7 0.2 0.7 0.5 2.2 239p„ Nitrate 5 2 0.6 0.06 4.6 3.0 0.4 23«pu Oxlde^ 10 2 0.0 0.03 0.4 0.3 0.05 239p„ Oxide** 11 3 0.01 0.002 0.4 0.1 0.C2

'skeleton eatlaated 0.22 x body wt (g) x oonoentration in feaur (f

Total abaorbed eatlaated aa aua of aeparate analyaea en faaoi realdual oaroass (not including Inteatlnal wall or contenta).

^'SHS-grada ^^TyjO^.

**Weapona-grade ^^^PuO.

In a continuation of ttae effects of age and biological incorporation on the uptake of aotinidea, Sullivan*^' reported on additional adalnistrations Teobniquea and aolutiona or biological aaterlal adainiatered were alailar to tboaa deaorlbed pravloualy. Data for tbe adulta are given in Table D-ZZV. The 233 author noted tbat the retention and urinary excretion were alailar for both 0 and ^^0 and tbat tbe quantity of ^*^Aa abaorbad after gavage was slailar to that of the hexavalent uranlua. Feeding of U incorporated in newborn rats reaulted in a 2- to 5-fold Increase in the quantity retained in the liver and a two-fold Increase in the aaount excreted in the urine. The effect of biological lncor;K>ratlon waa slailar for uranlua and aaerloiua. 2*1 The results froa the study of newborn rats with U and Pu are given l- Table D-XZVI. It aay be noted tbat tbe '-^\} nitrate is abaorbed to about >r- extent as - Pu nitrate and very little Is retained in the aucosa af**"- TABLE D-ZZV

DISTRIBUTION OF RADIONOaiDES IN ADULT RATS 7 DATS AFTER 0ATA(aS M FEBDINO BIOLOQICALLT INCORPORATED BOCLIDES

Skeleton No. of • Ske leton. Liver JBta Sktiflton' _. Liver Llvtr UrlM - 1an d Urine

^^^U - Nitrate 6 0.015** ± 0.005 0.007 0.016 0.06 0.066 "^^h - Nitrate 4 0.014 :t 0.006 0.0008 ± 0 0.015 0.007 ± 0.02 0.085 ^^^U - Nitrate (Biologically 4 0.014 ± 0.009 0.002 ± 0.001 0.016 0.15 ± 0.02 0.116 Incorporated In (}avaged Neonates) ^^^U - Nitrate (Biologically. 2^ 0.021 ± 0.02 0.004 0.025 0.15 ± 0.02 0.175 Inoorporated by Neonates Injected IP) ^"'A- - Nitrate" 11 0.012 ± 0.003 0.003 0.015 0.05 ± 0.006 0.065 ^^'Aa - Nitrate (Biologically 6 0.02 ± 0.006 0.01 ± 0.001 0.03 0.05 ± 0.08 0.08 Incorporsted in Gavaged Neonatea)

.Skeleton eatlaatnd to be 23 tlaea feaur radioactivity. 'statlsttoal variation is sea except range la ahown for groups of 2 anlaals. Data froa refprenoo 28. TABLE D-XZVI DISTRIBUTION OF RADIOHOCLIDBS IN NEVBORM RATS 7 DATS AFTER OATAGE

No. of Inteatine Total Radlonucll44 Doae Rata. Skeleton* Liver Hall (kmtent Abaorbed (pCi) 2'^2 ^ U - Nitrate 2 5 6.2 ± 0.6 0.054 ± 0 4.5 ± 0.7 2.5 ± 0.4 6.7 ± 0.4" ^^^0 - Nitrate 2 10 2.1 ± 0.2 0.02 ± 0 0.7 ± 0.1 0.5 ± 0.1 2.0 :t 0.2' ^^^Pu - Nitrate 0.05 10 1.3 ± 0.7** 0.14 ± 0.01 40.6 :t 2.3 10.7 ± 1.4 2.9 ± 0.3"

"skeleton eatlaated aa 0.165 x body wt (g) x oonoentration in feaur (f/g) Entire akeleton counted on 3 rata. ^Deteralned by whale-body coimting after reaoval of the Inteatine. Deteralned by counting caroaaa after al of tbe inteatine. gavage of 2-day old rata. Although the abaorptlon of ^^U and ^^^0 ara alailar in the adult, up to three tiaes aa aucb ^ U as ^^U ia abaorbed by the newborn. In addition, five tlaea aa aucb '0 is ratained In tbe gut wall. Tbe low dose 241 of Pu adainiatered showed that the abaorptlon waa alailar to tbat aeasured for ^^Pu earlier when quantltlaa 40 tiaea higher in doae and 30,000 tlaea 2*1 higher in aass were adainistered. However, a aucb higher percentage of Pu waa retained in tbe gut wall. To inveatlgate tbe poaaibillty of a aass effect on thia pbenoaenon, groupa of two or three rats frca two different littera were adainiatered four different doaea of -^Pu at two different agea. Theae reaulta are given in Table 0-ZZTII. The author concluded that tbera was little effect of doae on the adsorption froa tbe gut. Bowever, tbe ratention in tbe intestine wall and contenta waa aarkedly reduced at tbe blgbeat doae level indicating a saturation of tbe aeohanlaaa reaponaible for thia retention. It waa alao noted that the 4-bour old aniaala abaorbed aore 3 py fp^^ ^^^ g^^ ^|,^|, ^j^^ ^, twenty-four hour old aniaal. In order to further inveatlgate tbe poaalble effects of inoorporatlon into foodstuffs, Sullivan and Garland^ adainiatered alfalfk, tbat had been grown on 2lB aolla oontalnlng -^Pu. to rata and guinea plga. Tbe alfblfb waa groan to aaturity on the oontaainated aoll and tbe leevea. or laeves and ateaa, were dried, ground and pelleted. In addition, alfalfa grown on ncn-contaalnated soil was alxed witb a plutoniua nitrate solution to produce ^ Pu concentrations equivalent to those in the alfalfa grown on contaalnated soil (60,000 d/a per graa of plant tiaaue). A plutoniua nitrate solution (pB2) waa also adainiatered by gavage. All aniaala were placed on an alfalfa ration one week prior to adainlatraticn. The rats were killed five daya after adalniatration and the pelt and viscera were reaoved and dlacarded before analyaia of tbe tiaauea. Results for the rat adalnlatrationa are given in Table D-ZZTIII. Incorporated plutoniua waa abaorbed to a twofold greater extent than the aixed plutoniua (p a O.ii). The Incorporated plutoniua also was absorbed ten tiaes greater tban the solution (p « 0.08). The guinea pigs were used in a slailar experiaent except that leaves and steas, 9a well as leaves only, were fed. Results of "-his experiaent are g:ven In Table D-XXIX. When leaves and steas were fed, the Incorporated plutoniia was absorbed four tiaes greater than when the plutoniua was alxed with the feed (pi 0 i?' TABLE ZZVII

DISTRIBUTION OP PLUTONIUM-238 IN NEHBORH RATS KILLED 7 DATS AFTER GAVAOE

Conttnt aa PRrotmt of OavMtd Doa^ No. of Age at intMtlni Total A<

Statlatlcal variation la sea, except range ia ahown for groups of 2 aniaala.

Skeleton estlaated as 0.165 x body wt (g) x concentration in feaur (f/g).

Total absorbed is sua of oaroass, liver, lung, and feaur analyses, and does not include gut or gut contents. TABLE D-ZJVlII

ABSORPTION OF PLANT-BOUND ^^PO BT RATS

Fora # < Altai n1at*i>Ml Doae Adainiatered LlTir Ifltgi

Inoorporated- Leavea 3 0.016 0.068 0.084

Mixed - Leavea 3 0.006 0.032 0.038

Solution 2 0.002 0.006 0.007

TABLE D-ZHZ

ABSORPTION OF PLANT-BOOHD ^^® Pu BT GUINEA PIGS

Fora I HtHln^'^'"^ P°^ A^ iHlaHia Liver Skeleton £gCCiaa Ifi^Bi

Incorporated Leavea and Steas 2 0.036 0.032 0.068 Leavea 3 0.017 0.029 0.046

Mixed Leaves and Steaa 2 0.008 0.011 0.018 Leaves 3 0.023 0.076 0.099

Solution 0.014 0.019 0.033 fioHaTw, whan laavaa only wara fad, tba aizad plutoniiai •bowad a higbar abaorptlon wtolob waa not atatlatloally dlffarant froa aitbar tb« plutonlua Inoorporatad In tba plant aatarlal or alxad with tba plant aatarlal. In ordar to obtain fUrtbar data at higbar tlaaua ooncantratlona, guinaa piga wara fad laavaa with inoorporatad Pu, laavaa with aizad Pu and aolutlon by garaga for tan days. Anlaala wara klllad two daya aftar th« last atelnlatration. Tba raaulta of tha tlaaua analyaaa ara givan In Tabla I^ZZZ. Uhan laaTaa and atasa wara fad, thara waa a four-fold Inoraasa in the uptaka of tha inoorporatad plutonlua aa ocaiparad to tba alxad plutonlua (p « 0.12). Vhan laavaa only wara fad, Inoorpm^tad ^atonlua aaa abaorbad to about twioa tha aactant of alxad plutonlua (p « 0.04). Abaorptlon of tba gaTagad plutonlua waa hlghar than for any of that fad with alfhlfa, axoapt for that Inoorporatad in laavaa and ataaa, but tha dlffaranoa waa not significant. Tha authora nota that tha variability of tba data praoluda a quantltatlva aralustion of tha Inoraaaad uptaka although it doaa appaar that auoh an inoraasa oeeura with inoorporatad plotonita. Zallkin at al.^^ studiad tha abaorptlon of Aa following paroral adainiatratlon aa tha ohlorida in a atady of tha diatribotion following aavaral aatboda of adainlatration. Plva ahita rata with an avaraga waight of 200 g wara uaad. Aftar « daya, tha livar oontalnad 0.015f of tha doaa. Proa the dlatributlon notad following intravanoua adainlatration, it waa notad that tba llvar oontalna %7.5I of tba ' Aa at this tlaa. Aaauali^ tbat tha ssae dlatrlb tion appllad to tha quantity in tha body following oral abaorptlon, it waa ooooludad that about 0.03S waa abaorbad. In a atudy of aavaral othar aotinidaa, Hungata at al.*^ studiad tha ratantiOB of ^HB and ^*^Bk at % and 21 daya aftar intragaatrlo adalnlatratlor of thaaa nuelidaa to 400-g aala rata. Tha nuolldaa wara oontalnad in i aL of 0.2 • Ed. latantlon of ^^|a in tha total oaroaaa waa 0.036t0.02f at « days and 0.0OA4tO.00if at 21 daya. For ^Bk tba eorraapondlng valnas ware 0.009f and 0.00<)f. Uhila tba ratantiona for individual organa wsra not givan, tba authors indlcatad tba distribution to ba alallar to an intravanoua study daaoribad in tha papar. In tbls dlatributlon, tha skalaton contant was abov* 30f, tba liver about i.5f, tfae kldnay about if and tha aplaan about 0.6f for ^-Es. For ^^Bk, tha skeleton contained »0S, the liver about 3S, th* k:<3r<" about 1.2S and the splaan about l.2f. The influence of the high acidity and the UtU 0-UX 236. ABSOimON or OUKMICAILJ IMXSTID " PU Bl OUIBU PI08

10-Day Doaa Croup tf^u»l JdllnllUnBl (dla/aln) (dla/ala) (I) (dla/kln) It) (dia/aia) (I) dla/ain (I) CP-6 t lnoorporat«0 567.000 60 o.ei« 76 0.013 156 0.027 2 (LMV*« and 199.000 262 0.097 402 0.061 664 0.136 3 St«a«) 575.000 6.36 0.111 696 0.»57 262 0.046 396 0.062 579 0.107 206 0.039 GP-7 1 Nlx«d 666.000 199 0.023 239 0.036 2 (LMV«« Mid 663-000 64 0.013 111 0.017 '63 0.029 661.000 0.014 3 StMU) 92 0.006 96 0.009 91 35 0.009 133 0.020 164 0.025 57 0.009 OP-6 1 IiMorporat«d 595.000 103 0.017 156 0.026 259 0.043 2 (LM*««) 597.000 52 0.009 162 0.027 214 0.036 3 560.000 55 0.010 162 0.026 217 0.036

ATI- 70 0.012 159 O.on 230 0.039

QP-9 1 Ml>«d 556.000 39 0.006 143 0.026 176 0.032 2 (LMT««) 557.000 42 0.006 90 0.009 92 0.017 3 509.000 26 0.009 60 0.012 66 0.017

34 0.006 102 0.019 119 0.022

GP-IO 1 Solution 625-000 0.012 193 0.029 230 0.037 2 (0«VM*d to 625-000 n 0.019 446 0.072 539 0.067 3 inlaals r«d 625-000 91 0.009 69 0.014 119 0.019 3« L«av«a) 67 o.on 266 0.066 296 0.048

OP-n 1 Solution 629.000 50 0.006 129 0.020 179 0.020 2 (G«v«c«d to 629.000 302 0.046 216 0.035 916 0.063 Anlaala fod Loavca aad Staaa)

t»f. 176 0.026 346 0.035 or c 1 •on* 0,7 0 0 0.7 uae of the ohlorlde Ion on thaaa results oannot be aaaaaaad, but it la noted that the uptakea are in the saae range aa for the other actinldea.

III. COMCLUSIOIIS These data peralt a derlration of uptake raluea, at leaat in aniaala. Soae of the following conclusions are relatirely well based while otbera are conaiderably aore uncertain. One iaportant uncertainty that cannot be resolved at this tiae is the question of species difference. While the ccapariaon aaong the anlaals tested does not indicate large differences, there will be no proof that Ban's bahsTlor in regard to uptaka is tba aaaa as that of the aniaala uaed until azperlaantal data on aan beooae aTSllahla. SuHBary tables of the data froa the varloua inTestlgations, broken down a? to ccapound fed and nuclide, are glTen in Tables D-ZZZI through D-ZZZIII ao that a ready ccapariaon of the data is possible. In this section we will uae these tables, as well as thoae In the body of the report to discuss the iaportance of a nuabar of factors that could influanoa uptaka.

A. gffeet of Quantity Ped Slnoa Boat feeding azparlaants are done with relatlTely large doses so that aeasuraable quantities of transuranlo eleaent aay be deposited in the organs, the question as to whether these ezperiaents describe the uptake at the low coneentrationa typical of the enrironaental situation can be considered. Fortunately, this was one of the early questions considered and the atudiea of 7 18 —5 Catz at al. and Veeks et al. show that otT a range of 10 iig/aL to i ug/aL, in ohronic feeding of rats with 1 aL doses, there are no statistical differences in the retention in tha organs. The lower end of this range is below the present occupational MFC. It appears, therefore, that any effect of concentration ia so saall as to be negligible, at least In the range of enTironaental conditions. ^ Efftfit Of Yaionct As MIS noted in the introduction, the question of the influence of the valence state of plutonlua on the uptake froa the CI Tract haa been of Irterest In the past few years. The prlaary data available haa been that of Weeks e- al." (Table D-IV). If one assuaes the 961 lY for the nitrate pH2 case and ^^ 991 IV for the citrate pH2 case to represent the real absorption of P'. '.'• *•'"*" au 0 •« at t\t a at au a a» - OC «•• of t 0(1 a< - H T Oi a* - at i a( n « oe( a( ti I «(t t tt * •* - "tna|Wri^T3»T^

•1 •n*T*« "'^ 111

taoiinoc ainxia mm HBUUTM JO itfua im-« nati 006 I - 0i6 Olt 06S - - 061 Oft 009 Otl 91 6 »»t « » •^*J•^10 *• »S » • 0 oot 001 OOC 0 ooe oot 00 ooz ooe 009 ooC I -OOfiOOtOOZOOeOOCOOtSl Ot 10« - » aiaJllO ti - njjjj 0C9 oo«-oot6 1 »p«£ ,» ((ad - aitJ^ts tn - H4jjj

T -• T T -| (oiaO) (•'•0) ta^oi *n«*u atilJO anaau J»«n •»»•!•>« TI tlHI|ll| lafBSSC 0077130*7 lOTTW*! P»J»I»|UI»PT T>IMI«M tnoi ijee « oi JO ••U ""U ^W I woq pojunmiot I

sooufliot Ufuio NOU wnua HOIKUITW lira mu TtBU B-IUIII

OPTUI Of 0T»> WW-IOtS « k^t»tm*mrmd Doaa X Ml*

TIM TIM Soft Total TlaatM Total of to Llvar Tlaava Orln* laais ML. Skalaton IkUclaL A2,C r Mltrata

»«iut •

Wmmmmmmmn the uptaka of the other valanoe atatea oaa be eatiaatad by aaaualng that each one acta indapsadantly. The ratio of uptalsa for tba III Talanoe atate ooapared to IT in bone rangaa froa 6 to 42, in liver flrea 3 to 90 uni In the total aniaal froa H) to 20. for the TI valenoe atata in oitrata tba bona ratioa range froa 100 to 900, the llvar froa 100 to 400 and tba total aniaal fi*aa 90 to 700. This exaainatlon would, indeed, laply an inoraaaa in tba uptaka for both the III and the TI valence atata over that of tha IT. Hoaaver, Sullivan haa reoantly bean atudying thia situation and has found faotora that aaka tbaaa earlier raaulta qfraationabla. ^^ In the firat place the aniaala aare atarvad before adaialatration and, fiolloaing adalnlatration, until aaorlfioa. OaooadlTt tba oaldant aaad aaa EJCTJO. ablob ooold Influanoa uptake by Itaalf or by aotlng aa a boldlag oxidant. In order to explore this situation ha parforaad axpariaaeta with rata to deteralna tba effaot of theae variables as well aa the uae of oaone aa an oxidant. Hblla hia data ara not aa yat published ao that we do not vlah to Inoluda thea bare, tbay abow tba affeot of valence change to be aaall, if praaant at all. Wa will, therefore, not oonaider aoeh an effaot to be of laportanea.

£a natilw bT iflBlt InlMli As oan be aean froa Tahlea D-ZZZI through D-ZZZIII, there is oonsiderabla scatter in the data available. For axaaple, the hlgheat value for retention of plutonlua adainlatered as the nitrate in the akaleton is over an order of aagnltuda greater than tha loweat. A ccaplicating factor in the ccapariaon and analyala of the data ia that tba aaaa tiaauea were not analysed for all of the aniaala. An additional unoartalnty ia introduoad by tha significant quantities ezoreted in the urlaa in aany of tba latar atudiea where the urine waa aaaaured. Thla aatarlal asoratad ia the urine waa abaorbad frca tha 01 T»^ct although it waa asoratad before dapoaitlon in tiaaua. Thia ralaea the quaatlon aa to Mbether tais fraction will behave differently in aan and be deposited In tissue rather than esoretad. Once again, however, the fraotions aicereted in the urine and depoaited ia tiaaaa appear to be siailar in tba three species ezsalned (rat. dog, and guinaa pig) so that it appears that the aaterial ahaorbed thrcugb the GI Tract is aore easily excreted ia the urine than that injected mtravenouaiy Thla view ia supported by the eoaiparlaon between the urine data for hoaans. after intravenoua adalnistratlon, wita siailar data for dogs given by Ballou » o al.' Hare the excretion rates of the dog and the buaar for the first ic: lay were siailar (within a faetor of about 5 at tba latar tiaaa). This indicates that for slsUlar aetoods of adalnistratlon the raaulta ai^ aiallar. Since our Intereat ia in the quantity depoaited in tiaaua and not tba total abaorption, w« will oonaider th«i dapoaitlon to be the aaaa in aan as in the aniaala and the uptaka will be cxialderad as that depoaited, without the urine included. One other qjaation auat be eonaldarad before uptake values oan be derived. This is the dlffxranoe between ^^Fu and ^^Fu. In studlea with aleroapberes of ahea t aouroa" plutonlia eontalnlng about 80f by aaaa of 236, it has been shown that tba aatarlal upon standing ia water baooaaa aore aolubla and the uptake of thla aatarlal in aniaala upon labalatioa ia iaoraaaad. Thla baa bawi attributed to tba hlgb apaeirio aotlvlty of tba boat aooroa plutonlw lauding to ajaetion of a few atoaa by raooll following a dlalntagratioa. It ia aoaatiaas assuaed that the ^^Pu will be aore aolubla ia all foraa. Bowavar, for plutonlia in the environaant (lanlaaa it la in the fora of actual partiolaa of heat source plutonlua wbloh would raault In bler of eases In which skeleton, liver arc t^t», tlsstie were aeasured, we did not attaapt to find values by averaging. Instead. the weighted averages were used to obtain the ratio. In this proce

IL UBfaifct In t.hg TfflWff inlMl There is s reasonable body of Infonution on the uptake by the young aniaal, and the data all show a aarked Increaae in the abaorptlon and deposition in the organa over that aeasured for toe adult. A suaaary of the data available is given in Table D-ZZZIT. Aa oan be aaen, the uptaka is on tba order of l to 51 with indloations from Table D-ZZTII that there is a differenee between 4 241 houra and 24 boura of age. Ntalla only a few polnta ara available, * Aa appears to babava in a siaUlar Banner. One experiaant, on tba nbaaga in tba uptake of plutonltai with age, la given in Table 0-ZZ. Tbera appaara to be aaaa difference between pra-waaning (20 days) and the post-waanlng (21 days) in tha data for total retention and retention by the feaur for tba aniaala aaorlfload at 6 days post-feeding but this difference does not occur at the 4-houra poat-faeding tiae.

TABLE O-ZZZIT

11 TBI TOOK lAT

Ago at TlBa to % Adalnistered Dose Itta. Wdii Material Gayafe Liver IsiMl (days) (daya) (days) Plutonlu• 21 XTI Nitrate 2 1 1.1 0.16 1.2 8 1.56 0.21 1.8 22 ZII Hltrate 2 7 2.6 0.3 2.9 23 ZZ Citrate 1 0. 17 - 0.14 0.43 6 0.13 0.35 26 ZZIT •itrate 2 7 2.7 0.2 2.2 0.6 0.06 0.4 29 ZZTI •itrata - 7 1.3 0.14 2.9 29 zzni Hitrate 0.17 7 7.7 0.6 29 3.« 0.4 4.e 4.2 0.7 4.7 4.7 0.9 5.9 1 7 6.2 0.5 10 33 0.24 2.7 t.9 0.2 1.6 2.1 0.4 2-'' Aaerlqif 26 - Chloride 7 1-4 - - 0.8« 27 XIX Nitrate 2 7 4.5 0.? 2.

£.i Bioloalesllv Bound Tranauranlea A possible Increase in the uptake of transuranics that have been biologically Incorporated Into foodstuffs has been a question for soae years. Data are now becoalng available froa studies at Battelle-Horthweat with the inforaation preaantly available given in Tables D-ZZIII, D-ZZT,D-ZZTIII, D-ZZIZ, and 0-ZZZ. Mioh of these data were obtained on only a ftw anlaals per experiaant ao that tbay have considerable uncertainty. We believe that theae data aust be axaainad in light of the internal controls run with each experiaent, rather than using uptake froa other experisMnts with solution, as the basis. For tais rvaaon, we calculated the ratio of the average of each experiaentaJL point to ita respective control m the given experiaent. These ratios are given in Table D-ZZZT. As can be seen, the results sre variable with the acute feeding ranging up to a ratio of 13 for rata and 4 for guinea pigs. The chronicslly fed gu:nea pigs, however, had ratios generally leas than 1. This could bsve resulted frov high controls In this particulsr experiaent ss well aa froa higher uptske fror the Incorporated or aixed foods. TABLE D-ZZZT

RATIO OF UPTAKE OP IMC08P0RATED OR MIZED PLOTOMIOM TO CONTROLS

£gUfi. iJAtlCiil 2ktlBifi& Uxsc £lCQBBB Tofc^l

Rats

2 Day Old Rat 10 2.3 Ueua 3 13 2 2 Day Old Rat 3 1 Incorporatad-Leavea 8 11 12 Mizad-Laaves 3 5 5

fluln— Pig*

3 Hlxad Leaves and Steas 0.6 Incorporated-Leaves 1 2 1 Nizad-Laavea :" 2 4 3

Incorporated-Leaves and Steas - 1 2 Mlzad Laavaa and Steaa 0.3 0.2* 0.5 1 0.8 Inoorporated—Leavaa 0.3 0.2 0.5 Nlxad-Laavas 0.5

Controls for anlaals fed leavea used.

It is iapossible, at this tiae, to deteralne the degree of Increase in uptaka froa biological Incorporation or alxing of the plutonlua wita the food. The data would aaea to indicate that aizing is less effective than incorporation, perhapa by about a factor of two. The data are inconclusive at this point ao that a reooaaandation aa to any alloaance for inoorporated plutcnita cannot be given. Only one experiaent has been done with ^"^Aa and it shows sn inoresse for incorporated aaterial by about a factor of two awmr the nitrata feeding. Since this is within toe range of the values for plutcniira, we will sgaln conclude that reccaaendatlons are not possible. REFERENCES

1. National Council on Badlation Protection and Neaaureaents, "Haxlaua Feralaalble Body Burdens and Naxiaua Peraiaalble Coaoentrationa of Radionuolidea in Air and Hater for Oooupational Expoaure," Handbook 69. O.S. Dapartaant of Coaairce, National Bureau of Standarda, U.S. Govt. Printing Office (June 1959).

2. The International (kMBlaaion on Badlologlcal Protection, "Report of ICRP Coaaittaa II on Peraiaalble Doae for Intamal Badlation (1959). with Bibliography for Biological, Mathaaatioal and Phyaleal Data", Baalta Phys. 3. 1-360 (June i960).

3. J. Eats, a.A. Komberg and H. M. Parker, "Abaorptlon of Plutonlua Fed Chronioally to Rata", Aa. J. Roentgenol., Radiua Therapy. Nucl. Had., 73,303-308 (1955).

4. N. B. Heeka, J. Cats, H. D. Oakley, J. E. Ballou, L. A. George, L. K. Buatad, R. C. Tbcaipaon, and B. A. Komberg, "Further Studies on The Oastrolntestlnal Abaorptlon of Plutonlua" Radiat. Baa. 4, 339-347 (1956).

5. 0. S. tevironaantal Protection Agency, "Propoaad Ouidanoe on Doaa Liaits for Paraona Bxpoaad to Transttt*anlo Elaaanta in toe flanaral Environaant", 0. S. EPA, Offloe of Radiation Prograaa, Critarla, aad Standarda Division, Haahlncton, O.C. (Sept. 1977).

6. P. P. Laraan and B. 0. Oldbaa, "Plutonlua in Orinkiag Hater: Effects of CbloriaatloB on ita Murlaua ParalsaJbla Coaoantratlon," Soianoe, 201, 1006-1009 (Sept. 1978).

7. L. K. Buatad, H.J. aarka. L. A. George, T. Q. Borstaan, B. 0. NoClellsn, R. L. Peraing, L. J. Seigneur and J. L. Terry, •Praliainary Observstions on Netabolisa and Toxicity of Plutonlua in Hinature Swine", Health Physics, 8, 616-620 (1962).

8. T. I. Hoskalev, T. N. Streltsova and L. A. Buldakov, "Ute Effects of Badionuollde Daaage", In Delayed Effects of Bone Seeking Badionuolldes, Maya, Jee, Lloyd, Stover, Dougherty editors, (kiiv. Otah Press, Salt Lake City (1969).

9. J. B. BaUou, J. P. Park, and H. Q. Jlyrow, "On the Natabollc Equivalence of Ii«aatad, Injaotad and Inhaled ^^ Pu Citrate", Baalta Physics, 22. 857-662 (1972).

10. D. N. Taylor, "Soae Aapects of the (ksaparative Hatabolisa of Plutonlua and Aaaricitai in Bats," Baalta Phyalca 8, 673-677 (196 0

11. T. B. Salth and J. L. Beaaar, "Absorption of ^^PuO. froa tae (2astrointeatinal Tract of Swine", Pacific Nortliwest Laboratory Annui< Report for 1966, Toluae I, Biological Sciencea, BNVL-480, 91-95- 12. T. H. Salth, H. T. Karagiaoas and C. R^.Mataon, "Glaatrointastinal Passage Tiae and Absorption of " PuO. and ^'PuO. Nicroapherea in Niniature Swine", Pacific Northweat Laboratory Annual Report for 1967, Toluae I, Biological Sciences, BNVL-714, 4.12-4.15 (May, 1966).

1?. V. H. Saita, "Fata of Ingeated ^^PuO, in Nlnature Swine" Pacific Northwest Laboratory Annual Report for 1969. Nrt I Biological Sciences, BNUL-1306, 63-65 (Aug. 1970).

14. C. R. Ricbaond, J. E. London, J. S. Hilaon, and J. Langbaa, "Biological Response to Saall Diaorete Highly Radloaotlve Sourcea. I. Obaarvationa on Gastrointestinal Transit, Mstologioal Change, and Tissue Oepositon in Beagles Fed One-half Curie ^^PuO, for Six Nontha", Baalta Phyalca, 15, 487-492 (1968). ^

15- J. Foreaan, J. Poat, and C. Pinnegan, "The Effect of x-Irradlation on the Abaorptlon of Plutonlua in the Qaatrointaatinal Tract", Badlat. Res., 7, 267-269 (1957).

16. D. W. Baxtar and N. F. Sullivan, "Gastrointestinal Abaorptlon and Retention of Plutonlua Chelates", Baalta Phyaics, 22, 785-786 (1972).

17. B. A. Began, "Enhanced Plutonlua Abaorptlon by Iron-Deficient Nice", Paolfic Bortaweat Laboratory Annual Beport for 19T3, Part I Biological Sciences, BNHL-1850 Ft 1, 13-14 (Aug. 1974).

18. B. A. Bagaa, "Body Iron Statua and Plutoniuu Nataholiaa in Bat", Paolfic Bortbwaat Laboratory Annual Baport for 19T3, Fart I Biological Solanoes, BHHL-2100 Ft 1, 117-116 (May 1977).

19. B. A. Ragan, "Body Iron Statua and Plutonlua Netabolisa in Bats", Pacific Northweat Laboratory Annual report for 1975, Part I, Bicaedical Sciences. BNHL-2000 Pt 1, 87-88 (Jan. 1976).

20. M. F. Sullivan, "Absorption of Transuranlo Nitratea by Rata, Guinea Pigs, and Dogs", Pacific Bortaweat Laboratory Annual Report for 1977, Part I Bloaedlcal Sciencea, PNL-2500 Pt 1, 3.93-3.94 (Feb. 1978).

21. N. F. Sullivan," Gaatrointaatinal Abaorptlcn and Batwitlcn of Plutoniua-238 in Beonatal Rat and Swine" Paolflo Horthwaat Laboratory Annual Report for 197T, Part I Bicaadloal Studlea, PBL-2500 Pt 1, 3-91-3.92 (Fab. 1978).

22. N. F. Sullivan and A. L. Croaby, "Abaorptlcn of arani(ai-233. Neptuniua-237. Plutoniuai-238, Aaericiu»-24i, CuriuB-244, aad Einsteiniua-253 frca the Gastro-intestinal T^act of Newborn and Adult Rats", Pacific Northwest Laboratory Annual Report for 1974, Part I Bicaadloal Sttidies, BNHL-1950 Ft 1, 104-108 (March 1975).

23. 0. D. Nahlua and H. R. Sikov, "Effect of Age on Absorption of Plutonlua froa the Gastrointestinal Tract of Rats", Pscifle Northwest Laboratory Annual Report for 1966, Voli»e I Biological Sciencea, BNWL-*80, 40-»' .July 1967). 24. J. E. Ballou, "Effects of Age aad Mode of Ingeation on Abaorption of Plutoniw," Proc. Soo. bp. Biol. Ned.. 96, 726-727 (1958). 25. L. A. Buldakov, "The Behavior of Plutoniiai (^^Pu) in Toung Pigs". Radiobiologiya 8(i). 62-64, 1968; AEC-tr-6950, 101-106.

26. T. I. Moakalev, O^ A. Zalikin and T. I. Trofiaov, "Influence of Age on the Reaorptlon of Aa from the Oaatrointaatinal Traot of Bats" (Abstract) Radiobiologiya, 155. 1973; AEC-tr-7430,2l5.

27. N. F. Sullivan, "Absorption of Curi«B.244 and Califomiua.252 f^ca the Gastrointestinal Tract of Newborn and Adult Nice" Pacific Northwest Laboratory Annual Report for 1973, BBHL-1850 pt 1. 15-17 (Aug. 1974).

28. N.P. Sullivan and A. L. Croaby, "Abaorptlon of Tk*anauranio Eleaents froa Bat Out", Paolfic Bortbwaat Laboratory Annual Baport for 1975, Part ^ Bioaadloal Selenoea, BBHL-SIOO Pt 1, 91-93 (Jan. 1976).

29. N. P. Sullivan, "Oaatrointaatinal Abaorption of Transuranlo Eleaents by Rats", Pacific Northweat Laboratory Annual Report for 1976. Part I Bicaadloal Seienees, BNVL-2100 Pt 1 123-125 (Nay 1977).

30. N. P. Sullivan and T. R. Garland, "Oaatrointaatinal Abaorption of Alfalfa-Bound Plutoniua-238 by Bata and Guinea Piga", Pacific Nortawest Laboratory Annual Beport for 1976. Part I Bicaedical Sciences, BBHL-2100 Ft 1, 137-139 (May I9n).

31. G. A. Zalikin, T. I. Msakale, and I. E. Petrovieh, "Distribution and Biological Effects of Aaerlciua-24i", Radiobiologiya, 107. 1973; AEC-tr-7430,107.

32. P. P. Bungate, J. B. Ballou. D. D. Nahlua, N. Casbiaa, T. B. Saith. C. L. Saodera, D._HQBaxter, N. R. Sikov. and R. C. Tbcapaon, "Prellainary Oats on ^^Es and ^^Bk Netabolisa In Rats". Bealth Phyalca 22, 653-656 (Juf 1972).

33. N. P. Sullivan, Private Ccaaunication.

34. Tba latamatlonal CoHBlasicn on Badiologleal Protection, "Tbe Netabolisa of Coapounda of Plutonlua and Other Actinldea", ICRP Beport Bo. 19. Pergaaon Praaa, Oxford, Baw Torfc (May 1972).

35. V. J. Bair. Private Coaaunication, July 1978. APPBNDU E

RESOSPENSION

J. W. Healy

Resuspension froa soils and stibsequent inhalation of tbe resuspended aaterial, has long been considered the chief source of exposure to transuraniist elaaents deposited In soils. In spite of the obvious iaportance of this pathway, reaearch bas been lialted so that a reaaonable prediction of the reaulting coooentratlona and inhalation ia difficult to attain. In fact. Slinn indioataa that he does not trust reauspensioo factors, ratas or velocities to within aany orders of aagnltuda. In the following we will review tbe data available and atteapt to arrive at as reaaonable an answer as poaaible.

I. TTPES OP RESOSPENSION CONSIDERED The overall resuapenslon problea oan be divided into three types for 2 3 eoocepttial underatanding and calculations. *'' These are: 1) wind-driven resuspension; 2) aechanlcal resuapenslon; and 3) local resuspension. For wlnd-reauspanslco the energy required to dislodge tae particles ariaea froa tbe wind and tha particles then disperaa dowiwlnd depositing oo surfacea at a rate depending upon the aerodynaalc properties of the particles and the nature of the terrain. Both aechanlcal resuspensim and looal resuspenaloo result froa •ecbanical disturbance of the soil. However, in tbe aechanlcal resuspension case the concern is with concentrations dotmwind following dispersion and deposition, while the local resuspension describes tbe exposure in the iaaedlata vicinity of tae individual before disperalon occurs. Anotaar type of reauapenslco that will be considered only briefly . is tranafer reauapanalon. This Involves the tranafer of tba oootaainant froa its place of deposit to another place where inhalation aay be aore probable. Unfortiiiately data to describe this type of resuspension are extreaely lialted. Each of these types of resuspension will be considered in deriving tbe beat estiaate of exposiire to an individual in an area contaainated by tbe spread of transuranics in the soil.

II. RESUSPENSION MODELING There are three basic techniques m uae for resuapenslon aodexing: -he resuspension factor; 2) tbe resuspension rata; and 3) the aaaa loading approach. Each method has its strengths and its ttaaknesses, particularly in view of tbe atate of the technology at this tiae. We will describe each of the techniques and discuss its advantages and disadvantages.

A. The Raauspanaion Factor The resuspension factor is defined as the ratio of the concentration in the air at a reference height (usually one aeter) to the quantity of tbe contaainant per unit area on the aurface of tbe groutd. The usual units are a" . Its chief advantages are its siaplioity and the fact that aoat aeaaureaeots in the past have been expresaed In this fora ao that valuaa are available fOr oaloulatioo. The chief diaadvantages are that it is a coapletely eapirioal foraulatioo so that it is difficult to extrapolate froa ooe terrain to anotter and it ignores the distribution of the cootaalnatloo over the area and the size of the Qontaainated area involved. Thus, the dencalnator ocotalna the local quantity oo the ground while the niaerator is aa undefined function of the air concentration resulting froa upwind contaainated areas and actlvitiaa. A problea coaacn to thla aodal, aa wall aa all others. Is tha unoertalnty resulting firca the depth to ha uaad in aaaaaalng tba quantity par uait area to be used in tbe dencalnator. For a unifora profile in the aoila, the quantity per init area will increase in direct proportion to the depth of the saaple used. For non-unifora profiles the estiaate of the quantity per unit area will also change depending upon depth used. For wind resuspension it can be assiaed that the appropriate depth is aaall, perhaps a ailliaeter or less, although it is likely that this depth aay be variable depending upon wind speed and tbe degree of saltation allowed by the size of the area and the nature of the soils. For aechanlcal disturbance, the depta will be soae function of tbe depth to which the diaturbance occura; the function depending upon the relative eaae with which the particles can escape froa the soil to the ataosphere. Hlshiaa has tabulated resuspension factors aeasured over a variety of conditions. It is frequently noted that these values range over eleven orders of aagnitude. However, the values quoted represent both outdoor end indoor conditions, with and without mechanical disturbance, and at various tiaes after the contaminant has been deposited. In a tjrief review of Mishiaa'a table it i? -6 -1 noted that the valuea for mechanical disturbance range froa about 2xi0 a tc -5 -1 -3 -1 ''xiO a (with one value of 10 -"a based on uraniua contaainant witn auat atirred up and saapling at a height of 1 foot, ignored). For periods of no activity, with relatively freably deposited aaterial, tbe values generally range froa 10 a* to 2xi0 a" while for aged aaterial they range froa 6x10* •* to iO~ B~ . It is difficult to generalize these niaibers because the exact value will depend upon the degree of disturbance, the plaoaaeot of the saapler, tbe aeteorolQgioal cooditions at tbe tiae and the nature of the aoila. However, aany of the aaaaureaants were aade in deaart areas with low aoll aotature where reauapanalon would be expected to be hlgheat. An apparent raduotion in the raauspanaion factor with tiae was indicated by Wilaon -t al.^ froa aaaauraaanta at tba Nevada Teat Sita. Bare aaaples were taken at three diffe-.-ent diatancaa flrca the centar of a aafaty abot starting about one aonta after the caotaalnaticn oocurrad. Tba autbora noted that the data ware too erratic to eatablish balf-tlaea for tha decay of tbe air oonceotratloo beyond a vary crude eatiaata. Thia eatiaata waa aade by plotting the aadlana of the data at eaoh aaapling distance and provided a value of five waaks for tba ooaeantratioQ balf-tlae. Thla value waa uaad by Lsnghaa in aaaaaalng future haiarda traa plutonioa ooataainatioo. A aoaavhat larger half-life of 45 days waa uaed by Kathran' ia a atudy of aooeptable ocntsalnatioo 8 levela for plutonitsi in aoila. Anspaugh et al. aaaaured tba decreaae is air coocantratioo wita tiae iaaadlately following a cratering event in Nevada and following the venting of an underground ahot. For the crataring event, saapling waa carried out for six weeks following the event with a aeasured half-tiae of 38 daya. The venting axpariaent started three aonths after the event and eontlnuad for 9-10 aontha wita tha aoat pradcalnant radlcnuclidca being tbe laotopaa of rutbanltiB. Hare a half-life of 66 daya waa foisid. Bowavar, the oooaaquaaoea of continuing auoh half-tiaaa over a long period q 10 • were pointed out by Healy and Anapaugh Haaly noted that aaaples taken at tbe aaaa location aa thoae by Hilaon et al., but about ooe year after tbe ooncluaion of the Wilaon study, gave valuaa up to several orders of aagnitude greater than would be predicted by the 35 day half-life. Anspaugb indicated that the fmotional nature of tbe decrease in resuspension rate with tiae cannot be confidently extrapolated, and previously published aodels should not be applied to calculations aany years after the oontaainating event. He alao citeo two aets of aeasureaents at the Nevada Teat Site where the area had beer c5ontaainated with plutonita by high explosive detonations soae 20 years earlier. -10 -• These studies gave values for tha resuapenslon factor of 3x10 m anc 2x10 -9-a 1 Theae data indioata isiequlvooally that raauspanaion doaa occur after this period of tiae although predictions using the short half-life following depoaltion would raault in unaeaauraabla values of air ooaoantratloo. 12 Anspaugh et al. uaed the available inforaation to derive an eapirical expression for tae reauapanalon factor that allowa the reauapanalon factor to decreaae with tiae. In their derivatlco tbay used four cooatraiata; i) tbe apparent half-tiae of decrease during the first tan weeks abould approxiaata a value of 5 weeks; 2) this half-life should atout double over tbe next 30 weeks; -4 -1 3) the initial resuapenslon factor should be 10 • ; and 4) the resuspension -9 -^ factor 17 yeara after the cootaainatlog event abould approxiaata 10 a The value for tbe reauapanalon factor in tba aged aouroa reaultad ffoa 23 individual air concentration aeaaureaenta at a looatioa oootaainatad wita plutonita 17 -9 -1 yeara earlier with the average reauspenaion factor found to be 10 a . An expression that approxlaataa these conatralnta is given aa

R (t) « 10"* exp(-0.l5-^) ••• 10"^, (1)

where R(t) is tha reauapanalon factor (a" ) and t is tbe tiae since tbe oontaainating event (daya). Oksza-Chociaowaki provided a "generalized" aodel for tbe change in half-tiae of the resuspension factor which allows tbe ratio of tbe resuspension factor at tiae zero to the resuspension factor at a long tiae [R(0)/R(*)] to vary.

T (t) « Blr (l^Ct°I i^a^r»*' jI ^ hlTlZ R(«)

where A « constant coefficient (days), B a constant. C s oooatant coefficient (days' )> D : constant exponent, R(0) I initial resuspension factor, a" . «(•) » final resuspension factor, a" . t c tiae since oontaainating event (days) E-4 This expression was evaluted for a range of valuea of the oonatants with Halting values corresponding to ratios of h(0)/R(«) of 10 and 10 ikjwever, it would appear that data are not available to aake adequate cboicea for a given area. In both of these aodels, tbe oonatanta are evaluated baaed upon data froa a Halted nuabar of areas and conditions. In Anapaugh's aodal, for axaaple, it is apparent that the final reauapanalon factor after long aging is baaed upon wind resuspension only in a desert area. Hbathar diaturbance in the area would cauae 14 an increase is unknown although it appaara likely to do ao. Sabael aade aeasureaents down-wind frca the original oll-atorage pad at Rocky Plata and related tbe coneentrationa found to tba 2.1 power of the wind apead. Subaequent aeaaureaenta ware higher, bowaver, due to the digging of a ditoh batwaao the oil storage area and the saapler. This work alao involved inoraaaed vehicular activity. This disturbance oauaed about an order of aagnitude increaae in concentrations at the aaaplara wbich persisted after the work was coaplete, presuaably because of a change in the character of the surface. The half-tiae for deoraaaa over tae next seven aontha appeared to be about nine aontha. Thus, it la poaslbla that diaturbanoa oan not only increase the oonoentratlon at the tiae that it occurs, but oould raault ia inoraaaed wind-driven reauapanalon faotora for aoae tiae tharaaftar. Sabael ' has alao provided data on the wind-borne reauspenaion of a subaicroaeter tracer, calciua aolyhdata, that was applied to a tost ares by spraying. In this experiaent, using cascade iapactors arranged to operata in different wind conditions, he noted that tbe reauspenaion factor at 1.8 aeter height increaaed as the 6.5 power of the wind speed. However, this slope ws deteralned by drawing the line through the bottoa end of uneven wind apeed rangaa; a prooedure that oould well result in an overeatiaate. Ha also noted, for this syataa, that there aaeaed to be little, if any, decreaae in tbe resuspension over a period of three years. Whether this is due to a "preaging" by the applloation in water is unknown. In concluding the discussion of the resuspension factor, it is apparent that this eapirical approach does not inherently incorporate aany of th^ variables and present estiaatea are relatively crude. In particular, the present estiaatea appear to be based upon abort tera experlaents with little atteapt to provide a factor applicable to long-tera (say one yearj averages. fiui The ReauMPenaion Rate The reauapension rate is defined as the fraction of tbe contaainant present on the ground that is resuspended per unit tiae by either winds or aechanlcal disturbance. Oice obtained, it can be used to describe concentrations at any point around a non-unifora contaainated area by tbe uae of point-source dispersion and depoaltion equations and integration over tbe area. Tbia potential uae was illustrated by the applloation to an area oootaalAatad with q plutonlua by a aafaty shot and the inverae use at the aaaa area to obtain 17 resuspension rates frca aaaaured air conoentrationa. It waa introduced for 18 use in resuspenalon calculations by Haaly and Fuquay, although In a crude fora. Slinn haa pointed out that tbr. reauapanalon rate oan be ooovartad to a reauapanalon velocity by aultiplying by the ratio of tba quantity of contaainant per unit area and dividing by the voliaetrlc oonoentratlon of tba contaainant in tbe soil. Such a velocity ia analogous to tha dapoaltloo velocity with, however, a negative 8l

Xi Hind Reeuanenaion A detailed body of knowledge exists on the aeohanisaa of the aoveaent of aoila by wind through the classic studlea of Bagnold ' on deaart sands and the 20 22-^? detailed studies of Chepll and others ' ^^ on agricultural aoils. We will not review these studies in detail since auoh of tbe inforaation is applicable to tae lialted condition of eroaion of erodible soils. There are. however, data and conoepta applicable to the resuspension process, at leaat for tbe lialted conditions of agricultural soil, and a brief review of these is in order. The relationship between erosion and winds ia coaplex with a large niaber of variables affecting the outcoae. Chepil listed the aoat iaportant of '.he E-6 faotora as related to three categories. Theae are given in Table i. In the following discussion we will briefly desuribe soae of tbe aore iaportant findings applicable to the general problea of resuspension froa the extensive work on soil erosion. Soil aoveaent across an eroding field is priaarily frca aoveaent of tbe aaaller particles, usually less than atout 1 aa in alM. There are three aechanlsas for aoveaent with the particular sise for each aoae«bat dependent upon the wind speed. The beavieat particles aove by surface creep or aoveaent 20 along the surface. Chepil noted that theae grains were too heavy to be aoved by the direct pressure of the wind but were propelled by tbe iapacta of aaaller grains aoving in the second aethod of aoveaent, saltation. In aaltatioo the grains, after being rolled by the winds, suddenly leap alaoat vertically. Soae grains rise only a short distance while others, depending upon the wind speed can rise to several feet. They are then carried forward by tba winds and settle by gravity until they strike the grovsid. Chepil attributes this sudden rise to tbe spinning of tbe grain as it rolls along the aurface with tbe Bernoulli effect caualng a difference in preaaura at tbe top and bottoa of the grain. The third aethod of aoveaent la, then, auspanaloo of tha aaall aoll particlea by the wind. In tha lattar caae tba partiolaa auat ba aaall eaougta to be kept airborne by the turbulent forces in tbe ataoapbere overooalng the force of gravity. Since the turbulence varies with ataospheric stability and, to soae extent with

TABLE I NOST IMPORTANT FACTORS IM WIND EROSION OF AQRICOLTURAL SOILS - AFTER CHEPIL

I. Air n. Grouad III. Soil 1. Velocity 1. Roughness 1. Structure 2. Turbulence 2. Cover a. Organic Hatter 3. Density 3. Obstructions b. Liae Content a. Teaperature u. Teaperature c. Texture b. Presaure 5. Topographic 2. Specific Gravity c. Humidity Features 3. Moisture Content u. Viacoaity wind speed, one would expaot larger partiolaa to be auapaoded in strong turbulent winds and that theae partiolaa woiild aettle out aa the winds decrease. However, the fine particlea oan reaaln auapaadad for long tiaea and can cover large distances. It is the suspens^.-^ fraction, and particularly the aaaller particlea, that is of intareat in reauapenaior. aince reauapaaaioo is defined as tbe suapenaion of a prevloualy depoaited contaainant. The air flow charaotariatlca over tae aurface of tba aoll are iaportant in tranaalttlng force to the aoll gralna and in deteralning tae velocity at which they start aoving. In a neutral ataoahpere (i.e., teaperature decreaae with height la adlabatic) the veloolty profile ia logarlttaalo wita height ao that one 21 can wrlta

u,«-J in(-!r{')l • (3)

Here, u is the wind speed at a height z, so is the height at «blcb the wind speed is saro, u, is tba friotlon veloolty (or drag veloolty) aad K is the Van Karaen oonstant wbiob baa boon fOuad by iatagratloa to equal 0.4. Zo Is a oharaotarlstio of tba aurfaoa, inoraasing aa tba rougfaaasa of tha aufaoe inoreasaa. The friction velocity is of iaportance In detaralnlng tbe force exerted on any object protruding above the laalnar layer of the atoaoapbere and bas been shown to be the characteristic wind speed that affects soil aoveaent«ov-^t . 19, 22, 23 19 Bagnold bas shown that in severe eroaion conditions, the profile of wind speed with height la ohangad by tha acaantua tranafer to the particles in saltation. In order to induce aoveaent of the soil it haa been obaerved that 22 the wind velocity auat exoaad soae threshold value. Cbepll haa atudled the aoveaent of particular slsaa of gralna and haa noted that the curve of grain diaaeter tiaes the specific gravity versus threshold friction velocity for initial aoveaent hss a alniaua at about 0.15 aa (150 tta). with a friction velocity of atout 0.15 a/sec. That is, grains aaaller than this size and grains larger iban this size require higher friction velocities to Initiate any • 9 aoveaent. The stability of the finer grains is illustrated by Bagnold's alaple experiaent of placing a pile of talciai powder oo a aaooth aurface and exposing it to winds. It will be found that tbe layer is stable at relative./

E-8 high wind speeds. However, a few gralna of larger particlea sprinkled on the pile will result in rapid dispersion at a wind speed aucb lower than would serve to disperse the particles without this added factor. It is believed that the relative stability of the snail particles is due to tbe fact that tbey do not protrude above tbe laalnar layer so that no drag force is exerted upon thea. The alniaua in the curve, then, is due to tbe balance between tbe increasing drag force as the particle increases in slse and tbe increasing douawlnd force froa gravity as the particle becoaea larger. Above atout 0.15-0.2 aa tbe threshold velocity required to initiate aoveaent increases as the square root of tbe product of the particle diaaeter and ita specific gravity. ' As a result of this threshold friction velocity curve, it is apparent that direct aerodynaalc pickup of saall particle sixes frca the soil is unlikely. Instead, the process of saltation is the key to producing the suspended fraction because the iapact of these particles as they strike tbe ground provides the energy to propel the saaller particles above the Isainar layer into the wind stresa where they are tranaportad by eddies in tbe wind. Thus, in tbe talctai powder exaaple, the sand particles sprinkled on tbe talcua powder aarra tbe function of the saltatlng particles. In a field, knolls, ridges, sand pockets, or other areas aost exposed to the wind and/or cootaialng tba aaaily erodible grains, start to erode at a lower velocity than the rest of the field. Once it starts it spreads downwind with the bcabardlng action of the particles in saltation causing aoveaent in other parts of the field that noraally would not 21 be eroded. The threshold velocity of the field is, therefore, the threshold of tbe aost exposed or aost erosive spots in the field. Since tbe avalancbing effect of saltation inoreasaa down tbe field in the direction of tbe wind, tbe length of the field is also a factor in the degree of eroaion. An iaportant consequence of the role of saltation in the production of resuspension is that there will be no dust, or particles flowing in suspension, ixiless tbe wind speeds are great enough to produce saltation under the conditions of the field. This places a threshold condition on the wind apeeda required to resuapend particles frca the ground. 19 Bagnold aeasured the rate of soil flsw for desert sands and found that these rates could be described by an equation of the fore of

Q « C u,^ (p/g), where q is the rata of aoll flow in graaa par centiaetar width per aecond, o is the density of the air, g is the acceleration of gravity, and C ia a cooatant wbloh differa for differing aoila and foraa of eroaion. On tba deaart aanda. Bagnold oonoludad that the flow in auapensioo waa aaall as ooapared to saltation and surface creep, being only about l/20tb of the total flow. Chepil ' ' "sde siailar aaaaureaants on agricultural aoila in a wind tunnel. His results indicated that all three aethods of flow appear to follow Bagnold* s law of tbe oube of the wind velocity, at least for the aoila taated, a fine aandy loaa and a heavy clay aoll. The constant C for total aoll flow varied widely for different aoils with the range found in theae experiaenta being i.O to 3.1. Cbapll alao aaaaured the proportion of eaoh type of flow 00 four widely different aoila. Theae reaults are given in Table II. It la apparent that the fraction of the total flow carried in suspension on agricultural aoila ia oonalderably higher than on deaart aanda (presiaably because of the availability of the saaller particles). These studies showed that the logarltha of the flow plotted agalnat height waa aaaentlally a straight line and that relative concentrations of soil particles at different heights reaainad tbe amam wita wind velooltlea ranging froa 13 to 30 allaa per tour (6 - 13.5 aetara/saoaeds). Praauaably, than, tba relative flows alao reaainad oonatant. 23 Cbepll "^ alao provided the aizes of the particles in the soils studied between <0.1 and O.83 aa. A plot of tbe relative suspension flow against the fraction of particles <0.1 as is given in Figure 1. The use of any other particle size range or ciaiulatlve percentagea gave erratic results. This aay

TABLE II

RBLATITE PORTION OP THREE TYPES .^ OF FLOW ON DIFFERENT SOILS (AFTER CBEPIL^)

SQ1,1 Tvpq 1 Of Flow Tn Surface Creeo ^Uafil&AlQD Soeptre Heavy Clay 24.9 71.9 3.2 Haverhill Loaa 7.4 54.5 38.1 Hatton Fine Sandy Loaa 12.7 54.7 32.6 Fine Dune Sand 15.7 67.7 16.6

E-1.1 40

30 8 J c I 20 c 9 o

10

O 10 20 30 X < O.i SM

Fig. 1. Su^>enalon flow versus percent of graxns in aoU <0.1 aa. indicate tbe iaportance of the fraction of the saaller particles in the soil in producing tbe suspension fraction. An iaportant fhctor in the suspension ft*aotlon is the aggregate state of the aaaller particles In the soil. Partiolaa in the subaloron range rarely exist as suoh in tha soils baoause they tend to either cluap together or to 22 adhere to larger particles resulting In aaall aggragatas. In fact Chepil states that particlea saaller than 0.005 aa (5 ua) do not exist as such in ordinary soils, for they are aggregated into larger individual grains. He adds alao that alngle grains or aggregates 0.05-0.5 an in diaaetar have little or no cohesive properties and are easily carried by the winds. Thxs aeans that oontaainants in the soils, either as fine particulates or absorbed on the aurface of soil particles will largely exist as soil aggregates and will behave 24 in the same manner as the aoil. Chepil deaonstrated the aggregation c material carried in suspension at heights of 4 to 8 feet in a dust stora by sizing particles by sedlaentation in CCl^, a non-polar solvent that tends to I preserve aggregates, and then repeating in Mater following diapersion with sodiiai bexaaetapbospbate. The curves sbow tbe percentage of particles aaaller tban a given value reaching zero at about 5 ua diaaeter in a ISS'i store and I about 10 ua In a 1955 atora. By contrast, tbe dispersed saaples stwiMd I5**25t I of the particles saaller tban 5 wa. An iaportant fftctor in a

B « f(I«,C',K',L',?). (5) I I Where E is tbe potential average annual soil loss In tons per year; I' is the soil and knoll erodibility; C is tbe local wind erosion ollaatic factor; K' is f tbe soil ridge roughness factor; L' is the field length factor and V is tbe equivalent quantity of vegetation. There have been aatheaatical relations esUbllshed between tbe individual varUbles. The relationships, however, are so ocaplex that the indlTidual fiotors ai*e eraluated separately in a fora where ccabinations of the factors can be evaluated grmphioally. I We will not atteapt, here, a ocaplete discussion of this equation along with nuaerical factors, but will discuss each of tbe factors in a qualitative I fashion because it appears that aany of these could be of iaportancc in any case of wind resuspension. I The soil and knoll erodibility consists of two teras. Tbe first, tbe soil erodibility index is related to tbe percentage of dry aggregates greater than I 3.34 ^ in diaaeter. Tbe higher tbis percentage tbe lower tbe soil erodibility. Conversely, the higher tbe percentage of aggregates less than C. d« aa m V

E-12 disaster the greater the erodibility. The taioll erodibility is espreased as the percent of the level ground erosion that ooours at various alopes of the icnoiis in tbe field. This factor ranges froa 0 for a level field to about 650S at tbe top of a knoll having a slope of lOf and about 360f froa that portion of the windward alope where the drag velocity is the aaae as the top of the knoll (about tbe upper third of the slope). k surfaoe orust stability factor is usually ignored beoause the crust disintegrates rapidly because of abrasion once the wind erosion starts. The soil ridge roughness is a aaasure of the surfaoe roughness other tban that caused by clods or vegetation. It has been found that ridgas of 2-4 inches in height are the aost effective in controlling erosion with the erosion for ridges of this height about 50f of that over a laooth surfaoe. The tfind erosion cliaatic factor includes the influenoe of wind speed and aolsture. The rate of soil aoveaent varies directly as the oube of the wind velocity. In this factor the aean annual wind velocity, eorreotad to a standard height of 30 feet, is used. Slnoe ataospherio wind velooitles are noraally distributed, the probability of obtaining high winds is higher with higher aean velooltlas. The rate of soil aoveasat •arles approKlaately as the square of effsotlTS soil aolsture. The wind erosion ollaatic tmotor has baen given for a 29 nuaber of looatlons by the U. S. Oepartaent of Agriculture ' for each aontb of the year. To illustrate tbe differenees in this factor ft*CB one place to another, we have given rough ranges for four locations. For Uashingtcn State, the cliaatic index varies f^ca about 1 to 50 with tbe highest values in the aonths of Haroh through Msy. For eastern New Maxioo along the nortb-eastem border, the cliaatic fsctor reaains tbe highest in the nation throughout the year. Hare, values range froa about 70 to 300. For the state of Ohio tbe factor ranges frca 1-10 and fbr Georgia about i-5. Thus, there are widely differing wind and aolsture factors throughout the oountry with tbe east, in particular, having low factors as ocapared to the west. It could be predicted that the resuspension of cootsainants froa the soil will also be lower in the areas of low cliaatic factor for erosion. The field length factor again has two parts: The distance acroas the fiel- and the sheltered distance. The distance across tbe field is aeesured along the prevailing wind eroaion direction. On an unprotected field tbe rate of soil f-^w is zero on the windward edge and increases with distance downwind until, for ^ large field, the flow reaches a aaxiaua that the wind of a given velocity z»r. diaaeter the greater the erodibility. The Imoll erodibility is expressed as tbe percent of tbe level ground erosion that ooours at various slopee of tbe }a\oi:.s in the field. This factor ranges frca 0 for a level field to about 650S at the top of a knoll having a slope of lOf and about 360f frca that portion of the windward alope where the drag velocity is tbe saae as the top of tbe knoll (about tbe upper third of the slope). A surfaoe orust stability factor is usually ignored because the crust disintegrates rapidly beoause of abrasion once the wind erosion starts. The soil ridge roughness is a aaasure of tbe surfaoe roughness other than that caused by clods or vegetation. It bas been found that ridgas of 2-4 inobes in height are the aost effective in controlling erosion with the erosion for ridges of this height about 50f of that over a SMMth surfaoe. The wind erosion cliaatic factor includes the influenoe of wind speed and aolsture. The rate of soil aoveaent varies directly as the oube of the wind velocity. In this factor the aean annual wind velocity, oorraotad to a standard height of 30 feet, is used. Since ataospberic wind velooitles are noraally distributed, tbe probability of obtaining high winds is higher with higher aean velooitles. The rate of soil aoveaeat varies approaclaately as tbe square of effeotlve soil aolsture. The wind erosion ollaatic fSaotor has baen given for a 29 nuabar of looatlons by tbe 0. S. Ospartawit of Agriculture ' for eaoh aontb of the year. To illustrate tbe differences in this factor froa one place to another, we have given rough ranges for four locations. For Uashingtcn State, the cliaatic index varies frca about 1 to 50 with tbe highest valuea in the aonths of Harch through May. For eastern New Hexioo along the nortb-eastem border, the cliaatic factor resuiins tbe highest in tbe nation througbout the year. Bera, values range froa about 70 to 300. For tbe state of Ohio the faotor ranges frca 1-10 and for Georgia about i-5. Thus, there are widely differing wind and aolsture factors throughout the oountry with tbe east, in particular, having low factors as ocapared to the west. It could be predicted that the resuspension of contaainants frca the soil will also be lower in the areaa of low cliaatic factor for erosion. The field length faotor again has two parts: The distance acroas the fiel- and tbe sheltered distance. The distance across tbe field is aeesured along '.f^* prevailing wind erosion direction. On an unprotected field the rate of soil fl"v is zero on the windward edge and increases with distance downwind until, for large field, the flow reaches a aaxiaua that the wind of a given velocity :ar. maintain. The sheltered distanoe is that distanoe along tbe prevailing wind erosion direction that is sheltered by any barrier. Vegetative cover is an iaportant factor in controlling wind eroaion. Three | different factors are Included in the equivalent quantity of vegetative cover. The first is tbe quantity of the vegetative cover expressed aa clean, air-dried | residue. The second denotes tbe total oross-sectional area of the vegetative aaterial. The finer tbe aatcrial and tbe greater the surfaoe area, tbe acre it I reduces the wind velocity and tbe acre it reduces wind erosion. The third faotor is the orientation of the oovef. The acre erect tbe vegetation, tbe § higher it stands above the gromd, tbe aore it reduces wind velocity near tbe * ground and tbe lowar tba aroalon. » Oillette and his oollaborators have been studying the vertical flux of dust | 34-39 frca agricultural soils under the influenoe of the winds.'^ In a atudy of particle slse distribution at 1.5 and 6.0 a along with the boriaontal velocity, | it was conoluded that the upper lialt of tbe ratio of the settling velocity to the friction veloolty for aeroaols having tbs potential for long range tranaport I 37 * is approxlaately 0.2 or slicbtly greater.-" Also by studying the slaes of the aeroaols produced at different values of tbe flrlotion veloolty, it was conoluded | that the doalnant laiactlon •anhsnii of aoU aggragataa <10 aa la disaster Is ^ 37 not direct aerodynaalc entraiaaent. It Mas noted that tbs sias distrlbotion 2 of tbe vertical flux (expressed as

E-14 increased as tbe ratio of the friction velocity to the tbreabold friction velocity raiaed to the 5.14 potrar. For toe soil containing 3.51 clay and if silt, tbe vertical flux increased as the 9.62 power of the ratio of friction velocity to the threshold friction velocity. This provides a sodel for the vertical flux of

F^ . Const.(U,/U. Threshold^^- ^^^

For tbe two soils evaluated, the oonstant at the point of Interssotioo was about 6x10^ oa^seo" oa or, assoalag sn aggregate density of 2.5 g/oa^. about -6 -1-2 1.5x10 g sec a An iaportant oonoluslon tfvm these studlss was that tbe increase in the vertical flux at powers of tbe friction velocity auch greater tban the observed oube for tbe boriaontal flux was due to tbe break-up of the aggregates by sandblasting and release of the saaller particles to suspension. In a further study of the vertical flux resulting ft*aa eight different soils,-"' a regular pattern of increase with friction velocity appeared to exist with, bowavar oonsidarable spread. A ourve fitted by eye by the present author to the bulk of the data indicated an average increase of vertical flux as tbe fifth power of tbe ft*iotion velocity with a constant at the assuaed threshold friction velocity as given by the earlier study of two soils. A ccaparison of tbe sise distribution of a parent, sandy-soil with the size distribution of the horizontal flux to a height of 1.3 ca indicated tbe size distribution of the boriaontal flux is very siallar to the size distribution of tbe parent soil aggregates. The aerosol at l aeter height showed a aode for tbe particles greater than 20 ua cantered around 50 ua. Aa height increases the particles less tban 20 ua beocae an increasingly larger proportion of total aerosol. It was also noted that tbe concentration of larger particles Increases with the windspeed. Travis ' baa developed a aodel for tbe redistribution of wind-eroding, soil-contaainant aixtures using tbe Gillette relationabips for tbe vertical and 34 35 horizontal flux. This aodel assises that tbe contaainant is closely associated with tbe soil aggregates and aoves in the saae aanner as the soil • Since it Incorporates only studies froa eroding agricultural soils, It shooiC 5»- liaited to these soil conditions. Shinn et al.*^ aade aeaaureaenta of tbe vartloal profile of dust in the ataosphere at two sites and related these profiles to the vertical duat flux by the eddy-oorralatioo aetbod. The two aitea ware an area at tbe Nevada Teat Site where plutonlua cootaainatioo had ooourred during a series of non-ouolear tests over 20 years earlier (GHZ Area) and in an agricultural field la Uest Texaa. Heasuraaents were aade aiaultaaeoualy of tbe duat flux by an optical particle detector and tbe aean wind and teaperature profiles. It was noted that the aass-oonoentratloa particle else distributions at both sites had a aaxiaiai at about 4 or 5 ua (ItUO) and this deoreaaed by an order of aagnltude at 1 aa and Ifl ita. Thia distribution does not agree with 4^ 44 CbepU's^ or Ssfaaal*s data ttaat abow slgnlflosnt qouitltlaa of particles auob greater thsn 10 ua at elevations up to 30 a above the ground. Shlnn indlcatea that this oould be due to reaggregation after ssapllng beoause tbe sedlaentation veloolty of suoh partioles would be greater tban u,. However, this reaaina an unoertainty that requires investigation. The wind profile aeasureaents sbOMSd tbe roughness length (s^) at tbe Texas aite to ba 0.044 oa and at tbe GMX alU to be 2.0 oa. This resulted in a drag ooefflolant refarenoad to tbs alAd spaad at 2 a, (U^/UJOQ)* to be 0.05 at Texaa and 0.10 at tbe (Ml slU. It was noted that tbe dust profiles in this study, aa t«ll as in previous ones, fit a power law with exponents of either -0.2 or -0.35. This is due to tbe fact that all are nearly bare s(a*facea and the aeaaureaenta were aade in dynaaic neutral ataospberic stability oonditions. The dust flux calculation waa paraaeterized by several slaple relatione.

(7: F' .• ^K da^ • where F is the flux, Z is height, % la the dust concentration, and K is tbe eddy diffuaivity. Since

K « u, kz. ',8'/

E-16 I where k la tbe Van Karaan constant (k)i0.4). Slnoe the dust concentration follows a power-law distribution with height

S • t- "'

Since the power, P, is about 3 and the concentration over tbe heights frca 0.7 a to 2 a deviates only about 20% frca the i a reference velocity, one obtaina, by ccabining the above

F ' -0.12 U,XT (IO;

The data at GHX and Texas give values for x^ of

oa x, » 6.1 u,^*°^ and (ii)

Texas x, * 522 u,^*^^. (12)

These values then result in fluxes of

aa F . 0.73 u,^*^'. (13)

Texaa F » 62.6 uj'^®. d'*)

A tentative aodel of the upward dust flux was derived froa profile and soi> erosion data froa a niaber of locations. This was titled the Gillette and Shim model and is expressed by: F . -F (u,/u„)^*' (15)

Where F is the flux, the reference wind speed » i a/sec, F^ is a reference duat flux at U« s 0 and y is the potier in the dust profile. Froa a series of 38 cxperiaents by Gillette'' a tentative relationship between tbe paraaeters in the Gillette-Sblnn Hodel and tbe soil eroaion index wis derived. This is given in Figure 2. An initial atteapt to aaaeas resuspension ftroa the ground Mas aade by Haaly and Fuquay and Healy^ using data frca HUst ^' who was using zinc sulfide particles to estiaate tbe effects of various surfacea on wind erosion. At tbis tiae, the high rate of increase with wind apeed due to breakup of aggregates was not know and it was assuaed that tbe rate increased as tbe square of tbe wind 2 speed. Later, the rates were converted to a cube relation with the wind speed, although it was noted that, for these results, the square appeared to give leas

50 T—I—I—1—I—I—I—I—r 10

J I I I 200 400 600 800 1000 Soil Erodibility Index

Fig. 2. Tentative Relation for Parameterization of Dust Flux for the Gillette-Shinn Model.

E-13 variance in the data. This indicated a pickup rate of 5xl0~ u^ per aecood. Since the wind speeds were aeasured at a 2 a height and tbe Hanford aree, the site of tbe experiaents, bas a z of about 2 ca, this value would be about -11 3 4x10 Uf per second. This can be only a preliaioary estiaate, however because of tbe alteration of tbe natural roughness feature by tbe change in courses. Sebael bas studied the resuspension of a tracer, subaicroaeter oalciia aolybdate, sprayed as a suspension over a lightly vegetated area with a roughness height of 3.'I oa. The area sprayed %ais within a circle of 29 a radiua with a saapllng tower In tba alddle. The average surfaoe oonoentratlon on the groixid was 0.62 g of aolybdenui per square aater. Nsaaureaents were aade with a cowled iapaotor, which alwaya faced into tba wind, at heights to 6.1 aeters with soae aeaaureaenta aade at speolfic wind speeds as aeasured at a height of 2.1 a above the ground. Resuspension rates were calculated frca a aass balance calculated f^oa the profile. Those partioles depositing in the cowl were considered as "noo-respirable" while those entering the iapaotor were considered aa "reapirable." The iapaotor separated tbe "respirable" particles into aoainal dlaaeters for unit density spheres of 7, 3.3i 2.0, l.i ua and audler partioles on the baok-up filters. In these experiaents, tbe resuspension rates ranged enm about 10~ to -7 -1 47 10 sec Plots of all of tbe data showed that the resuspensi• postulated that such an effect bas influenced these reletionahips, albeit to ar. .^knowi degree. It is noted, however, that dust loadings by the saae -^cfmique i

appear to increase as tbe 2.9 power of the wind speed for tbe higher wind speeds. The data froa the baok-up filters which showed an increase as tbe 4.8 power I of the wind speed and for which both the aaall interval and wide interval of ipling fitted tbe curve gave a fit to

R.R. « 1.96x10"'^ u*-^, (16)

where R.R. is the resuspension rate. If one assisMS that the logaritteic wind profile existed throughout the period this baocaes: I R.R. . 2x10-^^ u/-^2. (17)

wh«) tbe threshold veloolty is ignored. 49 Sebael also aeasured tbe resuspension rate of alnc sulfide tracer petioles frca an asphalt surfaoe. Average resuspension rates were deterained to -9 -8-1 range fl'ca 5x10 to 6x10 sec for average wind speeds tram 2 to 9 apb (0.9 to 4.2 a/s). The dependency of resuspension rate upon wind speed was not deterained but there was soae indication that wind gusts greater tban about 15 apb (7a/s) rapidly suspended particles. In a siallar experiaent, but in an area of cheat grass, a reauapension rate -8 -1 of 3.4x10 a occurred in an area of surfaoe roughness of 4 ca and a friction velocity of 0.52 a/s.^ After truck traffic that reaoved 0.351 of the ZnS, the -9 -1 surfaoe roughness was reduced to 3 oa and a resuspension rate of i.25x10 s Mas aeasured in a ft>iction velocity of 0.51 a/s. Sebael aeasured tbe reuapension rate of 10 wa diaaeter uranine particles depoaited on tbe inner surface of an aliainua tube with a 2.93 on inside -6 -3-1 diaaeter. The resuspension rates range froa 10 to 10 -^a and were dependent upon air flow rates ai . resuspension tiae. Orgill et al.5"2 seasured tne resuspension of DDT froa forests in the Pacific Northwest. The DDT was sprayed in the early aoming with low wind speeds and saapllng was conducted oy ar aircraft-aounted saapler for five days. Calculated resuspension rates on '^-r**

E-20 48,50 of tbe pling daya ware 1.0x10"*, 2.5x10"® and 7.7x10"*. Sebael proposed a correlation between resuspension rate and tbe roughneaa height z using the data froa the experiaenta on the aluainia tube, tbe ZnS frca the aaphalt surfaoe, the No tracer frca deaert soil snd tbe DOT ft^ai the forest. This ourve shows a decrease in resuspension rate f^ca tbs alualaiai tube data to tbe Ho tracer with tbe asphalt surfaoe falling on tbe lines betwaan tbsae two points. However, tbe DDT frxm tbe foraat, with a large roughneas bsigbt, bad an increase by 2.5 orders of aagnltude ffca tbs aoll data. It is not olesr bow theee resuspension rate data were oorraotad for tbe differing wind speeds or values of u, that existed in aseb of tba axparlaants. It Is further noted that tbe sivfMsaa aad, poaalbly, •sohanlaaa of wind pleJoip froa tbs aurfiaae were different. Fbr exsapla, the raauapsnaloa of WT firca tbs forast oould have been priaarlly as a result of the aeohanloal aoveaent of leaves, needles and branches rather than the types of force found on the soil surfaoe. There bave been aany aeasureaents of tbe air oonoentratioo in or near an area oontaalnatad with radloaotlve aatarlals, but aost of these are not suitable for estiaating resuapenalon rates or depeadenoy on wind speed beoause of the lack of detailed aetaorologioal data at tbe tiae of tbe aeaaureaent or tbe lack of a datallad knoaladga of tba oonflcta^tlon and ooataalnatlon level of the 17 53 souroe. Anspaugh et al. "''•' studied tbe resuspension of plutoniia at tbe GMI area in Nevada using an ultra-high flow rate saapler so that saaples could be obtained in a relatively short tiae while aetaorologioal oonditions were relatively consistent. The resuspension rates aeaaured ranged from 2.7zi0~ to 4.8x10" s~ . There was a strong correlation between the resuspension rate and u, . Dividing the resuspension rate by u^ greatly reduced tbe variance foind in the raauapenalon rata itaalf. This result is consistent with Sbinn's value fbr the dapandanoe of dust flux on u, at this looatlon. Tbe value of the norMllsad ratio to u,^ ranged from l.SxIO'^^ to lO'^. It is noted that tbe pattern of plutoniiai in the soil uaad for these derivations was dateraloed by 241 9 FIDLER aeaaureaenta of tbe Aa gaaaa' converted to plutonitfi concentrations by 5^ statistical ccaparison of tbe plutonlua and aaerloiUB content of aoll saaples. This should provide an eatlaate of tbe plutonliB in tbe surfsoe layers of the soil so that correction for plutonlua that baa aigrated to aoae depth is not required. 42 The dust saaples used by Shinn in pereaeterization of tbe dust flux u. this area were alao analyzed for plutonita. The profile of plutonlts wmmmmmm

ooncentratlon at a distanoe 100 a froa ground zero agreed with tbe abape of the dust flux to a height of about i • and tb«>n sbotfed lower coacentraticos than expected. At tbe 730 aeter point tbe deviation ia saaller. The deviationa were as would be expected for a liaited souroe with rather aurupt disoontinuities. However, tbe close fit of the plutoniiai ooncentrationa to tbe dust profile at tbe lower two heights indlcatea that tbe plutonlua oonoentratlon at a height <1 a is closely coupled to tbe ground oonoentratlon even though tbe soil contaaination ia less by 2 orders of asgnltude at tba graater dlataaoe dovnwlnd. Saltation fluxea were also aeasured at tbe OMZ Area." Values ranged flrca 3x10"^ to 8xiO'*g ca'^aeo"^ which are 10*^ to 10** of tboae aeaaured by Cbepil for wind-eroded fielda. la this oonneotloa, Shlnn points out ttaat tbe Hsvada Test Site, the location of the GHX Area, ia laiique in that the natural resuapenalon rate due to oonveotlve winda la vary low ooaparad to aore arodlble sites in tbe Western U.S. He has conoluded that tbe natural deaart ahrubland, covered by a "desert paveaent*, or tbe dry lakes, oovarad by a orust after a rain, are not subject to wind erosion unless they are pbysloally disturbed. Sebael has aeasured resuspension of plutonlim at looky Plata and of 16 47 plutonlua and oesiia at the Hanford Plant. ' Ho«av«r, tbe aouroe areaa are poorly obaraoterlaed ao ttaat eatiaatea of rewispanslon rates osn not be aade. Various values of tbe power of tbe inorease of oonoentratlon with wind speed ranging tram talty to 9.3 taave bean obtained in tbeae experiaents so that it is difficult to draw conclusions froa these data.

L, Mechanical Reauan^alon Hechanical resuspension is that caused by forces other than tbe wind. Such forcea oould range frca the aoveaent of aaall anlaala on the aurfaoe, through hiauna walking, to the aoveaent of heavy equlpaent or plows across the ground. There are several differences between aeohanloal raauapenalon and wind resuapenalon, chief of wbioh ia the fact that tbe reauapendlng force ia Independent of the wind apeed (although dilution dowwind will increase at higber wind apeeds). Instead, the resuspension rate will depend upon the aagnltude of the force applied as well, perhape, as tbe nature of tbe force. A second difference is the depth frca which resuspension can poaalbly occur. In the case of wind resuspension, the layer froa which particles can contribute to the air streaa is liaited by tbe depth to which tbe saltatlng particles car. cause ejection. For aechanical disturbance the depths over which tbe forces can

£-22 be applied variea with tbe aeana of diaturbaaoe but oould raaota daptha of one or two feet in plowing. Of oourae, tbe probability of reauapenaloe la not tbe saae at all depths but no data are available to indloate poaalble varlatiooa. The extreae exaaple would be the excavation of a bole, auota aa a baaeaent, where aaterial oould be ejected into tbe air from oonalderable depths In the ground. Another dlfferenoe arises frca the fact that aost aeotaaaioal disturbances are a point souroe. That ia the dlaturbanoe ooours over a fairly liaited area at any one tiae. There oould be aultlple dlaturbanoea that oould reault in an approxlaate area aouroe or tbe dlaturbanoe oould aove with tiae reaultlog in an average that reseabled a line souroe or an area souroe. An exaaple of tbe line aouroe would ba traffic aoving along a road. Xha avaraga raaaapaaalnn rate trcm tbe road would ba tba product of tba raauapenalon par veblole tiaaa the nuaber of vetalolea divided by the tiae over wbioh tbla nuabar of vatalolaa paaaed. An area aouroe would be tbe average reault of a faraar plowing a field and producing a reauapanalon rate at eaoh point. Bare, tbs average reauapension rate would be tbe Inatantaneoua reauapanalon rate ttaat ooeurs at eaoh point divided by tbe tiae required to plow tbs field. Suob relatlonablpa allow tbe derivation of oaloulatlonal aattaoda fbr finding tba average oonoentratioo downwind If tba raauapenalon rate trcm tba dlaturbanoe oan ba defined. Ibare are alao aiallarltlas with wind rauspenslon. One would expeot the dust flux to be graater in fields that contain a larger quantity of saall aggregates. Huy of the factors, suoh as aolsture or vegetative cover that inhibit erosion, would be expected to ainialxe aechanical disturbance. Thus, in digging in contaainated soil it is coiMon practice to keep tbe soil daap to ainialsa resuspension. However, local areas of low aaltation (vegetated strips in the field) will not affeot tba aeobanloal resuspension rate. There are a few aeaaureaenta of aeotaanloal reauapension that oan be uaad to give an order of aagnltude eatlaate of tbe rate of raauapenalon under different condition. Selaiel 49' aeaaured tha resuspension oaused by sn individual walking along a 50 foot length of asphalt 10 feet wide that had been previoualy seeded with Xiao aulflde tracer. He reports that 1x10 to 7x10 (at wind apeeda of 3 to 18 apb) of the traoer waa resuspended per walk through. Assualag a walking -7 -1 -f speed of 3 aph this would result in resuapenalon raUa of 9xi0 a to 9xi" s~ . Suoh values bave auch uncertainty beoause of the width of tbe seeded area but it is noted that they are about two orders of aagnltude greater than tne wind resuspension rates with wind speeds of 2 to 9 aph. 60 In a oontlnuatioo of tboaa aaae experlaeata Sataaal raports the reaults of driving vehlolea in the adjaoent lane and throi^h tbe traoer aaterial. Botb a car and a three-quarter ton truck were uaad. Hla valuea reported aa fractional reauapension per pass were converted to a resuspension rate through use of the length of the seeded area and the speed of the vehicle. Tbe resuspension rate —A •I —^ —1 varied froa 10 s~ to 8xi0~ s depending priasrlly on tbe speed of the 60 vehicle. Sebael had reported that tbe reauapension was proportional to the square of tbe speed. The resuspension rate cauaad by the truck waa greater than t{)at caused by tbe oar, presuaably baoauae of tbe greater turbulenoe f^oa tbe truck. A rapid waatberlng of tbe partioles waa alao noted. In this oaioulatioo it waa aaauaad ttaat ttaara waa ao reaoval by tba winda duriag tba 30 daya of tbe experiaent ao that tbe latter ratea are tbe lower lialt of tbe raauapenalon rates. However, tbe resuspension rate 30 days after application waa two to three ordera of aagnltude lower than the initial rate. Tbeae data indloate that there will be rapid depletion of tbe aouroe for aaterials deposited on such paveaents If any significant traffic ooours. Sebaal alao perforaed a alallar experiaent with tbe sine sulfide traoer placed on a strip of otaeat graas. The oourss waa the aaae aiae aa tbe aapbalt oourae. A 3/% ton truok waa driven ttareugb tba area at different apaeda. Tbe reaulta Indloated a relatively bl^b raauapenalon rate of 3*7xiO~ a" on the firat paaa at 2.2 a/s. For tbe second paaa at 6.7 a/s, tbe reauapension rate had decreased to 4x10»- 6 s -1 while for tbe third peas at 13.4 a/s the rate increased to 8x10 s" . With the final pass at 17.9 a/s the resuspension rate increased to its highest value of S.'^xiO" s~ , The high resuspension rate at the low speed waa caused by reaovlng tbe aost resdlly suspendlble traoar frca the cheat grass. By tbe tiae tbe higbar speeds were attained it is likely that this aore readily suspendlble aaterial was reaoved snd ttas resuspension was frca tbe soil surfaoe. 62 Nllbaa et al. deaorlbed tbe reaulta of air aaapling during tbe agricultural preparation of two fielda having aaall conoen tret ions of plutonita acciaulated 25-30 years earlier as tbe result of a release fTca a nearby stack. 2 Saaples were taken at several looatlons during operations In tbe field. Healy converted these to approxiaate resuspension rates by use of tbe field sizes and aeteorolcgical paraaeters given in tbe peper. These results are given in Table III.

E-24 TABLE III

RESUSPENSION RATES FROM AGRICULTURAL OPERATIONS

-1> JU north Field South Bi.ld 7.6 • 10.S • . 7.6 1. 10 .S ft . Bushhogging 9x10"® 2x10"'' 1x10-* 8x10-* Disking 4x10"* 6x10"* - - SubsoUing 7x10"^ 3x10'* 3x10-* 3x10-' Fertilizing 2x10 3x10"* 1x10"* 1x10 Planting 1x10"* 4x10-* 6x10*'' 2x10-*

63 HfiXftCa RototUling 9x10"*

63 A scaewhat siallar experiaent was perforaed by Msyers. "" Here the plutoniiai was applied to a saall field in tbe fbra of digested sewage plant sludge oontalnlng a aaall aaount of plutoniiai. Tbe aludge waa allowed to dry for a period of four weeks without rain and the area waa rototillad. The rototiller waa 2 a wide with tbe dust cover reaoved and was pulled behind a tractor. The saapllng reaults were, again, converted to an approxiaate 2 resuspension rate by Healy with the result given in Table III.

S^ Maaa I.fteding The aaas loading concept is an atteapt to by-pass tbe details of the soil characteristics and the resuspension process and to relate directly aeaaured soil concentrations of tbe contaainant to tbe air concentration by uae of the aass of soil particulates in the air. Thus, the air concentration of tbe contaainant is given by the prodtxit of the concentration of tbe contaainant in tbe BOil and tbe concentration of tbe soil particulates in tbe air. If the quantity of perticulates ir tbe air is known froa other data, one need, theoretically, only aeaaure the soils in the region to provide an estiaate of the air concentration of the contaainant. Two parameters, the dust loading in the ataosphere and the appropriate concentration of tbe contaainant in tbe soil are needed to provide estlaates by this aetbod. Healy^ used an average value of 120 ^gfr of duat in a generic analysis of liaits for plutonita in the soil. This waa derived froa tbe Federal Secondary Standard for particulates In tbe air expreaaed as a geoaetric aean of 3 10 bO ug/a aasiaing a geoaetric standard deviation of 2. Anapaugb explored a reasonable aass loading in several ways. The lower bound is quoted as about 10 ug/a^. Gxaaination of the data on the levels in aine ataoapherea wbich have led to a considerable prevalence of pneiaoconiosis in tbe workers indicate that standarda on the range of 1-10 ag/a have a very aaall, if any, aargin of safety. He also 3quotes , soae British data that indicate that duat levels in excess of 1 i^a could lead to oonalderable public health probleaa. He alao uaed the data on aabient aass loading for 1966 froa the National Air Surveillance Network to ahow that the average for urban stations ranged froa 33 ug/a^ to 254 uS^a^ with a aean for all nonurban locations of 38 uC/* • For the nontarban stations the average ranged frca 9 uS/* ^^ 79 uf/a • fvxm these studies he chose an average of 100 \ig/* as reasonable for predictive purposes. ' The fovironaental Protection Agency also exaained tbe data frca the nonurban stations froa the National Air Surveillance Network for tbe years of 1964-1965. Their aap of these data indloate valuea ranging frca 9 ug/a in aouthem ttontana to 56 ug/a^ in Weatem PenneyIvania, 57 ug/a^ on the Southern Oregon 0>aat, and 59 ug/a on the North Carolina Osast. However, tbe prevalence of high values in tbe East would indicate the poaalble inclusion of industrial particulates in these saaples. The EPA used a valuB of 100 ug/a in calculation of their screening level. Several mcertainties appear in the use of the data froa tbe National Air Surveillance Network. The first was pointed out above in that tbe particulatea that are colleoted can include a portion of thoae generated by industrial operations so that the values oould be high. The second problea arisea frca tbe fkct that tbe saaplera are frequently in poaitiona, suoh aa on top of buildings, so that tbey do not aeaaure tbe air actually breathed by people. Aaaociated with this question is tbe potential for people engaged in varioua activities to generate their own duat. Thia would result in local concentrations in excess of the aabient value aeasured by the network. However, tbe 100 ug/a value still appears reasonable frca the standpoint that it ia an average over a full /

^-26 in tbe aabient air aeaaureaenta or 300 ug/a^, tbe average oonoentratioo through the year would be only 115 ug/a . While aoao individuals, suoh aa faraera, work longer houra during tbe week, their expoaure to dust is liaited to fewer weeks per year and a portion of their tiae in the field ia during perioda of high aolsture or vegetation in tbe soil where dusty oonditions are liaited. Associated with tbe quaation of tha concentration of aoll particlea in tbe air ia the quaation of the origin of the particlea. Once airborne, tbe ^«ller 65 particlea oan travel very long distanoea. For exaaple, Oarlaon and ^oapero have reported the aoveaent of dust frca tbe Sahara deaert over the Northern equatorial Atlantic Ooaan and Clayton at al have reported evidence of tranaport aoroaa the Paolflo Ooaan to Bawall. Slnoe aoat oontaalaated areas are relatively saall In area, one would expect that only a (Taotlon of tbe duat in the air would originate frca tbe area. Beoauae of preferential depoaition of the larger particlea frca aoxiroms soae distanoe away, thia "baokgrotaid duat" would contain a higher percentage of the ^«ller particlea that are aore readily depoaited in tbe liaig tban tbe dust originating froa tbe local, contaainated 67 area. Thus, Anspaugh and Phelps report that aeaaureaenta at the oa area with Anderaon hlgb-voliae cascade lapaotors for about one aontb indloate the aass dlatrlbutlon of alaaa are about 1.6 ua IMAD with a a of about 15, wbUe tbe 2*1 • plutonita and Aa had an AMAD of about 3 aa with a og of about 7. It was also noted that tbe average aotivity of tbe aoll waa about one-third of that found in the soil in close proxiaity to the eaapler. It is noted that even higher activity was upwind. Froa thia, we conclude tbat a direct ccaparison of tbe size distribution of contaainated particles in the air with those in the soil is probably valid only fbr very large areaa. For tbe aore usual alxe of contaainated area, tbe dilution of tbe total aaaa in tbe air, partloularly in tbe saaller particle aisea, could be aignlfioant. It ia noted, however, that for reauapanalon by aechanical dlaturbanoe this dilution aay be of lower iaportance because of the frequently higber concentrations xosulting froa such disturbancea. The aeoond question, tbat of the appropriate concantration of tbe contaainant in the soil, is aore subtle. As was discussed earlier, thoee soil particlea tbat are carried in suspension az*e tbe saallar coea beoause the larger ones will settle rapidly. Thus, if the concentration of tbe contaainant in *ne soil fraction containing the sBall particles is greatly different froa that i; the other particle sizes, it wotild appear that the concentration predicted by the aaaa loading approaoh uaing the total aoll oonoentratlon would theoretically be low. 68 Xaaura has analysed the particle aisea and tbeir aaeocUted plutonita content in saaples frca several existing plutoniia contaainated areaa and have shown that fractionation of tbe plutonlua content by pait'cle aize does exist. Analyses were done using water aa the auapendiag agent and the effect of this, as ocapared to tbe carbon tetrachloride uaed by Cbepil or tbe liquid freoo used by Gillette, on the aggregate sise is taknotai. However, in two saaples frca tbe NTS tbe aggregates less than 20 wa had three and five tiaes greater plutonita concentration than the total soil aass. (At tbe NTS, the bulk of the activity appeara to be in the 20*53 »a aiae range.) In a bottoa aedlaent froa tbe oenal at Hound Laboratory tbe fraction lower than 20 wa had 1.8 tiaes higher concentration than the total; at the flood plain in OtNL tba fraotlon lower tban 20 ua had i.1 tiaea the total aoll oonoentratlon; and a aaaple froa Rooky Plata had about three tiaes the total soil oonoentratlon in tbe frsetlon less than 20 ua. It is of interest ttaat tbeae distributions refleot both the aethod of contaaination as well as tbe soil type. At tbe Nevada Teat Site the plutonita waa aeohanloally dispersed by explosive aaterial and the particle aisa distribution reflects tbs Isrgeat aaouat of the plutonlua In tbe 53-125 «a aiae range, altbougb tbe hlgbeat oonoentratlon waa in tbe aMller partlole aisea. The Mound uad ORIL aaaplea refleot tbe dlatrlbutlon expeotad by adaorptlon on tbe aaaller particlea in the aaaple while Rooky Flats is interaediate reflecting, perhaps, soae adsorption as well as direct contaaination of the larger soil particles by the plutonita bearing oil that was tbe source of the contaaination. 64 The Bhviroaaental Protection Agency proposed the use of an "enricbaent factor" to include these data in resuspension oalculaticns. - This is defined aa the suaaation of tbe produota of g.,. tbe ratio of tbe fraction of the total aotivity contained within tbe sise increaent 1 to tbe fraction of the total aass in the size, and f, tbe fraction of the airborne aass within each increaent of particle else in the air. For the distribution in soil sizes at Rocky Flats, they calculate an enricbaent factor of 1.5. Tenure baa defined a "eoil plutonita index" which accounts for tbe size distribution aa well as the lung deposition. This is given as

E-28 SI a SAxLDxRA, (18)

where SI is the soil plutonita index, SA is the soil aotivity faotor, LD is the lung depoaition factor, and RA is tbe resuapendible activity factor. Tbe soil activity factor ia the fraction of tbe aotivity in a given aaaa fraction divided by tbe aaaa fraction for particlea leaa tban 100 aa. (Taaura uaed 125 ua in evaltatlng tbla faotor beoauae tbla waa tbe alave aiae uaad In hla analyaia.) Valuea of tbla faotor range frca l.U for the OUL a«iple to 7.27 for tbe Rocky Plata aaaple. The lung depoaition factor ia tbe depoaition in the pulaonary region aa defined by the ICIP Taak Group on Lung Oyaaaloa. The final factor, the reauapendible aotivity factor, ia the fraction of the total aoll plutonlua index aotivity in tbe reauapendible fraotlon. Indloea derived froa available data give 0.52 for Area 13 at the Nevada Teat Sita, 1.26 for tbe Hooky Flats area, 1.18 for Motad Laboratory and 0.69 for ONBL. Another approaoh to uae of the aaaller particlea la tbat of Jobnaoo et 70 al. Hla aaapling teotanlque was to brush tbe surfitee dust into a container. The 5 wa or aaaller particle sisas ware then aeparated froa tbe saaple after aggregates had been broken up and plutonita analyaea ware perforaed on this fraotlon. Be found tbat tbe oonoentratlon In tbeae audi partiolea waa 4 to about 300 tlaea larger tban in alallar aaaplea taken to a depth of 1/8 inch. Hla concluaion waa tbat these results provided a better indioatloa of the hazard than the conventional saaple although he did not explore aecbaniaaa of breaking down the aggregates found in the soil, which severely lialt the quantities of perticles of tbis size fotxid in natural soils, nor did be exsaine pathwaya of thia aaterial to aan. It aay be noted that tbeae relatione have never been aottally teated to abow their validity. The work on aoll eroaion indloatea tbe aany additional factors that tilll infltance wind eroaion and reauapanalon. Theae include tbe soil texture, the aoisttare content of the soil, the preeeoce or abaence of vegetation in vegetative residuss, and tbe characteristic sta*face roughness. In tbe case of tbe Nevada Test Site, the desert paveaent undoubtedly bas aore infltance on either wind or aechanical resuspension tban the otbar factors. W^ would believe that wind erosion, in partictilar, is acre ccaplex than these relationa would indicate. However, it is possible that such concepts aay tv more applicable to aechanica.^ disturbance. beoaae adjtiated to tbe abaspoe of tbe lee. Altboagb evideaoe is soaat, tbe vegetation of tbe Sangaaoa Stage probably waa aocb Ilka tbat of today. By 70 000 B.P., teaperatnrea bad again cooled, aad anotber ioe age, known ma tbe Wiaooaaln Stage, began, whloh laatad until 10 000 B.P. This glaoUl stage was auota like the Illlnolan exoept ttaat in ttae Middle Heat, ttae ice did not extend as far soutta sad teralnsted Just south of wbst la now Lake Nletalgsn. We know aany aore detalla about the fluotaatlons and talstorjr of ratraot of the ioe during tba Ulaoonaln Stage, but tbe aaae feattirea aoooapanled tbe ioe advanoe and retreat tbat auat bave baea preaent during tbe Illlnolan Stage, including a low aea level, drier ollaata in tbe eaat aad reaoltant dunea and loeas dapoaita, aad fraabaatar lakes la ttae Oraat Baala. Tbe Ioe began to retreat about 18 000 B.P., aad by 11 000 B.P., tbe oontlnental ioe bad retreated to Lake Superior and tba St. Lawrenee Valley. During tbe retreat, the Great Lakea foraad in deep valleys and bablnd daaa of glaoial debris left by tbe ioe. The tiae of asxiaw waratta was probably about 5 000 B.P., by wblob tiae Canada •uat bava baea free of loa. He believe tbat laeraaaad aridity In tbe Souttawest oauaad aooalaratad dune activity at ttala tiae. The cllaate continues to fluctuate, aad It Is apparently soaswhat waraer today ttaaa It waa In ttae iStta century.

TiftnitiBnt or MftPldlY Bftmirrinf Prftntwnti nf ftwnw Weatboring and erosion go on alaost constantly wherever depoaition is not taking place. Within a tiae span of 250 000 years, these processes aay aake substantial changes In ttae landscape. Weathering Involves ttae breakup of rook Into individual alneral gralna as well as ttae forastlon of soil in ttae upper five feet of ttae westtaered zone. In ttae tauald aouttaaaatam Onlted States, oartaln kinds of rook aay be overlali^ by aore ttaaa 100 feat of untonaolldatad aaterial foraed by waattaarlag. As erosion tranaports ttae waattaared aat«'lal into ttae atreaaa, new weathered aaterial and soil fora. Tbe average lowering of the land by tbeae ^•ooasses is believed to be sbout one foot In 10 000 yeara. In 2S0 000 yaara, ttala lowering aaounts to aoae 25 feet. Lowering is scaewbat aore rapid ia tbe aealarid ellaatea of the West. In detail, tbe rete of lowering differa in different regions and locally in different parts of tbe landscape. A neerly level plateeu surface, for exaaple, is not lowered as rapidly as its bordering slopes. The north-facir> A direct teat of the aaaa loading taoteiqia baa been aade by Anepeugb et 12 17 al. ' The aeaaured conoentrationa of n nuaber of nuolidee in tbe air were ocapared to a concentration oalculated fTca tbe qtantity of the nuclide in tbe soil aastaing a aaas loading of lOO uS^a . Theee results are given in Table IV. The agreeaent between oalculated and predioted ia good. Of courae tbe sourcea for the batural iaotopee are large In area. However, the values at Nevada ahow reaaonable agreeaent between oaloulatlon and predlotloo. It is believed that tbe eoil oonoentratlon at the point of aaapling waa uaed for the predicted valuea. If this was the oaae, tbe dlserapanoy between tbe two reeults at grotoid zero is explainable on the baala that tbe oonoentratlon in the eoil is hlgbeat at thia point and the aeaats^ed duat aroae frca aurrotaidlng areaa of lower oonoentratlon.

TABLE IV

A COMPARISON OF THE PRKDICTBO COKBNTRATION H AIR OSINC A MASS LOADING OP 100 »g/a^ TO NSASOUD,,COKniTRATIONS (AFTER AtSPAOGH BT AL.^^' ')

Looatlon Nuclide 4if r.nnnant'.r«at.1an Predicted Iteaaiiffd

67 NB, Anapaugb et al 239pu 7.2xi0-3pCl/a3 6.6xiO-3pCl/a3 GZ, Anapaugh et al "67 235pa 0.12 pCi/a3 0.023 pCi/«^ Lawr«nn* l.iv*pan>>« t.ahr>r>al'nT>v Gudiksen et al.^^ 23«u 150 pg/a3 52 pg/a^ Gudlkaen et al."'^ 23*u 150 pg/a3 100 pg/a^ SUver et al.^ 150 pg/a3 86 pg/a^ SUvar et al.^^ lO-3pCl^B3 9.8xiO-*pCi/a3

Sedlet et al."^* 232Th 320 pg/a3 240 pg/a3 Sedlet It al.^* naty 215 Pg/a3 170 pg/a^

naty Haallton^^ 110 pg/a3 62 pg/a-

E-30 III. DISCUSSION This review covered concepts and nuaerical valuea related to the resuapenalon problea and did not include tbe iaportant ooooaptual and aodeiing studies that have been carried out by aeveral indlvlduala inoludlng Aaato, 72 78 1 Trevioo, Horat or Slinn. Thia waa done deliberately in order to focus on tbe aon-aatbeaatioal aapecta of ttae rwoblea and to atteapt to bring the factors of iaportance into foota. It is apparent ttaat a gratifying aaoiat of progreaa taaa been aade 00 deteralnation of raauapenalon in tbe paat few yaara. The atudlea of Anapaugb et al^^>^7 ^^ ^^ Nevada Tttat Site have abown tba fbaaibility of aeaaureaent of the reauapanalon rate in a oontaalnated area and hla applioatloo of the aaaa loading concept baa added greatly to tbe mdaratanding of thia aodel. The tiork of Glllette3^'39 and Sblnn^ on the duat flux bave given new Inalgbta into 47 48 aathodolcgy and the phencaena concerned. The atudlea of Sebael * , with the tracer partiolea, have given valuea that are extreaely useful for application. Slinn haa provided paraaeterlaatlon concepts ttaat aid In laderatandlng. Thia ia not to aay that additional work la not neeed. Further atudlea of both tba dtat fliK and reauapanalon rata at oontaalnated areaa in various regions and types of sail arm definitely needed along with aodals, suob as tbat 42 of QUletta and Shlnn • ttaat provide relatlonablpa betaaen ttae reauapension and readily aeaaured parsaeters ttaat can be uaed to eatlaate raauapenalon ratea. CMicurrent studies of the dust fits snd resuspension of a contaainant are badly needed, particularly in undisturbed areas apart frca agricultural aoils. The dtist flux aodel requires asstaptions as to the connection between reatispension of a contaainant and the dust flux. The only cheok point now available is tbe 42 aeasureaents at the GHZ area of tbe dust flux by 3talnn et al. and tbe 17 plutonita raatapenslon rate by Anapaugb et al. In particular, additional data are needed on reauapanalon by aeotaanloal dlaturbanoe. Few appropriata axperlBMita are available and it ia frequently difficult to interpret thea in a aanner that provldea useful results. A particular area of concern for which very few data are available is the possibility of contaaination while playing and working in an area with subsaqtant trsnsfer to a place where inhalation is aore probable. Extreae exaaples of this t«ould be pulling a contaainated garaent over one'a head or contaainating pillows or other bed clothing. While one tould feel that tbis could not be a aajor source of exposure, we cannot tell ixitil 'r* experiaents are done. A priaary purpoae of ttala rev law Maa to oboae reaiapenalon paraaetera tc be uaed in the calculation of done to individuals in a contaainated area. The atudy haa reinforced otar prevlota prejudice ttaat tbe reauapanalon faotor is not tbe aethod for uae. This ia beoeuae of the failure of thia aetbod to account for aany of the variables and because tbe conditions of tbe aeaaureaent are seldca deaorlbed in aufficient detail to allow intelllgeat extrapolation to areas different froa those in which the aeasureaents wera aade. There Is soae uaefulness to this technique, bowever, in describing the axposure of the individual causing the dlsttrbsnoe. The resuspension rate has been our favorite aethod beoauae of tbe capability of integrating over a contaainated area using aooepted dlaperaion and depoaition paraaetera to provide oonoentratlon isopletbs arouad ttae area. For a apeolflo altuation where tba aoll and aeteorolcgloal paraaetera oan be defined, thia la still ttae preferred aethod and the state of tba art ia rapidly approaching aufflolant detail that thia can be done. Bowavar, for a generlo study, tbs aass loading approaoh aeeaa to be beat. The work of Taaura,** the BPA** and Jotanaon^ all Indloate that even thia approach requires revision for tbe distribution of oontaalnation in tbe soil. However, aa haa been pointed out ttaara are faotora that tend to ooapenaate for ttala, auota aa tbe aiae of tbe area, and tbe aagnltude of ttae correction fkotor propoaad by tba BPA and TiMura la only on the order of 1.5 to 2, a value that tenda to get loat in the noise of tbe other tncertalntiea. In addition, the success shown by Anspaugh in predicting the coooeotrations of several ntwlides in widely different cliaates and soil types is encouraging. Anspaugh used a aass loading of 100 ug/* in his ccaparison. The aeaeured values were priaarlly sabient air and included no ccaponent for aeohanloal dlaturbanoe. In view of the agreeaent found in hla atudy, we would propoaa tbe use of 200 ug/m^ for generlo studies to aaka allcwance for theee other typea of expoaure. It is noted that tbla aeaaa to be uorealiatioally high when ocapared with air aaapling reaults. This aay wall be due to tba factora proposed by Taaura tfith the eotual aass loading of little iaportance as ocapared to the correlation fbtnd by Anspaugh using an arbitrary value of 100 wg/a •

E-32 RBFKRSHCBS

1. W. G. N. Slinn. "Paraaeterizationa for Reeuapenaioo and for Wet and Dry Depoaition of Partiolea and Gaaea for uae in iadiation Ooae Galeulatlone," Hue. Safety, 19. 2. 205-219 (Harob-AprU, 1978).

2. J. N. Healy, "An teaalnation of ttae Pathwaya frca Soil to Han for Plutonita," Loa Alaaoa Scientific Laboratory report U-6741-MS (April 1977).

3. J. W. Healy, "A Bevlaw of Raauapaaalon Itodela," la Tranata-anioa in Natural Bnvironaenta, Bd. N. G. White and P. B. Dunaway, NfO-178, 211-220 (June 1977).

4. J. Hlahlaa, *A •aviaw of Baaaarota on Plutonita Baleaae During Overheating aad Plraa," Bbaford Laboratorlaa Oootaent flH-AS668 (1964).

5. R. H. WUaon, R. 0. Ttaoaaa and J. H. Stannard, "Bloaadloal and Aeroeol Studlea Aaaoolated with a Field Releaae of Plutoalua,* OSABC Doouaent WT-1511 (Onlveraity of Bootaeater Atcalc Etaergy Project) (Nov. i960).

6. W. H. Langtaaa, "Biological Considerations of Hon-Huclear Incidents Involving Nuclear Warheads," Lawrence Radiation Laboratory Report UCRL-50639 (April 1969).

7. R. L. Eathren, "Towarda Intaria Aooeptable Surface Contaalaatioo Levels for Bnvirooaantal PuO-," Battelle Northwest Laboratory Report BNWL-SA-1510 (MuHtta 1968). '

8. L. I. Anspaugta, P. L. Pbelpa, N. C. lennedy and B. 0. Bsotta, "Wind-Driven Besuspenslon of Surface Depoaited Radioactivity," lABA/BBA/VBO Syapoaiua on Bavlronaental Betaavior of Badlonuslidea Beleaaed in tbe Nuolear Industry, Aien-Provenoe, (»toy 14-18, 1973). (OCRL-74392, Hay 11, 1973)-

9. J. W. Healy, "A Propoaed Interia Standard for Plutoniia in Soils," 'uaa Alaaoa Scientific Laboratory report LA-5483-NS (January 1974).

10. L. R. Anapat«h, "The Use of NTS Data and Bxperience to Predict Air Conoentrationa of Plutonita ddta to Reauspenaion 00 the biewetok Atoll," In tbe Dynaaloa of Plutonlua in Desert bivironaents, R. B. DunsMay and M. c. White, Bda. BfO.142 (1974).

11. J. H. Olafaon and K. R. Laraon, "Plutoniia, ita Biology and bvirooaental Peralatenoe," XU Laboratory of Nuolear Hedicine and BadUtion Biology Dootaent XU 501 (Deo. 1961).

12. L. R. Anspeugh, J. H. Shlnn and 0. W. WUaon, "Bvaltation of tbe Resuspension Pathway Toward Protective Ouldelinea for Soil Contaaination with Radioactivity," IAEA/WHO Syapoalia en Radiological Safety Evaluation of Population Oosea and Application of Radiological Safety Standards to Han and the Environaent, Portoraz lugoalavia (My 20-24, 197*}.

E-3; IMP

13. 0. V. Okasa-Cboouaowakl, "Generalised Model of tbe Tlae-Dependent Weathering Half-Live of tbe Reauapanalon Flaotor," 0. S. bivlrooaenUl Protection Agency Teotanloal Note OBP/LV-77-4 (February 1977). 14. G. A. Sebaal and H. N. Orgill, "Beauapenaion Source Cbarge at Bocky Plata," Pacific Horthtnat Laboratory Annual Report for 1973 to the OSABC Oiviaion of Bicaodioal and Bbviromental Beaearob, Part 3 Ataoapberic Scieacea, BNWL-1850. Pt3. 212-214 (AprU 1974). 15. G. A. Sebael and F. D. Lloyd, "Particle Reauapanalon Ratee." In AtaoapberO'-Surfaoe Bxobange of Partlotilate aad Qaaaoua Pollutanta. Rlotaland, Haab., Sept. 9-6, 1974, 846-858, National teotanloal Inforaation Service, U.S. Dept. of Ccaaeroe, Springfield, Va. 16. G. A. Sebael, "Plutoalia and Traoar Partlole Baauapaaalon: An Overview of Selected Battella-Borttat#eat Bxparlaaata," In Traaauranloa in Natural Shvlrooaent, Qatllnburg, Oct. 76, M. 0. WhlU and P. B. Dunaway, Bda. 181-210, National Taetanloal Inforaatlcn Sarvloea, 0. S. Dept. of Ccaaeroe. Springfield, «a. 17. L. R. Anapaugh, J. H. Shinn, P. L. Phelpa and N. C. Kennedy, "Beauapenaion and Badlatrlbutlon of Plutonita in Sella," Baalth Fbya. 29. 571-582 (Oct. 1975). 18. J. W. Baaly and J. J. Fuquay. "Wind Pickup of Badloactlve Particlea frca tbe QrouDd," 2nd m Geneva Conference, 1391, U.S.A., 291-295. Pergaaon Praaa, Loadon. 19. R. A. BagBold, "The Fhyaloa of Blown Sand and Deaert Dunea," Williaa Morrow aad CoBpaay, Baw Xork (1943). 20. W. S. Cbepil, "Dynaaloa of Wind Broalon: I. Nature of Moveaent of SoU by Wind." Sou Sol. 60, 305-320 (1945). 21. C. H. B. Prestley, "Ttirbiilent Transfer in the Lower Ataosphere," The Qhiveralty of Chioago Press (1959). 22. W. S. CbepU, "Dynaaics of Wind Erosion: II. InltUtlon of Soil Moveaent," Soil Sol. 60, 397-411 (1945). 23. W. S. Cbepil, "Dynaaloa of Wind Broalon: III. The Tranaport Capacity of tbe Wind," Soil Sol. 60, 475-480 (1945). 24. w. S. Catepll, "Sedlaentary Characterlatica of Duat Storaa: III. Coapoaltion of Suapended Dust," Aa. J. Science, 255. 206-213 (1957). 25. W. S. Cbepil, "Influence of Moisture on BrodibUity by Wind," Soil Sci. Aa. Proo. 29. 602-608 (1956). 26. F. Bisal and J. Bsieb, "Influanee of Moisture on ErodibUity of SoU By Wind," Sou Sci. 102, 143-Iii6 (1966).

27. W. S. Chepll, "Conversion of Relative Field ErodibUity to Annual Soil Loss by Wind," Sou Sci. Soc. Aa. Proc. 2k, 143-145 (i960).

E-34 28. M. P. Woodruff and P. B. Siddowsy, "A Wind Brosioo iqustioo," SoU Sci. Soo. lB«r. Proo. 29, 602-608 (1965). 29. AgriouLturo Rssssrob Ssnrlos, Unitsd Ststss tepsrtasnt of Agrioultur*. "Wind Erosion Poroos in tbs Uhitod SUtss and tbsir Ost in Prodioting Soil Loss," Agrioultur* Handbook No. 3^(6, U.S. Govortaisnt Printing Office, Wksbington, O.C. (AprU, 1968). 30. W. S., ChsplI, "Propsrtiss of SoU Uhicb lafluMios Wind Erosion: III. Effoot of Appsrsnt Dmsity on BrodlbUity," SoU Soi. 71, 141-153 (1951). 31. W. S. (SMpll, "Propsrtiss of Soil Whiob Inflosnos Wind b^sloa: IV. Ststs of Dry AggrsgsU Struoturo," SoU Soi. 72, 387-401 (1951). 32. W. S. CbopU, "Sslstion of Wind Erosion to ths Dry AggrsgsU Struotur* of a Sou," aol. Agr. 21, 468-507 (1941). 33- P. J. NAlins, "Isosnt DsTslopasnt in Pynsaics of Wind Erosion," Trsns. of tbs tesr. Osophysiosl Otaloa, 262-284 (1941). 34. D. A. QUlstte snd I. H. Blifford, Jr., "Nissursaants of Asrosol Six* Distributions snd Tartloal Pluxss of Asrosols on Land Subjsot to Wind BrosKm," Journal of Applisd Matsorolccy, ii, 977-987 (Sspt. 1972). 35. D. A. aulstU, I. H. Blifford, Jr., snd D. W. Ft*yr«ar, "Studisa of Alrboms SoU flroa Wind b^)aion," Proo. 28tb Ann. NMting of tba SoU Consarratioo Soolsty of lasrloa (Sspt. 31-Oot. 3t 1973). 36. D. A. QUlstts, "Gn tba Produotion of SoU Wind Eroaion Asroaols Having tbe Potsntial for Loag Bai«s Dransport." J. Bsoh. Ataos. fill, (3-4) 735-744 (July-Dso. 1974). 37. 0. A. GUlatts snd I. H. Blifford, Jr., "Ths Influsnc* of Wind Vslocity on tbe Size Distribution of Aerosols Generated by tbe Wind Erosion of SoUs," Journal Gaophys. Res. 79, 27, 4068-4075 (Sept. 20, 1974). 38. D. QUlette and P. H. Goodwin, "Microscale Trsnsport of Sand-Sized Soli Aggregates Eroded by Wind," Journal Qeopbys. Res. 79. 27. 4080-4084 (Sept. 20, 1974).

39. D. A. QUlstte, "Produotion of Fine Oust by Hind Erosion of SoU: Effect of Wind and SoU TWtire," In Ataospbare Siarfaoe fcrchange of Partioulate and Qaseous Pollutants - 1974, R. J. bigleasnn sn G. A. Sebael Coordinators, national Teobnioal Information Serrioea. O.S. Dept. of CoMMroe, Springfield, Va. (1976). 40. J. R. Travis, "A Model for Predicting ttie Redistribution of Particulate Contaainants froa SoU Surface," Los Alsaos Scientific Lsboratory report U-6035-**S (July 1975). 41. J. R. Trvrla, "A Nodal for Prediotiag tbe Rsdlstributioo of Particulate Contaainants froa SoU Surfaces." In Ataospberio Surfaoe Bsobangc of Partioulate and Qaaeoua Pollutanta (1974), R. J. Brigleaann and G. A. Setaael, Coordinatora, National Tectanioal Inforaation Serfioe, U.S. Dept. of Coaaeroe, Springfield, Va. (1976).

42. J. H. Sbinn, N. C. Kennedy, J. S. Koval, B. A. Uegg, and W. N. Porcb, "Observstlons of Dust Flux in tbs Surfsoe Bouodsry Layer for Stesdy and oon-ateady Gases (1974)," In Ataospbers-Surfkee Exobsngs of Particulste and Gaseous PoUutanta, R. J. Bigleaann and G. A. aetaiel, Coordinatora, 625-637, National Tecb. Inforaation Ssnrioe, Q.S. Dept. of Coaaerce, Springfield, la. (1976).

43. W. S. Cbepll and M. P. Woodruff. "Sediaentary Cbaraoteristics of Oust Storms: II. VislbUlty and Dust Ooaosntration,« Aa. Journal Sci. 255. 104-114 (Plib. 1957).

44. G. A. Sotaasl, "The Ihfluenos of SoU Insertion on Ataospberio Partlols Sise Distributions," Paolflo Nortbusst Laboratory Annual Report fM* 1975, Part 3 Ataospberio Soiences, 99-101, BNWL-2000 Pt3 (Mirob 1976).

45. G. R. BUst, "Msasui>eB«nts of Rslstlve Wind b^slon of SMOl Particles frca Ysrious Prepared Surfaoes," Banford Laboratorlss Rsport HH-39356 (Oct. 5. 1955). 46. G. R. BUst snd P. W. HloiBola, "Ob tbs Wind Erosion of Saall Particlea," Bult. of tbs Aa. mt»or, Soo. 40, 2, 73-77 (Feb. 1959).

47. G. A. Sobasl, "Tkransuranlo snd T^sosr Siaulsnt Resuspension," Battelle Nortbwast Laboratory Baport BNIIL-SA-6236 (July 1977).

48. G. A. Setaael, "Plutonlua and Tracer Particle Resuspension: An Overview of Selected Bsttelle-Hortbtrast Ezperiaents," In Tranauranics in Natural aivironaents, M. G. White and P. B. Dunaway, Eds., H?0-128 (June 1977).

49. G. A. Sebael, "Tracer Particle Resuspension Caused by Wind Forces upon an Aspbalt Surfaoe," Pacific •orttaweat Laboratory Annual Report for 1976, Part 1, Ataospberio Scienoes, BMHL-1651, Pti, 136-138 (Deo. 1972).

50. G. A. Setaael, "Psrtlole Resuspension trom Truck Tlrsffic in A Chest Grass Arsa," Paolflo Nortbvsat Laboratory Annual Report for 1975. Part 3 Ataospberio SoUnoes, BMfL-2000 Pt3. 96-98 (Harota 1976).

51. G. A. Setaasl, "Initial Correlation of Particle Resuapenaion Rates aa a Function of Surfaoe Roughness Height," Part 3 Ataoapherio Sciencea, BNWL-1950-Part 3, 209-212 (1975).

52. M. H. OrgUl, H. R. Petersen and G. A. Sebael, "Soae Initial Hiasureaenta of DDT Resuspension and Tiranalocatlon Proa Pacific Northwest Forests,* Pacific Northwest Laboratory Annual Report for 1974, Part 3 Atsosptoerlc Sciences, BNWL-1950-Part 3, 231-236 (1976).

E-36 ••••••••••••••••••••Hiift

53. L. R. Anapaugb, P. L. Pbalpo, H. C. Eaansdy, J. B. ablan and J. M. Perohaann, "Experlaantal Btudiea on tbe Rssuapaaaloa of Plutooiia frca Aged Sources at tbs Bsvada Teat Site," In ltaosphsr».3urfaee Bxobsng* of Partioulats and Gaseous Contsainants (1974), I. J. ItngTlawf and C. A. Setaael, Coordinatora, National Teobnioal Inforaation Serrioe, O.S. Dept. of Coaaeroe, Springfield, Va. (19?6). 54. L. L. Eberhardt and R. 0. OUbert, "Statiatical Analysla of SoU Plutonlua Studisa, Nevada Tsst SiU," BattsUs Paolflo Nortbusst Laboratoriea Report BMn.-B-217 (Septeabw* 1972). 55. W. S. ChepU, "Dynaalos of Wind Erosion: V. Qamlatlve Intensity of SoU Drifting Across &rodii« Fislds," SoU Sol., 61, 257-263 (1946). 56. J. B. Sbinn, "Estlaatlon of Asroaol Plutonlua Ttvnaport by tbs Dust-Flux Nstbod: A Psrspsotlve on Applioatloa of OstaUad Data," In Ik>ansuranioa in Natural ftiTiroaaents, N. G. White snd P. B. Ounaiay Ida., NVO-178, National Teobnioal Inforaation Ssrvloe, O.S. Dept. of Coaaeroe, Springfield. Ta. (June 1977). 57. Q. A. Setaael, "Plutonitai Oonoentrstions in Airborne SoU at Rocky Plata and Banford Deterained During Resuspension txperlaents," Battelle Paolfic NorthHsst Laboratory Report PNL-SA-6720 (January 1978). 58. G. A. Setaael, "Radioactive Particle Basuspenslon Isssarob Bxperlaents on tbs Banford Ressnratlon," Battelle Paolflo Nortbweat Laboratoriea Report BNU.-2081 (Feb. 19n). 59. G. A. Setaael and P. D. Lloyd, "Basuspenslon of Plutonlia at Rooky Plata," In Ataoapbsre-Surfaoe Bxohante of Partioulate and Osseous Pollutanta (1974)," R. J. ftigelaann and Q. A. Sataaal, Coordinators, 757-779. National Teobnioal Inforaation Senrloe. Dept. of Coaaeroe, Springfield, Va. (1976). 60. G. A. Setaael, "Particle Resuspsnslon frca an Aspbalt Road Caused by Car and Ti-uck Traffic," Ata. Env. 7, 291-309 (1973)- 61. G. A. Setaael, "Particle Reauspenslon frca sn Aspbalt Road Caused by Car and Trvck T^fflc," In Ataoapbere-Surfaoe Exchange of Partioulate and Gaaeoua Pollutanta (1974), R. J. Aigleaann and G. A. Setaael, Coordinatora. 859-882. National Teobnioal Information Service, O.S. Dept. of Coaaerce, Springfield, Ik. (1976). 62. R. C. MUbaa, J. P. Sobubert, J. R. Hatts, A. L. Boni and J. C. Corey, "Nsaaured Plutonlua Resuspension snd Rssulting Doss frca Agricultural Operatlona on an (}ld Field at tbe Savannah River Plant in tbe South Eaatem Onited Statea." lAEA/OSBRDA International Syapoaita on Tranauranlua Nuolldea in tbe Bnviroaaent, Noveaber 17>21 (1975). 63. 0. S. Neyers, W. J. Silver, D. G. Coles, C. E. LMSon, D. R. Helntyre anc B. HKtdosa, "Evaluation of tbe use of Sludgs Containing Plutonlua as a Sou Conditioner for Food Crops." lAEA/USBRDA Intsmstionai Synpoaiua o^ Tranauranlua Nuclides In the Environaent, Nov. 17-21 (1975)-

E-J- 64. O.S. EDvirooaental Protaotlon Agency, "Proposed Quidaaos on Dose Llaits for Persons Exposed to Tl*ans«s>sniua Eleaents in tbs Qwieral btvlrooaent." Office of Radiation Prograas, Criteria and Standards Division, Washington. D.C. (Sept. 1977). 65. T. N. Carlson and J. M. Proapero, "The Lsr^e-Soale Hovaaent of Sabaran Air Outbreaks Over tbe Northern Equstorisl Atlantic," J. Appl. Hit., n, 283-297 (1972). 66. R. N. Qeyton, R. W. Rex, J. I. Syera, and H. L. Jackson, "Qsygen Isotope Abundsnoe in Qusrtz Froa Psolfic Pelsgic Sedlaents," J. Geoptays. Res., n, 3907-3915. 67. L. R. Anspaugh and P. L. Pbslpa, "Bsstispension Elaasnt Ststus Report: VI. Results sad Data inalyala," In tbe Dynaalos of Plutonlua in Deeert •Bvirooaeats, P. B. Ounauay and N. D. White Us., 55-81, NVO-142 (1974). 68. T. Tkaura, "Pltitonltai Assoolstion in Soils," In n1187 (Septeaber, I97i).

E-38 77. G. Ifevino, "On tbe Natural Dlatrlbutlon of Surfaoe Oontsaiaaticn." U.S. Atcaic Baergy Coaalsslon Oootaent WASft>1225 (Nov. 1972). 76. T. W. Borat, "Tbe Batiaatioo of Air Concentration Due to tbe Olffualon Depoaition and Reeuspension of Contsainsnts by tbs Wind." Battelle Pacific Northwest Laboratoriea Dociaent PNL-2426 (October 1977). APPflDIZ P

ENVnOHINLNlAL CHANOB H TBI ONITO STATIS n m LAST QOttTD MILLION TUBS

John T. Back O.S. Oeologloal Stirvey

Bnvlrooaental obsnges of s drsastlo nature bav« taken place repeatedly in the last 250 000 years In tbe Qaltsd Statea. These ebangea can be grouped in three olaaaes. The first snd aost draaatle has to do with worldwide ebangea in oliaate. Another olass consists of prooesaes that go on oontlnuoualy or at repaatad abort Intervals, sooh aa straaa erosion sad depoaition, and weathering and sou foivatlon. A third category relatea to prooeaaea operating within tbe ortist. sueh ss voloanlo and taotonlo aotlrlty. Ths history and nature of tbe obanges are beat known for the last 60 000 yesrs. The detaUs bseeas less clesr as one looks farther baok In tlae. Bowever. aaay obanges have been repeated, and detsUs of the earlier ones can be inferred. miBfiln Qfiwfl inrt Tlwlr MTBBta Vlthla the last qoartar allllon years, the earth baa experienced two aajor oold, or glaeial, periods soparated by a vara period and followed by the preaeot wara period. It is gOBsrally bellered that 250 000 yeara B.P. (before preaent) the earth was nesr ths end of s warm oyole. Tbe warm oyole waa followed by sn ice ege (known in the United Stated ss the Illincisn Stsge) thst Issted until sbout 150 000 B.P. loe scotanlsted in the northern part of the North American continent tmtU it spresd sotith ss fsr ss the cotirse of the present Hlssourl and Ohio Rivers, covering aU of New England, tbe Great Lakea, and alaoat all of Illinois sad the Northern Plains. loe osps covered sll but tbe high peeks in tbs Rooky Hoaataias, Casoads, and Sierra Nevada Mountains. Tbs ice scoured the rooks beneath it, deepening and widening valleys or forming depressions. The msterlal exoavated was deposited as moraines snd outwasb or wss left behind ss irregular dapoaita of tUl and outwasb whsn tbe ice aelted. Some of the depreaaioaa left by tbe loe retreat beoaaa filled with sedlaents end ere now nesrly level plsins underlsln by sUt snd clsy. Bxsaples are the fertile plain of the Red River Velley of Ninnesots and North Dakota, and tbe foraer bed of Glacial Lake Agaaais, which waa foraed dtiring s Istcr Ice sgc. Hirine depcai's were laid down wben tbe eea entered areas that bad been suhasrgsd by the weight [ of the ice, sa In tbs Chs^lsin sad St. Lswrenoe Vsllsys. Nsny obsngss took plaoe outslds ths ioe-oovsred sress. Greet rivera I drained tbe continental loe aheet, inoltiding the Hla80ta*i, Niasissippi, and Ohio. At that tiae, tbe Mississippi was not s asanderii^ streea aa it is today; I It flowed soross a broad flood plain in a asrlea of anaataanalnt ehaonels. In winter this plain was dry, sod tbs wind lifted oloods of sUt sad fine sand, depoaiting this aatarlal •* loess on the hilly landsgept east of ths river. i Beosuss s psrt of tbs earth's ssa water was transferred to tbe lead in tbs fora of ice, sea level was lowsr than now by ^out 300-400 feet. Along the Atlantic I Coast, ths sborallas la plaoee aay hava baaa aora than 100 alias out froa tbe present shore, exposing s ssndy plain whloh bsoaas oovered with vegetstlon. I At the peak of the oold period, the oliaate of the eastern Ohlted SUtes is believed to have been rather dry. The vegetation of the preceding period i aigreted aouthward, and the hardwoods were replsoed by oortheni spsoles such aa pins sod sprtioe, probably foralng oavanaab with large areas of hsrbsoeoos f plsnts. Tbs northwsstarly winds thst doainsted the weather blew aand and sUt soross the sres, espaelally on ths Coastal Plain, foraiflc aoattered dune and loess areas. The oraat of ths Has lldgs NDontalas and the higher peaks to tbe I t#est bsosas treeless toadra and probably had fields of pareanlal anew. In tbe western Ottltsd Statea. la the (b*aat Basin and In tba Coliahla Plateau to tbe north, although the oliaate waa dry, ths low tsapsrstures sloiisd evsporstion, and closed bssins beosas lakes, asny of thea interoonneoted by fresb-wstsr 1 atreaas. Greet Salt Lake, for exaaple, was auoh larger than now and drained to the aea throtigh the Snake River Plain. t About 150 000 years B.P., teaperaturea began to warn, and the oliaate eventually beoaaa auoh llko thst of todsy. bat perfasps s bit warasr. lbs wara interval is called the *fangBann Stage. The loe retreated northward, olearing I aU of North Aaerloa except perhapa for sasU glsolsrs in ths wsstsm ao'mtains. The rivers draining the loe eaat of the Rocklea becaae narrower and aeaadered i ecross only s part of their flood plaina, aa they do today. See level roee aa the ice aelted. eventually to a level aa auoh aa 15 to 20 feet higher than I today, flooding soae sross thst are now dry. Aa tbe weight of the lee had depressed the land under It, soae of the northern pert of the continent ««fl flooded by the aea to a greater depth, untU eventtially the level of the land slopes of a vslley wear downward acre rapidly and are ateeper than the south-facing slopes, beosuss they ere wetter. The effects of tfeathorlng and eroaion through tiae are viaible io foraerly glaciated regiona. In Ullnoia, the glaoial depoalta of the Uliooian Stage extend farther aouth than do tboss of the Hlsoonsin Stsgs, so that tbe I topogrsphy dsveloped on the two aay be ooaparod. On tbe younger depoalta (18 000 years old), ths topography la hilly, and aany uadralasd dspresslons bold swa^M or lakea. The landeoape la probably vary little ohanied alnoe it foraed I et the loe aargln. Tbe depoalta laid down by the older loe (150 000 yeara or acre old) have been worn down to a nearly flat or gently roUlng plain, i ooapletely drained, and broken only by the strasa valleys intreaohad below the plsin. i A drsastlo fora of erosion is ths dsbrls svalsnohlng snd flooding thst tskss plsoe in aountaln valleys. This ostsatrophlo fora of sresloo g«Mrslly occtu*s dttrlng tmusual storas having rainfall aa bsavy aa S to tO inobes sn botir. Such storms sre importsnt processes in tbe Paolflo Cosst rai^rM •• wU ss in the Appalachians. In the latter area, they probably recur at any ooe place every 500 to 1 000 yeara. Deposition of ssdlasnt goes on in certain envlronaents acre or less contlntiously. The foraatlon of deltas in lakss or slong soas ooesn shores sre exsaplss. The Mississippi Dslta is tbs bast axaapls. Tbe river oootiauously I csrrles Isrgs qoantities of sediaent which is spread out at its aouth sa a dalta plain. This environaent throtigh long periods of tiae is very unstsble, aa the E dlatributax^ channels shift their position or T9 abandooed and new ones foraed. The delta is slso influenced by obsnges in ees level, biuidisg up or eroding aa i the level aay change. Many atreaaa are bordered by flood plains and terraoea. The flood plains sre flooded on tbe sversge every one to two yeara. Higher, less frequent floods I asy cover terrsess. The river ehsnnsls on flood plains MT* aubject to changes of position St frequent intervsls. I Deposition snd erosion are continuing prooeaaea along ssa and lakeaborea. Tbe overaU tendency is to straightso tbs conflgurstlcn of tbe rtiore. eroding in I soae pieces, forming notches or cliffs, sad depositing beeches io others. The shore environaent is generslly a higb-«nergy environaent subject to constant • changes. Over a period of 250 000 yeara, the entire aarlne aboreline of the United Statea has b—a ahlfted aany tlaes aa a result of changes in aea level I Tbe greet lakes snd othsr Inlsnd Iskss bsve ocae sod gone in response to cllastic change, aediaentatioo, glacial aoveaeota, and other dynaalc processes. Another depositionsl process is the forastioo of ssnd dunss, which takes piece slong Iskesbores or ooeen shores triterever there is s Isrge supply of sand. Dunes slso fora in arid landa generally downwind frca streea valleya or other sources of loose ssnd. The process is oontintiotis where conditions urm st«itable.

Voleanlo and Teotonlo ActlyJtY At present, only Alssks snd Bswall have active volcanoes, but the Isck of sctivlty in tbs contermlootis Onitsd Statss la sboormsl sod may be very short lived. FOr exsaple. the Csaosds Rsnge cootslns volosnoes thst have had a long history of violent eruptions—eruptions thst bsve tskso plsoe tflthin the laat few thoussnd yesrs •a well ss esrlier. Lessen Peek, in northern Cslifomis, had s violent eruption io 1914. We believe thst ths aodsm cone of Motmt St. Helena hss foraed priaarUy in the last 2 500 yssrs. Crstsr Lake wss formed by an explosive eruption sbout 7 000 yesrs sgo thst spresd s shset of sab acre than 6 inches thick over sn sres 100 aUes in dlsastsr. Volcsnoss in other western States bsve been repestedly sotlve dtirlng the Isst quartsr aUllon yeara. Lass thsn 1 000 yaai>s sgo. for swaaple, sn Indlsn pueblo nesr Flagstaff. Arlsona. t«as destroyed by s Isva flow. . Large and violent eruptions took plsoe in Tellowstooe Psrk ta recently ss 100 000 yesrs sgo. Tectonic sctivlty, including tilting of the lend snd fsulting, goes on acre or less continuously, (tee exsaple of tUtii^ is foimd slong the Pscific Coast where tilted asrine terrsces sre coaaon. Anothsr exsaple is the rise of Isnd a« tbe ice sheet retrested. Isle Royale in Lake Superior ia now 150 feet higher than when it eaerged froa under the ice. In oortbem Maine, the land rose aore thsn 500 fsat ia postglsolal tiae. Fsulting is the dlfferentlsl aoveaent of two sdjscent porta of the earth'a crust. The aoveaent asy be eontlnuotis or sporsdie snd asy Isst aillloos of yesra. Active fatilta prodtice speetsctilsr obsnges in the Isndsospe, foralng esoarpasnts, trenchlike feettires, snd ponds along their trace. Streeas are offset, snd other effects are produced. The aoat faaotia active fault in thr United States ia the Sen Andreaa rift in Callfomis, slong which the action la •oatly horixontal but which has a vertical coaponent In places. The averaer rate of relatlre aotioo aaounts to about half an Inch per year. Thla rate i.- sufflolent to have csused the land west of the fault to bsve aoved northward aore than s aile in tbe laat qtisrtsr aUlioe yeara. Tba trace extends out to see nesr San Francisco, so prestasbly soae foraerly dry lend la now beneath the sea. Many otbw faulta are active, particularly in tbe Great Basis sad ocrthern Rocklea, where they have changed the face of tbe landsospe to varying degrees, particularly mlot^ tbe foot of baain rangea. APPIIDII G

TRANSPORT OT TIAHSORANICS BX SIDimTS IN SONFACi WATBBS

J. C. Rodgers

In tba early years of the devalopasat of aaolaor eaergy approxlaately 95 perooot of tbs alnrt-llTed, low»>lev«l, liquid radloaetlva waatas wars dlaoharged into aurfaoe straaas.^ Aa s raault, saoh rlvsr sysfw as the Ooluabls snd the Tennessss biaaae ooatsalaatad, aad mawrous radlologleal sunreys ware aade to asasss tba iapaot of this dlaposal praetloa. lata firoa aooh stadiea provide aost of tba baala for eorrant efforta to asaasa tba la^aet of river systias ss s vector to aan froa raleaaas of radloaotlvlty froa shallow land burial aites by erosion proossssa. Seas ssneral oriteris fM* idsntlfying streaa oonditlona ooodueiva tc transport aad oeaoaatratloa of radionuolldaa ia sadlasnts oaa be identified, but tbe deralopaaat of quantltatlva faotors aoltable fsr llaits ssasssasnt is not siaple aad oleareat. m fsaaral taraa, with raapeot to tbe aadiaeat itself, tbe total svaUable aarfaao araa of the aadtaanta la aa ladaar of tba peteatial for transport. Oonoantrmtlon of varloaa partlols alas groups ia s soltabls ladloator of surfsce area. Tbe greater aorptloa capacity of tbe sxtiaasly fins sedlaents is soaewbst offsst bowever, by the tendeney of oolloldal aateriala to remain in suspension except when flocctilstlon oootirs. Tbs cbealeal and alnsralogloal nattire of the sedlaents, particularly fines, are also faotors to be ooaaldared. The rate and revaralbUlty of aorptloa raaotlons ooald ba iaportaat. With raapeot to strasa ooadltloas, the aatoro of tbe ooaoentratioa snd load varlatlaa of aadlaaata with tlas are iaportant slaoa tbsy ladlosts ths ospacity of tbe straoB to troaaport a given input of oootsaiaaat. For exaaple, a streea with relatlToly ualfora water dlaoharge and high oonoeotratlon of floe sediaent would have a greater oapaolty to aalntaln tbe waste la suspension. But s streea with s largs rangs of water dlaoharge aad ••Jlait load, reoeiviag tbe aaae oontaalaant input, would be axpeoted to traaaport tbe waste In sli«s: buildup of oonoentrsticn in ths bed-load is likely dariag low flow; thea releese and possible deposit on high banks or flood plslas could oooor daring high r:o« Channel geometry oen be a aignifleant factor in reeoncentretioe. A aeenderlng ohsnnel is chsrsoterised by buUding of point bars os ths, inside bends. The pool-and-riffle type of atream acoumttlatea oootaalnanU ia pool reachea during periods of low flow. Man-asds control fsstures, espeeislly reservoirs, can have very significsnt effects such ma trspping snd then releasing contsainsnts bound to very fine sedlaents. Evidently, thnn, the rsnge of conditions enooontered with regard to (1) the qtasntlty of sediaent snd wster disoharga, (2) ths tias varlatloe of sediaent snd water discharge, (3) the alaereloglo ooapoaltloo of aadiaant, aad (4) channel geoaetry aad the nattire and extent of aan aade channel oontrola and reaervoirs aakea eaoh radioactive waate dlapoaal alte aad aaaooiated i«terahed uniqtte trith respect to tbe effoota of aediaent tranaport aa a potential expoatn^ vector. Clearly it ia not posslbls to saasss adequately the hasard potential of a given streea oa tbe basis of any one of these paraaetera.

A. Urw aoBlt fttrttiNnt. TnnNPfirt, In the following aeotion, a alaple analytic aodel of large-acale, strsaa ssdiasnt U-«nsport of contsainsnts will ba dssorlbed aa sn sid in exploring the sltsd. Soas of these psrsaeters vary widely froa stresa to streaa, snd of oottrse, even bettieen vsrious reaches of tbs ssas streea. It should be kept in alnd, in the followli^ snslysls, thst It is the trsnsport of particlea of sediaent (sand, aUt, or clay) that is being described, not btilk tister flow. Bsoh partlols eoceeutes s ccaplsx series of actions in the process of aoving downstreea, spending pert of tbe tiae in the water ooluan being carried along in the water ctirrents, and pert of the tiae at rest In the aediaent bed. At a glv«> aoaent, at a certain point on a streaa.

i-d. psrt of tbs totsl sediaent losd ia in saspsnsioo (ths suspended losd) and psrt is St rest (ths bed load). For slaplicity, tbs satire sediaent load of the atresa can be treated aa though it ware a aoving "entity." like a duat cloud, having its own ^israoterlatic velocity and dlspsrsleo. Frca this perspective, theoretical aediaent tranaport aodela have been developed following either a deteralnlatlo approooh oalag a olaaaic dlaperaion eqtiatlon^, or a atatlatloal approaah aaawing that aadiaeat particlea execute a aeqtienoe of stops with s eharaotarlatle step leagth. sad *rests* tilth s 2 chsractsristic rest period. It baa beea shown thst both spproaobes yisld coaparable pradictloaa for sufficiently Isrge traaaport dlatanoea (i.e., dlstaaoaa relative to tbe obaraotarlatlo step leagth). Oar Intarast at thla staco la tbs devalopasnt of s gsnarallssd foraulatlon baaed on avaUable data and applloable to large dlstaaoaa and long tlaea, so thst s dsteralnlstlo aodal la tbs spproprlata oboloa. Oxislder the osss of oontlntMus Injsotlon of s oontsalnsnt into s streaa bed aediaent load. Do Vrles has raprsaaated tbe tranaport snd dispersion process for bed losd partiolea by the dlffOalMi eqtiatloo

where C is the eonoentrstion of oontsalnsnt, 0 is the sversge downstresa propagation velocity of sediaent particles, and D|^ ia the longitudinel (downatreea) diffusion coefficient. If to this ws add s general concentration dependent loss tara, x. whloh will be tsksn to ra^-«ssnt tbs ooohinsd effects of radloaetive deosy snd whstevar other physiesl losses thst ooetir, stioh ss irreversible deposition in streea bed or banks, tbe eqtMtico beooaes,

}f*0ff. XC.D^ ^. (2) Ths integration of (2) over tiae T for C constant at xaO ra^-eeents the stesdy-stste condition resulting froa cootintious injsotloo of cootsainsota at the origin of ths oontaalaant diaperaal, and haa the aolutioo: I C(x,t) > c,o.„v"'-dr. r exp (-* - bT) dt (3)

Nhera a > x^/4 U^ and b « 0^/4 0^^ • x, and C^ is ths initial concentration. When T-» • (3) beccaes I 1/2 C(x,«) . C^/( 1 • 410^/0^) I S (1 - Vl • 4D,X/0^). (4) ezp 20, *V

The vsltMS of the trsnsport vsloolty snd downstrssa dispersion coefficient aust, of course, be sppropriste to tbe aoveawnt of ssdiasnts, and thus are not the ssas ss the wster snd dlssolred oonstittient values. Tracer studies auppcrted by ststistlosl snslysls, snd In-situ studies of contsalnated -4 -' sedlaents, both ylsld eaqilrlcsl estiaatss of 0 on ths order of 10 to 10 ' a/sec, snd 0^ about 0.28 n^/sec. (Tsbls O-I). Sines ths valtMS of 0, snd 0 sre saall and ths valtN of x is sxpected to be aaaU for aoat TBO*s, tbs expression for C(x. •) csn bs siaplified coosiderably by using the spproxiastlon thst \lTx « 1 • x/2, for saall x; and approxiaating C^/(1 • 4x0^/0^) 1/2 Then

C(x,«) s C^ exp (.xX/0). r«;' TABLE O-I

SOMfUT or MKASOBBMBTS OP 30« STBEAM

<^llp»f1 9»d Kat^M.l X iBCBCBBfiftR (a/aao) (a^/aeo) N. Loup 0.29 an aand Rivsr traoar 2.5x10** 0.28

Danube 0.24 aa aaad River traoar 8.0x10"'

Vellka 0.36 aad S.SxW* Horava 0.60 aa aand 2.7x10'* traoar

Ccltiabla 3.3x10'J River *"Co aad ^'Zn 9.7x10"* sadlasat botad

Thtis. ths principal ssdiasnt tranapm*t faotora oaa bs redtMOd. for the esse of coatlmioas ralaaae aad traaaport over long dlatsnoss sad ths Isrfs tlae frsass being oonslderad bara, to aadiaeat traaaport vsloolty 0. aad ths ooabined loss rate X. Since the angnltuda of tbe ssdiasnt transport velocity has been given rotigh (order of aagnittide) booada by radioactive tracer study dsts, the ooabined loss rste psraaster osa be qtisntified using field dsts on tbe large scale spstlsl distribution of radlontiolldes botatd to streen eediaents under ooodltions of aore or less oontintiotis releass. It is recognized thst this procedtire lesves auoh to ba dsslred as fsr as sa uaderstsnding of sotusl physiesl prooeaaea involTsd ia tbe loaa of coataainsnts froa s flowing bed of sedlaents. The field data rapraaent tbe ooabiaad effeeta of s large ouaber of unknown prooeaa. whloh are likely very different froa stresa to streea. Wist these data do provide la a soaswhat Halted perapectlve oo a range of values of

Aa was previotisly noted, oontintious rel over e long period of tlae occurred in tbe (k>ltHbis sod Tennessee Rl for which soae data pertinent to the sediaent trsnsport aodel exist. Dots of Nelson snd others^ for long-lived activation snd fission product.^ released froa tbe Bsnford conplex oo tbe Coltahis River stxggeat that a fai.'-ly narrow raage of loaa ratea appllea to tboae rsdloetiolideo that adsorb fairly strongly oo sediments. By sssfing a oonstsnt svsrage sediment velocity of 2.5 -4 «0 -1 X to m/sec, vsluss of x oa tbe order of 3-5 < *0^ sec yield s good fit by the aodel to dsts over s 322 km (200 mUe) reeota of river downstreem frca the HoNsry Dsm (tbs f:-<«t aaJor sediaent bssln). Tbsss losaes iaolude the sedimentation off nets of two dsas ss wall ss othsr proossssa ia this oold, fsst aoving, gravel-bed river. Osta from studies of the fate of radloetiolldea released froa tbe Oak Ridge operatlona to tba Tanneaaee River Haterahed are repreaantatlve of qtilte s dlffsrent systea. one oharaoterlxed by warmer t«ter, greater eediaent load (with different alsa dlatrlbatioa), aore aan aade atresa ooetrola, etc. Tbe atrongly aediaent botaid radlonticllde for which thera is ths bast qoality aad quantity of data la *^Ca. m fraab tiater envlroaaeota, thera appaara to be a good correlation between -"Ca a behavior and pltitonliai behavior aa fhr as sediaent trsnsport is conoemed. The staady-state coadltlon. after yeara of nearly oootlauotia input and repeated eplaodes of sootiring followed by deposltloe behind one of tbe eight dsas along tbe rlvar. appaara to be a '"Cs ssdiasnt conosotrstion vs downsti dlstanos pattars having an oivaraU sacponsntlsl form slallsr to tba Coluabis Rlvar over the flrat I6l la (100 al) to 321 ka (200 ml). But the reaalader ia obaraotarlsad by a lower rata of redttctlon, probably doe to ths extensive systea of dsas ia ths lowsr resohes. Fl

j-C o

900 Olttoncd (km)

Fig. 1. Lsrge-Sesle Reduction in Sediaent Concentrstico (Coluabis and Tenncaaee Rivers).

12 Plutonium. Footers thst bsre oontribtited to the pressnt dlstrlbtitlon snd its observable effects trill be dlsoussed further below. The point to be asds bsra in the oontext of persistant, large seals dlstrlbtitloaa Is thst nesrly 10 yssrs sftsr the msjor eontsmlnstlng event, tbe tfeekly relesses of plutonlum restilt in observsbls pttlses which, st points tip to 40 km down streaa, sooount for only lOf to 20f of tbs weekly flux of 238 Pu paasii« downstraaa (35 liCi/week attributed to "background").'^

iL. Local Effects and ConeentratloH Buildup Although the large scale aodel Juat deacrlbed would be useful Tc approxiaating the wideat possible lapact of sediaent tranaport of Ttl I

redionuolldes frca s ralsaae point to tba aouth of a river, local iapecta, including the "twrat-oaaa" exposure condition expaotad aaar tbe point of dlschsrge of cootsainaat to tbs stresa. sre not spproprlataly aodeled at all. As was observed shove in the discussion of gaaeral s^Mcts of sediaent trsnsport, tbs coablnsd effects of tbe relatlvaly greeter sorptive ospsoity of the fine f)rsctlon of ssdiasnts (olsys sad sUts) over the ooarae fraction I (aanda), and different alsed aediaent partiolea (I.e., the duration of auapenslon is inversely relsted to partlole also) ooabine to create the peteatial for reooaooatratloo of radloaoelldes is certain reaohaa of stresas. Bera so estlaste of tbe aagnltude of this reoonoentratlon prooess will be aade. Both ^^Ca and ^38,239,^ ^^^^ ^^^ obaarved to sttaoh prafsraatlaUy to tbs saaUsr slsa olaaaes in aoUs snd aedlaaata. 14,1'"5 For anaple, la Ohio soils, ths aoat significsnt fraotlona la tsras of total plutonlia oontsnt sra ths 4-2 urn snd <2va alas olsss, whloh generally sooount for 25-35f of soU weight, but -contribute 60-75S of soU plutonlta. Duo to tbs scarcity of field data oo sediaent tranaport of 1IU*s ^^Ca data wlU be utUlssd la support of whst plutonlua data tbars Is. A good axaapls of *^Cs dsU Ulustratlag tbs raoonosetratloo or buUdup prooaaa in a watarahad of Halted extent aad ocaplaslty is foaad la a atudy of a raservolr In Mlaalaalppl. ^ Xablaa O-II sad Q-III saaoarUs soas of ths dsts froa tbs study. SoU ssaplM wsra ooUeoted ia 2.5 or 5 oa inereaeots to a depth of 10 oa; sediaeot saaplss were collected in 5 or 10 oa increaenta to a depth of 60 oa.

TABLE O-II

COKOTIATICH or ^^Cs 000 LAND OSKS OP POHBLINB HATBSBD

137 'r^rWl Wflf Hi far I (nCl/n') Osk-hickory 10 159.0 Pine 79 153.2 Grssa 7 147.2 Eroded « 8.9 Avera^ ^Ca U7.6 TABLE 0-IU

CONCSNTRATION OF ^^Cs IN SBDIMNTS

stresa Cbsnnal 4 Overbaak Deposits Flood Pool Coaservstion Pool

Ivldantly, tbs coarae-taxtored streaa ohaaaal aad ovirbik aaad depoeits hsd the lowest '' Cs ooneantrstlon in tbs whols watsrshed. But tbe oonoantratloa la tbe aedloa to flae taxtured ssdlasats of tbs oonservstion pool (the portion of s reservoir at aa elevation below tbe frae flow pipe outlet) waa 2.8 tlaea the average ^Ca ooaoentratlon of tbe waterabsd whsn ooaparod oa s unit sres basis, sad two tlass tba ooaosntration In tbs asdlua taxtured sedlaaats of tbs flood pool ragica of tbs reservoir. Another exaaple of slallar prooesaas st work Is fooad la data oa ssdiasnt coaoeatratloaa of ^^Ca la Tsnnsssss Blvsr sUt dowaatresa froa tbs OML site. ^^ Table 0-IV glvaa tbe approatlaate ratloa of *^Ca ooaoentratlon In aadlaaata at tbe daa, and Juat upatreaa, for aaveral of the daaa downstrssa from tbs satry of the dlaoh River. Clesrly these rstlos ara in the ssas rangs ss tbe reeervoir dsta. Soas insights into the asehsnisas st work in ths sorting proeessss reveslcd by data sueh ss tbsss osn bs found in s rscsnt flnite-eleaent aodel of sediaent tranaport of ^Ca in the Cllnoh River. Tbe aodellng prooadure Involvea alaulatlag tbe tranaport of aedlaenta within tbe water 'body. Models of dissolved and particulate Interact loaa ara aaad to prooeaa tbess results. Finally chaagas of river bed eondltlons sra recorded, including river hottea elevstion ehsncs, rstlos of sand, allt, and olay, and diatributioo of radlonticllde oonoeatratlca la tbe river bad. Sand, aUt, and clay are aodeled independently alnoe aediaent aoveaent and adaorptloa oapaolty vary algalfiosntly with partlols sise. Tbe aodel includes effects of (1) coaveotion snd dlsperaloi. of sedlaents, (ii) fall velocity snd oobesiveness, (ill) depoeitlon on river bed, end (iv) trihutsries. Table G-V shows valtiea of tbe critical paraaetera o' the aodel taken frca ainch River atudiea ooodueted in the aid-i960'a. The TAIUO-n

RATIO ^^Cs OONCBITBATIOH Of STOBAOE POOLS TO CONCINIIATION IN TilBBSBB BIVBR SBDIICNTS OPSTBBAM, 1961-1963

Looatlon oo •efclA mi Mfi^ Bntry of Ulnoh River 0.95 1.05 1.11 Hatts Bar Oaa 1.15 0.92 0.92 Chlekaaauga Daa 2.5 2.7 2.0 Bales Bar Daa 1.78 1.92 2.0 Ctaatersville Daa 2.5 2.67 4.0

*Baaed on gsias count rate st surfaoe of aUt. ralaaae rate la asstaMd to be ooatlnuotis. Csss 1 la tbs baas osss, ease 3 is for Inoraassd depoaitlce rata, and oaae 4 asstass laorsassd rlvsr flow. The concentrations of raleaaed ^^Cs at Hhlte Oak Creek ara assuasd to be: 2.5 xlO^ pCl/lB^ la dlaaolrad phaae. 7.42 x K)^ pCl/kg attaebod to sUt. 7.42 x 10^ pCl/kg attaofaad to olay, and aoae ottaobed to aand. This laplles 98f of tbe raleaae is via ssdlasat tranaport, aa axpeoted. Baaalta of the alaulatlon show that, oa tba one head, tbe oonoentraticn of *^Cs adaorbad on suspended aUt rwains steady sftsr sa ialtlal rapid btiildup frca near White Oak Oraek to 30 ka dowastreaa whera tbe quantity of suspeoded silt drops draasticsUy dus to deposition in ths qtileter, deep wster. Oo the other bond, the "^ Cs sdsorbsd en suspended olsys rspldly buUds up to sn order of asgnltude greeter eonoentrstion over tbe ssas rsseh, bttt thsn drops only slightly in ths qulster water. The suspsnded olsy does oot begin to deposit sppraolahly uatU tbs flow alaoat raadaa tbs aouth of ths river (40 ka) whera the flow velocity Is axtreaaly low. It la the ooabinstlon of tbe greeter sorptive oapaolty of the sUts sad this aatural aorting prooess thst begins to account for btiUdup ia areas of hl«h sedlaentstlon. OsU fraa tbs sppllostlon of tbe aodal to the Cllnah River conditions allow a tentstive qtisntlflcstloo of buUdup offsets. Thess valoea are approxiaate since only three particle sixes (snd tbsir correspooding properties) are aodeled. In Table (r-VI are tsbtilated results for rescbes nesr the bcglnrinc, alddle, and aouth of the river for tbe three oases of Interest: baseline, TABLE 0-V

CONDITIOBB^ni MODELING COHTINOOIIS RELEASE or Cs TO TBE CLINCB RIVER Psrsaeters esse 1 Cass 3 Caae 4 niaMllMl (21 flow rate)

117.8 11T.8 226.7 (a^/sec)

of White Osk Creek 1.3 1-3 1.3 of Popular Oak Creek 7.4 7.4 7.4 of Bnory River 45.0 45.0 45.0

Rlvw Sediaeat Slsea

aaad 0.125 0.125 0.125 silt 0.030 0.030 0.030 olsy 0.002 0.002 0.002

Critical Shear Stress Erosion (kgy^^)

sUt O.OTO 0.070 0.070 olay 0.073 0.0T3 0.073

Brodlblllty Coeff. (kg/a^)

silt 0.15 0.15 0.15 clsy 0.15 0.15 0.15

Critical Shear Strass for Deposition (kg/a^)

sUt 0.005 - 0.020 0.005 clsy 0.0025 0.010 0.0025

Radionuclide Adsorption Rste (a^/kg-dsy)

sand 200 200 200 silt 500 500 500 clsy 1 500 1 500 1 500

Vertical Diffusion Coeff. (a^/sec) 0.003 0.003 0.00? Sise Distribution at Wiite Oak Creek sand 35% allt 53* olay 12t TABLB O-Vl

CLINCB RIVOI MOOBL RESOLTS

Totsl Activity/ Suspended ^^^Cs Total auspsoded Downstresa AoUlDo ft& ipcum) (ka) (pCl/«i) Slit Clsy SUt CUy

Csse 1. Baseline -3 8.6x10^ 11.4/7.6x10 -• • 1 500 7.1 0.5 htlO"' 10 10.7/6.9x10 -5 . 1 550 1x10^ 8.6x10^ 20 6.4 0.5 4.8/5x10 > 9 500 1x10- 9.5x10- 30 -0- 0.5

Csi 3. 4 X deposition .2 • — «»3 10.6/7.6x10"^ • 1 WO 9x10* 8.5x10' 10 7.1 0.5 9.76/6.9x10"^ . 1 414 9x10^ 8.0x10^ 20 6.4 0.5 -0- -0- -0- 30 -0- 0.5

Case 4. 2 X Rlvar flow 8 250 600 8.55/2.3x10"^ • 372 10 15 7 250 600 7.7/2.lx10"2 , 367 14 20 383 5 250 650 5.8/1.5x10** « 30 10

incraased deposition (incressed criticsl ahesr atrass for dsposition). «.d

incressed rivsr flow. c *^^M

:^. u. «t. U.P-. r-t. ». rx«r rxo.. « «-t ««^ ---"-•;^:.^ .^t«. tc b. «.--.. ..t—. C«. . «- C« .. a-rx, fX« r.W Strongly influences ths buildup effect. With ths seas preosutlon in nind, s partlotilarly aasfhl way to express tbeee results, which allows ocaparisoe irith othsr data aad peraita lapeot aaaeasasnt. is to ooapute tbe ratio K., tbe total sadlasat botaMl eoecentratloo of oontsalnsnt in sress of bi^ deposition to the total annual releese of oontsalnsnt to ths river systsa (pCl/ga/Cl/yr). For the preseat case, the aanual ral rate of ^^Ca at IBate Oak Qreak waa 265 Cl/yr. Thea flrca Table 6 raaulta It oaa be seen thst. for tbs bsaallaa fk-oa 5.6 to 36: for inorsaaed daposition rsta, E, is spproxlastsly 5.3; and for tbe oaae of hi

Downstresa Predicted Redaction Dlstsaee ttvm Baaad on Sediaent souree ledtiatlai (ka) (f of initial Cone.) (f of initial Gone.)

161 50 60 323 4.8 23 484 0.4 15 564 0.12 11

added. This dlreotly contrsdlots the ssdiasnt dUntlon hypothesis. A seoond plsoe of svldenoa on this proosss eoaea froa s aaas bslsnoa study of fallout plutonlia In a watershed near Sidney, Ohlo.^ Tbe Great Misal Rlvar st ths OSGS gaging ststlon at Sidney exhibits ssdiasnt oonosntratlons vsrylag fraa nesr sera to over 1500 ag dry walght/Utar. It waa a^arently sKpaoted that during parloda of high aediaent loading and high flow tha^ would be a reduction in plutonlua ooaoentratioa in aadlasats. lewsvar, as soas of tbs data dlsplsyed in Tsbls O-Vin show, tbs sediaent eaiosntratlon of ^^•^*^Pa rwsined reasrksbly oonstsnt over s 6-fold increass ia stresa flow snd ssdiasnt conoentratioo. Of cotirss this oass is oot one of siapls dUution by uncootsalnstsd wster and sedinents slnos ths whole wstershsd is contaalnatsd by fsllcut. But oevwtbeless, slnos tbs total sediaent load is aost definitely not uniformly labeled with contaminant due to the greater aorptive oapaolty of the fine aadiaeat fraction, theae data do tend to oontradlot the dUutloa hypotbeaia. Other asohanlsas, described shove ss nstural sorting prooesaas, sra spparently overriding dUutlon. Thess findings, therafora, teod to support ths visa thst tbe asxiaia buildup of sediaent oontsalnsnt oonoeotratlon ocovars in tbe first reach of quiet tater downstresa froa the ralesse point ss s cc^xlsx rasolt of nstursl sorting processes, snd csnnot siaply be predicted frca river flow snd sediaent losd data. A range of poasible values of t obtsined frca s ntaber of aeesured 9 TABLB 0-VIII

MIAMI RIVER PARAMETERS AND CGUESPOHDING ^^'^^Pu SO COVCENTBATIONS AT TBE SIDHET, OHIO OAOINO STATION W^

239.240p„ j^ Flow Rste Sediaent Datt (L/sec) ConqftntfRt^flB (V/L) (fCl/g)

12/16/74 53 500 64.9 14.7 * 1.9 1/7/75 16 900 34.1 8.4 * 2.3 1/15/75 19 050 47.8 19.4 t 2.0 2/2/75 30 800 50.0 16.7 * 2.2 2/12/75 12 700 15.7 11.4 t 2.3 3/3/75 27 800 80.2 22.1 t 1.5 3/20/75 47 800 83.0 20.5 * 1.5 4/15/75 7 130 13.2 19.7 * 3.8 5/28/75 4 920 74.5 6.5 * 0.7

streaa eondltlons snd aatbeaatloal aodellng of the Cllnoh River is 1.4 - 36 pCl/ffi/Cl/yr.

JL Transnort in Estusrv sad To ccaplete the snslysls of ths tranaport of TRO rslsssed to ssdiasnts froa shsllow esrth btirisl sites, the effects occtirring in estusriss snd sdjscent ocean taters aust slso be considered. Soae of the oootsalnsted ssdiasnts froa taste burial altea transported b) Isrgs rivera trlU eventaaUy be dlaoharged into sn sstuary and finally the ooeana. Radionuclide tran^ort in tbe estuary sons is particularly diffiotilt to fuUy characterise beoauae of the coaplex fraah and aalt tater interactions possible laider the vsrylng conditions of rivsr flow, tide, snd wind. But certainly estuaries are aites of rapid sediaentatlon. 20 21 Studlaa of the Budaon Rlvar eatuary , snd ths Ssvsnnsh River Estuary . bsve shown that, as in fraah water, attaofaaent and tranapmt trith psrtioulste^ is the asjor aode of treosport in the aslt water environaent. Aa alght b« expected then, aediaentstion rate is a criticsl factor in determining areas c highest oonoentraticn. In Table G-IX It can be seen thst highest stirfscc TAH^O-IX RAOioMiCLisis n aaoam BTUAIT «Dimia

Collaotlon Oaptb Aetlvltv (OB) '37c 239.240py

»0/25/73 •. T. Barber 0-5 1 260 1 38 32.7 * 2.4 5-10 1 795 * 60 31.7 t 3.2 fo-is 1 W5 » 56 43.3 * 3.0 15-20 960 t M 45.8 t 3.2 20-25 1 030 t «0 26.4 t 1.2 25-30 370 * 28 38.5 * 1.3 35-40 925 » 49 48.5 * 1.6 %0-*5 1 190 t 40 -

6/20/75 Subtidal Bank 0-1 580 t 25 12.9 * 0.9 (tela •arlca- t-3 525 t 45 12.4 t 0.8 tlooal ChaB> 3-4 410 ± 20 11.1 t 0.8 oal *-5 335 t 25 • 5-10 -1 t 15 -

8/29/73 Cora; atellow 0-5 2 475 * 63 69.2 t 6.4 Wttmjmmat 5-10 1 825 t 68 52.1 ± 4.3 10-15 210 t 17 5.7 * 0.4 15-20 26 * 17 . 20-25 35 t 23 - 50-55 9 t i« -

sadlaant radicnuollda eonoantratlona vara obaarrad in oovas, lowast in oaTl«atlonal ctfiannals, and Intaraadlata lavals in barbors. Bar*, as In tba oasa of raaarroira and rlTars, tbara Im avld«ioa of aortinc prooaMM. If, for anapla, tba navigational-flhannal aadlaaat radlonuollda oonoaatratlon la takaa •• • typioal bad load valua, anhannad oooeantratlona la eartaln oova or harbor araas of 2 to 5 tlaas this valoa oan ba aspaotad on tba baala of thasa data. Thla rai^a of Talnaa is qnita oonslstaot with tba raaarvolr oaaa. As tba Inraatl^atora oota . tbara appaart to ba • eloaa oorarlanoa batwaae 239«240pg ooooantrationa and ^Ca ooooantratlona in tbaaa aadlaanta, astaadlng tba prarlooa vm of ^^T^ ^ ^ nodal of tba pbysioal transport babavlor of aadlaaot bound HO auoh as plutonian. nia aixiac of aaawater and rlTcr water takaa plaea tbrovcboat the ••tuary, and oontlBuas iato tba ocaaa ovar tba coatiaaot«l abalf. Cautaky found local

•,-lfc htgba la fallout radloactlTlty larals la aaabad aadiaants off tba outar nouth of 22 the Rivar Elba , and nora coaplata atudiaa on tba Colunbla Rivar aatuary and adjaoaat oontlaantal abalf by Foratar bava aubstantially ooaflrsad thla local •laratloo la radioouelida oonoaatratlon la aaabad aadlaaata aaar tba south of rivar (oallad tba Cautaky Kffaot by Pbrstar).^^ Proa tba -'Ca data for tba Coltart>la llTar, Its aatuary and ofrabor* aadlaaata. It would appaar that an aapliflad ooaoaatratloa la aadlaaata, on tha ordar of aiz tlaaa tba oonoantration of tha aala «?»«»w»>«i of tba aatuary algtat ba ezpaotad to oocur la aoaM locations oat onto tha adjaoaat oeatlaaatal abalf aa far as 30 loi bayood tha aovth of tha rivar. la tha Saraanah livar aatuary, 21 tba aaplifioatioa is about nlaa tlaaa. Iha aatnitnila of tha lapaot on a (Ivan aatuary and adjaoaat ooaaa ahalf will dapand oa tha hydrologio paraattara cbaraotarizing tha atraaa diaohargiag oontaalaatad aadlaaata into tba syataa. For axaapla, plutooitB oonoantrationa In tha Mawport tivar aatuary aadlaaata wara found to ba about thraa tlaaa hlfhar than tboaa la tba Savaanata Rivar aatuary dasplta tha faot that tha liawport Rivar raoaivaa only fallout wharaaa tha Savannab Rivar aatuary raoaivaa both fallout aatarlala and diaobargaa froa tba OQi Savaanah Rivar Plant.^' Sinoa tha aatuary and naarby ooaan uatars ara tha ultiaata alaka for tba ooataainatad aadlaaata traaaportad throoch tha rivar syataa, long-tarn oonoantration tranda la thaaa aadlaaata ara of oonoara. Bet auoh laforaatloe haa baan fouad ragardlag long tarn traads la tha buildup of traasuraaloa la bay and ocaaa aadlaaata. Tha atudiaa around tba nuolaar raaotor oaar Boabay Harbor and bay Indlcata a ataady iaoraaaa awmr a pariod of fiva yaara with plutonlua aoouaulatioo bigbar by a factor of 10-100 ocaparad to tba fallout lavals 24 obaarvad la aurfaoa aadlaaata froa othar araaa aaar Boabay. Bowavar, tbara ara Insufficiant data to ralata tha obaarvad ooaoaatratioas to a aouroa tara. RBFIRBICBS

1. W. U. Sayra, H. P. Guy, and A. R. Chaabarlaln, "Optaka Transport of Radioouolidaa by Straaa Sadlaaata." Gaologleal Survay Profaaaional papar 133-* (1963).

2. W. W. Sayra aod D. W. Bubbla, "Tranaport of Radlonuolidaa in Fraan Httar: Dlaparsal of Bad Sadlaanta," in Traaaport of Radionuclides ia Freshwater Syataaa, TID-7664 (February, 1963). A. Hhita and g. P. Qlogna, "Radloaotivity Xraaapert la Matar - NathaMtioai SlaulatiOB." Taxas Otalvaraity, Caatar for Baaaarob la Matar Raaouroaa Report GBO-490-19 (1969).

V. H. Sayra, "Traaaport and Oiaparaioa of Pluvial Sadlaaata: Soae Hatbaaatloal Nodala aad thair farifioatioa by Traoar Nathoda," la Tracer Taobalquaa ia Sadlaant Traaaport, IAEA Taohaioal Report Sarlea Bo. 14$. lABA, Virana (1973).

Jacob Baar, "Dynaaioa of Plaids in Porooa Nadia," Aaarioaa Elaaviar, Baw lork (1972).

J. L. Balaon, R. H. Parkins, J. M. Bialaon, and V. Baoshild, "Baaotioaa of Radioeuolldas ffoa tha Baaford Baaetors with Ooluabia Bivar Sadlaaata," la Disposal of Badleaetiva Haataa iato Saas, Oaaaaa aad Barfaoa tlBt«*a IAEA, Tianna, sn/PQB/126 (1966).

P. TodM

H. J. Siapaoa, C. R. Olsan, R. N. Triar, S. C. Villiaaa, "Naa-aada Radionuelidas and Sadlaaatatlon in tha Budaoa Rivar Bstuary," Solanca, Tol. 194, 179-162 (Ootobar. 1976).

R. B. MBllar, D. G. Sprv«al, aad 0. B. Bdgiagton, "Miaai Rivar Mttarabad Projaot: latrodnetioa,* ia: Badiologioal aad lBviroaa«ital Baaaarob Diviaioa Anaual Baport, loologf, AIL-75-3t f^rt HI (Jan-Oae., 1974).

G. B. Bartalt, C. H. Hayaaa. aad 0. B. Uglagtoa, •Plotoam Ooaoaotratlona la Matar and Sospaadad Sadiaaat froa tha Mlaai Rivar Hatarshad, Cbio," la: Radiological aad Bayli'oaaautal Baaaarob- Diviaioa Aaaoal Report, Boology, AHL.75-3 Part III (Jaa-Dao., 1974).

D. G. Sprugal, R. B. Hollar, G. B. Bartalt, C. V. Wayaaa, aad C. N. Bobula, "Diaparaal of Plutonlua ft*oa aa Effluent Pulaa ia tba Great Mlaal River," in: Radiologloal and Baviroaaaatal Baaaarob Diviaioa Aaaual Report, Ecology, ABL-75-60, Part III (Jaa-Dao., 1975).

R. B. MBllar, D. G. Sprugal, C. V. Mayaaa, G. B. Bartalt, and C. N. BobuU, "Behavior aad Tkwiaport of Sadoatrlally Oarivad Plutoolw la the Great Mlaai Rivar, Ohio," Baalth Phyaioa, 33. 411-416 (1977).

D. R. Rogara, "Mound Laboratory Baviroaaaatal Plutoolua Study, 1974," Mound Laboratory Report, IUI-2249 (1974).

R. B. Moller and D. G. S|»nigal, "Distributioe of Looal aad Stratoapbarlc Plutonlua la Ohio Soila," Baalth Phyaioa, 33, 405-409 (1977).

J. C. Rltobia, J. R. MoBaary, A. C. Gill, and P. B. Bawka, "Dlatributlon of Ceaiua-137 ia a Saall Watarahad la Morthara Hlaalaalppi," in: Proc. of 3rd National Syapoalua co Radloeoology, D. J. Belaon, ed. (1971). 16. R. J. Morton (editor), "Statua Report Bo. 5 oa aiaoh River Study," Oak Ridge Batiooal Laboratory Report, aUU3721 (October, 196$).

17. T. Oniahi, "Finite Elaaaat Modela for Sadiaaat aad Coataalnant Traaaport in Surface Matara, Tl*aasport of Sadlaaata aad Radloauelidaa in the Clinch River," Battelle Bortbwaat Laboratorlaa Report, BaML-2227 (July 1977).

16. P. B. Carrlgan, R. J. Pickering, T. Taaura. aad R. Forbes, "BadioaotiTe Materials la Bottoa Sadlaant of Cliaah Bivar. Part A. lavaatlgations oa Radlonuolidaa ia Oppar Portion of Sadlaanta," Oak Ridge Bational Laboratory Report Qia. 3721 (Supplaaant 2A) (Mareh 1967).

19. D. G. Sprugal and G. B. Bartalt, "Pralialnary Maaa Balance of Plutonlua ia a Hatarahad aaar Sidaay, Ohio,* la: Radiological aad Baviroaaaatal Rasaarob Diviaioa Annaal Report, Boology, ABL-75-60, Part HI (JaB.4>ao., 1975).

20. B. J. Siapaoa, C. R. Olaaa, R. M. Triar, and S. C. HiUiaaa, "Man-aade RadionoQlldas and Sadlaantatioa ia tha Bodaoe Rivar Bstuary," Science, 194. 179-182 (Ootobar 1976).

21. D. H. Bayas, J. B. LaRoy, and P. A. Ooaa, "Plutonlua la Atlaatio Coaatal Bstoariaa la tha SeuthoasUm Iftiitad Stataa,* la: Prooaadiag lABA/aOA latamatioaal Syapoalua oa Transuranioa Boolidaa ia tha tevironaaat, Saa Pranolaoo, CA, 1975, Paper lAEA-SH-199/27.

22. B. Cautaky, "Poaaibla Aocuaulation of Oiaereta Radioactive Eleaeata in Rivar Nooths,* la: Dlspoaal of Badioaotiva Mastaa Iato Saaa, Ooaaaa, and Sorfaoa Matara, IAEA, Tiaaaa, 1966, STI/POB/126.

23. V. 0. Pbrstar, "Radloaaelida Distribatlon la tha Coloabla River and Adjaoaat Pacific Shalf Sadlaaata," la: The Coloabia Rivar Ratuary aad Adjaoaat Ocaaa Matara. A. 7. Pmtar and D. L. Alversoa, eda., Oalveralty of Maablagton Preaa, Seattle (1972).

24. C. C. PUlal and Elisabeth Hatbaw, "Plutoolua ia Aquatic Envlronaant - Its Babavlor, Dlstrlbutloa, aad Slgaifloaaoa," Procaedlaga of tbe lAEA/RRDA latematlooal Syapoalua on Traasuraaiia Buelldea la tba tovirenaaat, San Fraaciaeo, CA, Moveaber 17-21, 1975. Papar lAEA-SM-199/27. APPBniX B

TRABSORABIC OTlAa BY AQOATIC GBGABISMS

J. H. Baaly Loa Alaaoa Soiaatifio Laboratory

L. 0. Byaaa aad J. B. Tfavalha Oak Ridge Batiooal Laboratory

Plutoolua aad tha traaattranlaa alaaants ware, for paara, oooaidared to be ualaportaat la aoalogioal traaafars aad food chains baoauaa of their low aolttbllity and uptake whaa lagaatad bf aMaals. It is true that ooapared to oeaiuB or atroatlaa, tha aaoll4aa of oeaoara with radloiaotopea la tba aavlroaa for yaara, tha involvaaant of plotoaiaa is aaall. Bowavar, sofficiaat laforaatice has baaa developed la the past five to tea yaara to indlcata that tha traaaoraaioa do taka part ia aqoatie food ofaaiaa. latarpratatloB of aavlroaaaatal data is difflaolt doa to dlffarlag degrees of aurfaoa ooataalaatioa aad/or got loading fbr tha flah. Thus, true biological iaoorporatlce ralatioaahipa ara eftaa aaakad ^ thaaa oootribatloos which often Indloata a higher dagraa of aaalallatioe thaa aetaally oooara. Ia order to aaaaaa tha potaatial haaarda trcm traasaraala alaaaota relaaaad to aqoatio eaviroaaaata, aoae asasui-e of thla behavior, partiealarly aa it leada to fooda of iataraat to aaa, ia aaadad. Tba followlag raviow of available data la Iataaded to provide laforaation upon which soob aa aasassaeat oaa be aad* although it ia not iataaded to be a coaplate review of tbe literature on tbe subject.

Freah liefc«| -[uXtm Baanr at al.''^'^** have daaeribed the behavior of plotonlua and aaarlolia la a poad at the Baaford Plaat. Tbe poad la fed by a plotoaiaa preoaaalag plant aad lauadry waataa with a flow of about tea a^ of water aaeb alaota. About 9$f of tha water leavlag tha pood ia by paroolatioa late the aella. Tbe poad is deaoribed as aa oltra-eutrophlo aystaa with aoat of the plaat aotrlaata aupplled by waataa froa tha laundry. Analyaaa of aedlaeat froa treaebea leading to tr>t poad ladieated that auoh of tbe tranauraalua eleaeots froa blstorie rclessea were reaoved to tbe aedlaenta of tbe trencbee and thua did not reaeb tb« pond This ralaea the poaalblllty that leaching iato the pood of plutooliai and irloiua that were depoalted yeara earlier aay ooaatitote a aupply of poaalblr soluble radioauclldee that could affeot tbe aeeaured valoea. Tbe aedlaeat oootalaa >95S of tha total plutoaiua pool ia tbe pood. Tb« potential availability of ^^'Pu, '''^*®Pu, aad ***Aa were eatiaated by s series of extraotloaa ualag aodiua chloride, oxalate, aad BDTA. Coeoaatretloo ratios (tbe ratio of the ooaoaatratloa la tha organisa to the ooaoeatratloe la the water) for biota were eorraoted by the authors to aooouat for tha eatiaated available fraotioa froa the sadlaaata or water. Bewever, for purpoaea of thla praaaatatioa, wa have ohosea to prasaat ooaeentratioa ratioa (CB) for plutoolua •ad aBarioiaa related to the total ooaoeatratloas reported la aedlaeata aad water. Thble B-I dearly deaoaatratea tha diffaraaoa la oaleulated CR valuee for aquatio biota whaa dlffaraat souroea of tbe traaauraaiua eleaeat are

TABLE B-I

coKEBamoas RATIOS rm po ABD AB BSIBSSD VITB SIFTIIEBT BASES

MM fmr finnngntratilnnlatl o Ilitarafcltlal

Pu Aa Pu Aa Pu

Algoo Ploc 5 3 219 185 2x10* 2x10^ Shall 0.2 1 6 62 5x10^ 8x10* Sutaaergeat CatUil 0.2 0.6 7 34 $x10^ SxlO* Algae 0.1 - 6 - 5x10« - BaUva Goldfish, 0.05 0.1 2 7 2x10« 8x10^ w/o Gut AMrgaat Cattail 0.02 0.05 0.8 3 5x1o' 3x10^ Beetle (ooleopteaa) 0.009 0.01 0.3 0. 7 3x10^ 8x10^ Sabaargant Bulruab 0.003 - 0.1 - ixw' - aaargent Bulruab 0.003 0.001 0.1 0. 2 IX10^ 3x10^ Bative Goldfish 0.002 0.005 0.06 0. 3 5x10* 4x10^ Muaole Tbe ratioa of both ^**Aa aad ^^Pu to 239,240^ ^ orgaaiaaa coapered to thoae ratios la varloua potaatial aaviroaaeatal aouree ooopartaeots ar« preaaated la Table 8-II. A value of 1.0 would iadioate that the acceptor ocapertaeot (biota) oootained exactly tha aaaa aucllde ratio aa tha prepoaed aouroa ocapartaeet (aedlaeat, laterjtltial water, overlying water). Therefore, that ooapartaaot which exhlblta ratios doaeat to oaa for both auolidaa ahodd be given prlaary ooaaldaratloe as the prlae sooroe of traasoraaios in this syataa. Proa Table B-II It oaa be aaea that iataratitid water aost doady aaeta tbla requlreaeot. Tbe algaificanoe of tbeae ratioa ia act dear baoaoaa it la lapoaalble to diatlagalsh batwaea poaaibla aatod aeparatleaa of thasa aadidea aad aueb faotora aa dlffaraat iaputa of tha noelidaa. MarahaU at d.' provided aa earlier aaaaaaaaot of tha role of orgaaiaaa la reaovd of plutonlua froa Great Lakes watera aad tha petaatid tor plutoaiua to raaeh aaa via tha food ehaln. Coaoentratiea ratioa are rapM'tad ia Table B-III for biota of the flva Great Lakes, with wphasls oa aaaples froa Lake Mloblgaa. Bigh CB*a la aixad plaaktoa ooaparad to aoeplaaktoa mrm thought to be, at leaat partially, doe to plotoaiaa la phytoplairiitoa ahioh pradoalaate la aizod plaaktoa aaaplaa. It ia ftethar WMBOomi that aaok of tha ^^Pa la leeplaiktoa saaplaa is doa to phytoplaaktoo la thalr dlgaatlva traeta. Pbod ohala ralatioaahipa between aoat of tha apaoies, ahewa la Tkhla B-IH are aaatioeed la tbe text of Maraball at d'a. paper aod are liatad la Table B-IT.

TABLE B-U

COHPABISOB or BDCLIOB RATIOS II POIHTIAL SOQBCB CGMPABTIflRS AM) BIOTA

Iataratitid Orerlyiag Saiiam ii«t«- -JB^IC 238p^39,240p,j 1.7.1.9 0-74-0.84 0.41-0.46

2*'la/239,240py 2-3-2-8 1.7 -2.0 0.002-0.003 TABLE B-III

COMCEBTBATIOi RATIOS FOB ^^PQ IB GBEAf LAKES BIOTA, JOBS 1972 TO BnTIIBIiR 1973 (HIT MUGIT)

Coaoeatratioa Fbetera ever Matar I Saaple Buaber Haaa*

SupM-ior Hixad planktoplaaktona 3 4000^904 000 A 9000 2680-5700 Zooplaaktoa 1 630 A I Sadt 1 6 Hiehlgaa Hixad plaaktoa 22 5 700± 800 620 - 15 300 I Claiephera ap. 16 3 400^ 500 060 - 6 930 Zookplaaktoa 9 350^ 60 ta - 653 Mfala raUeta 7 760^ 60 587- 989 I Peatoperaia affiala 2 1 600 450 - 1 830 Sllay aedpla 7 250± 60 128 . 960 Choh 8 37± 3 21 - 50 Alawlfe 7 25± 2 17 - 30 I aadt 6 20± 4 6 - 33 Pareh 2 16 4 - 29 Mhitafiab 2 14 5 - 23 I Ooho 1 7 r^fff^f^ 1 4 Lake troot 2 1 1 - 2 I Mizad pl«dctoa 2 4 460 3 340 - 5 680 Alawlfe 2 165 25 - 305 r sadt 13 Perch 24

Brie Zooplaaktoa 3 500 ^± 150 316 - 788 aaeit 235 Perch 10 i Ontario Hixad plankton 3 2 424200 ±± 200 2 030 - 2 670 Alawlfe 176

*Maaa ± ataadard error. i

TABLE B-n

FOOD CBAIB RBUTIOMS

aBtOlRB P^^rrrr *~^ n^>r^»» Zookplaaktoa (gaaard) Phytoplaaktoa

Myaia, Poatoporeia Parlphytoa aaar aurfleid (orustaeaana) aadlaaat layer

Scdpia Poatoporeia

Oaih, Alawlfe, Saelt Zookplaaktoa or alztara of Mhiteflsh aooplaaktOB A hwthle lavert.

Perch Nlztara of lavart. 4 flah

Coho salaoe, Chiaook AMUar fish lake trout

Tbe authors ooodudad that, dthoogh the oooeaatratioa of plutonlua ia phytoplaaktoa la severd thooaaad tlaaa that ia tha water, tha ooaoaatratloa la othar orgaaiaaa deeraaaaa by aa ordar of aagrt forte la aaeh aoaoaadva link la the food ohala laadlag to 6 Davis et d. aeaaured the eeoeeetratloa ivtioa for aaptuaiuai.239, an laotope with a 2.3 day hdf life, la Cnliarftla Bivar orgaaiaaa. This Isotope resdted fToa the operatloo of the prodoetioo raaotors at Baaford. Tbe results are given la Table B-T. Ia laterpretatloe of thaaa vdues it aust be reaeabered that Beptuaiua-239, vith a abort hdf-life, aay wall give valoea lower thaa for the aeptimlua 237 of iataraat ia waata aaaagaaaat. Tbe factor la act kaown baoauaa tbe bidogiod hdf-llvaa of the aoolida la tha organlaas are oakaowa. Hahlgrea aad Harahall^ studied tbe dlstribatioa of residud fallout plutoaiua la Lake Mloblgaa batwaea tbe water aad the varieoa trophic levela of tbe food ohala. Tbey fouad tbe coaoeatratioa ratio for plutoaiua In phytoplaaktoa ooapared to water waa about 5 000. A redootioe la ooooeetratloo by a faeter of about K) was obaarved at aaeh trophic levd ooaaistlag of aoeplaaktoa, plaaktlvoroua flab, aad piaqlvoroos flah. Tbe top pr eda tore had oooeeatratlona ody dlghtly greater tbaa tbe lake water. Bowever, tbe cooceatretloa la beathio flab waa oooalderably higher tbaa ia tbe plaaktlrorous fiab. Froa their figure ahowlog thaaa levela, we wodd eatlaate tbe TABLB B-f

OOHCEBTIIATIOg RATIOS FOB '^^Mp IB COLOMBIA RITBR UATBR

2BMiBfl a fifirt VRlT^*^^

Oreea algae 280 Spoage 40 laaeot larvae 30

plaaktlvoroua flah to have a oeooeotratice ratio of about 20 over the water aad tbe pisQlvoroua fish a coaoantratioa footer of about two, while beathio fiab abowed a CR of approxlaatdy 300. The aajor role of phytoplaaktoa la plutoaiua klaetiea la aquatic ayataaa haa been poatulated to be one of reaovd of a algnifioant fraotioa of plutoaiua fro. the water coluan.''' Bowever, coUeotiea taebaiquea are auoh that phytoplaaktoa caaaot readily be aaparatad froa iaorgaaie auspeaded partioulate aattar. The reported oeaoeatratioa ratioa for algae aay, ia fMt, be high due to the Inoloaioo of iaorgaaie aoapandad partieolate aattar whioh wodd have a CR vdua of 10 . The oorralatiea batwaea pereeat ailioea eoateat and plutodiai oonoantrationa la phytoplaaktoa aaaplaa waa attributed to the predcalnanoe of 10 8 diatoa frustdea la the aaaplaa aadysed. Mahlgrea et d. reported a correlation betweeo percent aah weight and plutoaiua ooaceetrationa. They alao concluded that plutonlua waa aaaociated with diatoa fruatdea in the plankton saaplaa. Bowever, la neither oaaa was tbe ooatrlbutioa of aaaociated inorganic, suspended partlodate aattar to the obaerved plutoaiua oooceatratlooa aeaaured. They dae reported a diatrlbutioa eoeffioleat for suspended aedlaent aaterlda of <^3x1o'. The Inclualoa of a aadl aaount of thoae aaterlda la tbe aah reaidua to phytoplaaktoa saaplaa aay offer e plaualble alteraatlve ioterpretatloa of the observed oorrelatioaa. Edglagtoo et d. aeaaured tbe plutoaiua and aaarlolia oontanta of Lake Mloblgaa aedlaeata, aa wall aa aoae of their other cbarwstarlatlca. It baa been shown that approxlaatdy 97f of the fallout plutonlua that haa entered Lake Michigan now r«aidea ia tbe sediments. Surface sedlaents in Lake Michigan nov contala between 0.14 and O.t pCi per graa of dry aedlaent with the concentration in the water coliaai less than 10~ pCl per liter. Edgin«ton had earlier iadloatad that there la a negligible oontrlbutlea to the lapot of plutonlua froa ruooff via tributary rlvera and atreaaa. Ia tela atudy the data auggest that there is a slgalfioaat redlstributloa of aedlaeatary aatarid whleh rapidly aovea tbe radloaotivity froa *t.s alte of depoaltloe oa the aurfaee of the aedlaeata to a flad alte of depoaltloe in tha aedlaeat layer. There are appareatly large areas of the lake where ao algnifloa::*^ aadlaaatatioe oocura. Ia tbeae araaa there la a layer of flee, oeatalnlng high ooaoeatratloas of plutoaiua, overlylag tbe glacial till or aaad. Siaca ao aigalficaat aoouadatloaa-of aedlaeat have ooourred la these araaa. It is likely that tbeae ooe to two oeatiaetar thick depoaita are traaaitory aad that tha aatarid ia readily available for resuapanalea. Tbe average aadlaaatatiea rata for Lake Nioblgaa is quoted aa about 0. i oa per year with alxiag depths typiedly 1 to 2 OB. In tha ebeaied atudiaa It waa showa that aoat of tba pluteaita la the aedlaeata la assooiated with the bydreua oxidaa of irea aad ancoaaaaae. Leaa thaa 7f of tha totd plutoaiua la aaaoeiatad with tha sadlasntary biasic aao fdvlo add fTaetioaa. In the few oerea aaa sin eJ, tha ^**Aa range rt froa 0.008 to 0.054 pCi per graa of dry aedlaeat la the top four oa. Their stodlea of aBerloiua-241 with depth la the aadlaaata abowed that the aaariolua ia belag foroed ia place aad abowa little or ao preferaatial aoblllty over tbe plutoalUB-239-240. Hahlgrea et d. aeaaured the plutoolua, aaarieioa, aad uraalua la Lake Mloblgaa biota. The readta are aoaaariaad for aaarlclua aad plutoaiua In Table H-TI.

TABLE B-TI CB FOB ^^^AH ABD 239,240p^j jj LAO HICHIQAB BIOTA

Concentration Ratioa

Phytoplaaktoa .r 1.6 x 10 1 z K) Banthoa .r6 300 1 300 Zooplaaktoa ^.$00 320 Plaaktlvoroua Pish

TABLB B-TII 239P U COMCEBIBATIQB RATIOS LAD NICBIOAB (wat weight baala)

^••BJLBL .Saagfl.

Cladophora 16 3 800 ± 500 1 060 6 930 Hixad plaaktoa 22 5 700 ± 800 620 15 300 Zooplaaktoa 9 350 A 60 122 653 Hyaia 7 760^ 60 587 989 Poatoporeia 2 600 1 450 1 830 Sllay aodpin 7 250± 60 128 $60 Bloater 8 37 ± 3 21 SO Alewife 7 25± 2 17 30 Sadt 6 20± 4 6 33 Lake Mhlteflab 2 14 5 23 Coho Salaon 1 6.7 Chinook Salaoa 1 4.0 Lake Trout 2 1.5 1.3 1.7

H-a Adi et d 13 provided aquariua atodlaa uaiag plutoolua deroapberea. In 2^ the study each of three aquaria waa apikad with ooe "^PuO. deroapbere that was about 100 wa in dlaaet«> and waa oaleulated to contain about 68 doroeurles of 2^8 Pu. Tbe deroapbere waa placed ao that it waa available to tbe cirodstioc water but waa not aoved froa ita poaltlon by ourreeta. It waa found that la the firat nine daya tbe coaoeatratioa la the aquariua water increased rapldy, with about 0.05S of tbe plutonlua aetivity la the water of tha aquariua. Tbe activity than decroaaed over the next fifty to aevoaty daya aad findly leveled out to about 350 dis/ain par liter after about 100 daya. Tbe ooooeatratloo ratioa for portions of goldfish and anaila whioh ware kept la tbe aquariua through tha eatlre pariod hot with expoaorea greater thaa 100 days are glvee in Table B-TIII.

TABLE B-TIII

CONCEMTBATIGi RATIOS - 238P O PCB AQOARIOM

Tiae of ifei^tlMi •efclae Bxpoaore DBTB Qiitr ngab Goldflab - wet weight 104 720 30 < 200 181 110 50 < 870 183 1 300 30 < 340 184 2 100 16 <1 300 185 2 100 23 < 5$0 Snails - dry weight litab Shell 185 2 300 1 100

• Contenta Dahlaan et d. repwted oo the behavior of plutodua la tbe blotic Qooponeata of White Oak Lake. Readta froa aadysea of aaaplaa of various coopooeeta of the lake ayataa, as abown la Table B-IZ, abowed a geoerai tread of deoreaaed ooaeentratioa of plutoolua at higher tropic levela (abad vs large-aoutb baaa). Orgaaiaaa living xa or oo the bottoa of aedlaenta of tbe lake had plutodua ooooantrationa that ware two or three ordera of aagdtude higher thaa for predatory fiab, large aootb baaa, and doagill. Fllaaaatoua algaa aaaoeiatad with aedlaenta la ahallow araaa of Mhito Oak Lake bad tbe I greateat oonoantration of dutoaiua of any biotle eoapoaeat aeaaured. Levela of duteelua obaerved In varloua fish spadea were related to their feediag bablta. I Gaatrolnteatiad eonteata of gold-flah, ahad, aad hlwagll 1 bad pluteelua ccnoentrationa higher than any biotle fora In tha ayataa, iadioatiag tbe aouroe of lataka was probably aedlaent. Further evidenoe of aedlaeat lagestloa by i these fish waa tbe faot that the ^^^Pu/^^Pu ratio of got oontenta waa aldlar to that aeaaured in aedlaenta. I I TABLE B-n COBCBBTIATIOB Of ^^9,240,^ ^g^ oOBCEBTBATICi RATIOS I FOB PISB PBQM BBITB OAK LAO

239,240 I Pu Content ICtUtfi o,d CarcMSA Q.I. Tract JIAU& I Speclea J2£JLZg. .^^ JCX/X. s.g. c.r. .1.1^ I Largeaouth baaa 2x10' 6x10- 5 6x10- 3 4x10 0.4 0.2 Bluagill txK)- 3 8x10' 4x10- 5x10" 3 2 Goldflab IxW -3 1x10- 3 8x10" 3x10- 3 3 I -3 -5 -1 Shad 2x10 3x10 4x10 7x10- 4 0.1 I

*Totd flah aiaua G.E. Tract i Standard Error. ^Uater concentration of Pu uaed In calculation of CR valuee was «x10~ [ pCi/g. CR values for carcass. I iAiile Ingestion of aedlaent appaara reapoeaibla f»r the highest levels of plutoolua (body burden) In flah, thla aaohanlaa appareatly baa not enhanced availability of Pu to biota beoaaae ooooeatratiee ratioa for biota la UhlU Oak Lake were relatively lew ooapered to tboaa obaerved at other atudy altea. Loag-tera obealcally aad/or blologiaally aadiated traaaferaatlons of plutodua ooaq»ounda aay be expected to ooeur la aqoatie syataaa. Tbeae traaaforoatiooa aay readt la plutoaiua belag ooaplexed by aatarally oeeurrlag ohdatlag ageats auoh aa earboKyllo aoida (citrate), fdvle add, or proteloa. Severd Uboratory axparlaenta ware oarried cot at Oak Ridge^'*^'*^ to deteroine the uptake, retentloa, aad diatribotiao of aoaaaarie ploteaiua (IT) both la aa aqoatie vertebrate, the ehanael eatfish rtt^»tnma» Baaatatna. aad la a littord aqoatio aimoeooayataa. A prlaary fiadiOB «•• l^*»t gaatroiataatiaal lataka by eatfiah waa aigBlfloaaUy higher tbaa reported tot aHada. Chdatloo oaa either enhaaoe or redooe the optafca of lagaatad plotonlua relative to plotooiao hydroxide (aoneaer) In ehauid eatflA. The hlghaat obaerved reteatioo (wbole body) at 63 daya waa 3.8f of li«eated doaa for ^^Pu citrate, while retaotion of the fdvata was 0.6f. Bedoeed uptake ef the fdvate ecaplaz la doe eitbar to ita high aelaedar weight (> 10 000) cr to ita atabillty in aetabdie ayataaa. laoraaaad uptake of plutoaioa 237 oitrate is attribotabla to inatability of the eoaplax la aatabollo syataas. Tiaaua distribatlon atodea raveded that relativdy little (^lOf) of latraoardially iajected plutodua citrate waa excreted. Blood clearaaca ratea were alallar to thoae fouad la aadl aaanla, wltb the dotodua belag prlaarlly aaaociated wltb tbe plaaaa protela traaaferrla. Tbe fractload body burdena in bone, liver, aad kidaey 17 daya after lajeotloe were 3If. 24f, aad 9% of tbe lajectico doaa, reapeotivdy. Bigh kidaey burdena relative to aaaads are expeoted, aiaoe the kidney fcaotiooa aa the aaJor alte of booopoieala in teleoata. Abaaooe ef aigaifleant exoretioo ladeatee that a abort bdf-llfe coaponeat of dlalnation following gut dearance la gavage atudiaa la due to plutoaiua labeling of the gut. A dlstrlbutloa coeffioleat of 9 x 10* waa obaerved for aedlaent in a year-old aquatic olcroooaa aplked with d«toniaa»237 dtrata. A aaterlda bdaace at 90 daya poat-aplke provided tbe followlag eatlaataa: 0.00it ir water, 0.04f la biota, and over 99.9f in aedlaenta. Cooceatratiooa la whole aniada laoluding flab were aurprislngly ualfora (witbla a factor of K 1.2-9.9S of aeaa aedlaent concentration.) Thia waa related to gut losdlnn of aedlaenta aad/or aurfaoa eewtaainatlea. The uptake by rooted aaeropbytes not expoaed to aurfaoa oeataainatioa was qdte aaall: 0.03 to O.lf. Baaed oo thla eat of labore^ory experlaeata, aorptloo of plutoolua to plant surfaoea, oo gut walla, aad oo exoakeletoas appears to doalaate ia aubaerged ooopoaeata of aquatio aysteaa.

Hsrlnt aysfa Pillal, Saitb, and Polaea*^ are geaerally credited dtb aakiag tbe first aeaaureaeata which ahow algnifioant quantltiea of plutoaiua la the oceaa and algaifieaat conoeatratioa ratioa for dotodua in bidogiod ayataaa. Their i •iiMiry of the oeoeeetratiee ratioa for ^^Pu ia givea la Table B-Z. Tbeee vd­ uea are related to the average dotedua eoateat of eeaatd watera aiaoe tbe r aaaplaa of aariae orgadaaa ware takaa neer the aootheia Cdlfornla ooaat. Plutoaiua oonoantrationa rwiged froa 0.035 dpa/liter for the ooastd aaaplaa to i vduee of 0.194 and 0.303 dpa/liter fer aaaplaa froa tha aerth Paolflo far froa tbe ooaat. TeapletOB^ provided ooaoeatratioa ratioa readtiag froa laboratory experlaeata la a flah (plaioe) aad a aaawaad. Tbeae ratioa are givea la Table B-ZI.

TABLE B-Z

COMCEBTBATIGB RATIOS - ^^^PD VET MBIGBT

CopoeBtration Ratio Red Tide 600 r Oreea Algae 1 570 Giaat Cdp no Plankton 2 500 Muaaals (soft parta) 230 Huaada (abeUa) 290 i *Flab (bodto) 3

Edible portion and bonea. MWI

TABLB B-ZI

CONCEBTBATICB RATIOS FOB PLOTOVIQM IB MUIBE ORGABISMS FBOM LABGBATQBT iAPlBUMiS. (After Teapletoe, 1959)

Pleuror-vstea plate tlaaue after 140 daya ex(/«.jure

lateatiaa 6.0 Liver 5.0 Kldaeya 3.8 Skia 2.0 Bone 0.6 Huade 0.17 Perphyra uabiliodla 1 000

90 Uoag et d. reported oa fish and other speelaeas caught off Cape Hatteraa, Cape Cod; plankton froa nata towed on the traaseet froa Loag Islaad to Baraoda; aad aargaaae weed fToa tha aoothera part ef tha Sargaaao Sea. For ooaoaatratloa faetors tbe "average north Atlaatio sea water" derived froa Boweo •t d.^^ waa oaed aa a refereoee. It waa aotad that tha eartilaglaooa akeletoe of the due ahark coooeatratad dotodua leaa than tba batter odolfled akeletooa of tbe bony fish. However, in tbe shark the liver ooaeentratioa was higher tbaa for aay of the boay flah. Tbe two bottoa feediag fish, tautog aad flouader, bad high gut vduea aad high liver coaoeatratlona. It was acted that tbe atarflab were collected aa they were feediag oa aussol bade, aod tbe atarfish dutoniua coooentratioa waa about four tlaea that of the blue ausaela on whioh it waa feediag. Thia raiaed aoae quastioa aa to tha daereaae of dutoniuB eoateat dong the food chain. The coooentratlon ratioa reported In tbla papar are given la Table B-XII. Bowever, it ia noted la the later peper that aooa of tbeae ooaceatratloo ratioa were chaaged due to a obaage la tbe odlbratloa of the equlpaent uaed. Tbe vduea la Table B-ZII however, include aoae orgaaiaaa whioh ware aot induded ia the later paper end tbe table i.-^ included for iaforaatloa. Noabkln et al. have reported the previoua data plus othe^^ Intereatlagly, tracea of thoriua-228 were fouad ia a nuaber of tbe seapics by TABLE B-ZII MAR1MB COMCEBTKATIOH RATIOS FROM CAPE COD CR OPBB M. ATLABTIC OCSAB (wet weight)

Collaotio la Conoentratloa Site

Atlaatio 9 000 Plankton Atlaatlc 2 300 Sodpe Atlaatio 900-2 400 (4} Starfiah Cape Cod Caad 1 000 Dyer'a Dook 760 Soft ahdl olaa Baday 380 Browo auaael Baday 290 Blue auaael O^w Cod Caaal 240- 260 Moodaeok 260- 290 Dyer'a Dook 160 Blue auaael shell Moodaeok 410

>*»~»1- teatL Liver Gut Q^ll Bloe shark 4 18 200 - - 25 150 - - 1 Blue fin tuaa 2 90 . - • Blue fiab 5 570 26 - - Striped flab 4 160 14 36 14 BUokfiah - 510 64 730 - Blaokbaek flounder 1 50 57 1 060 - I

analysing the entire dpha apectrua. Conoeatratioa retios for earlne invertebratea aa fouad by Moabkla are given ia Table B-ZIII. Ia deriving tbe ooncentration ratioa tbey again used the ooncentration of 21 "average north Atlaatio aaa water" givea by Bowen." It la of iatereat to note that Filial aeaaured oonalderably lower "^-"^^"Pu coeoentretlooa in water along tbe Pacific ooaat tbaa out la tbe Paolflo Ocaaa. ^ it is poaslde that this factor codd effect tbe vduea givea la Table B-ZIII. It waa acted here that tbe aariae wora contained tbe bigheat concentration of plutonlui found la tbe aariae lavertebrates. This wora is a aoa-aaleotive, depoait feeder and lageata quaatitiaa of aurfaee aedlaent. This is slgdf leaat beeause tbe sedlaeats which tbey iahabit are ooaaiderably higher in plotedoa oeaoeotrotion than water (i.e., 61 dpa/kg va 0.0019 dpa/L).

TABLE H-ZUI

COKEBTBATIOB RATIOS Of "^-"P239, u FOB maiBB laiBBTEBBATES

Blue oiiaael Body 300(7)* 250-350 Shell 490(3) 470-520

Brmm auaael Body 340(1) Soft-abell di Body 440(1) Oyster Body 130(2) 100-160 Scallop Adductor 24(2) 10-37 Body 520(3) 410-690 SbeU 600(1)

Whelk Body 140(1) Shell 300(1)

Noon abell Body 660(1) Shell 690(1)

Starfiah Body 1 020(2) Brittle atar Body 760(1) Harlae wore Body 4 100(1) Spoage Body 2 WOd). Sargaaao weed 2.1 X io:(6) 0.3-10 X 10, Other seaweed 6.2 X 10''(6) 1.16 X 10'

Nuaber of aaaples averaged. mMMHBiBBBHMH B

Hetherington et d.23 have deaoribed la aoae detail tbe aariae oonaequeooes of a controlled diapoad of plutonlua and aaariolua froa the Britiab Nuclear Fuels Uindaode Uorka to tbe Northeast Irish Sea. The quaatitiaa of such dlsobargea by year are givea ia Table B-IIT. Tbe liquid waataa are diacharged through a plpeliae exteadlag out to aea 3.2 ka ia a depth of 20 a. Tbe atudies have iadloatad that a very largo fractloe of tba plutoaiua, oa the order of 96S. ia reaoved to tbe aedlaenta very aeon after Ita releaae. Data oa tbe readting ooaoeatratlona of tranauraalca la aurfaee aedlaeata are givea la Table B-ZT- It ia of iatereat that tbe ratio betweeo plutoaiua aad aaarlclua doaa aot vary greatly with diatanoe froa tbe outfaU and froa thia it ia ooacluded that aaariciva diacharged la tbla fora bebavea quditatlvaly alallar to plutoaiua. Theee aedlaeata were oolleoted la Jdy, 1974, aad refleet the variation ia tbe ratioa of dutodua to aaariciva ia tba diacharged waataa abowa la Table B-ZIT. Froa core aaaplea la the aedlaeata it waa deduced that tbe reoeet aedlaeetation rate la the area ia approxiaataly 2.3 oa per year. A auaaary of tha eoac«itrationa fouad In the region witbla K) ka of tbe diaobarge durlag 1974 la givea la Table B-ZTI. Bere it la of iatereat that tbe aeaweed (porpbyra uabiliodla) ia gathered aa aa edible crop for people aad aurveya bava abowa a raaga of oonaoaptioa ratea op to 172 graaa par day. ID aa earlier paper oo thia 94 diacharge, Dunater et d. have cdodated derived worklag levela baaed oa tbe ICRP driakiag water standards. Tha vduea for plutodoa are given la Table H-ITII.

TABLB B-ZIT

OISCHMGB or TRABSORABICS INTO TBB NQBTBBAST IRI^ SEA (C^/HO)

llgC Plutoniuo As

1966 69 46 1969 68 33 1970 78 45 1971 94 85 1972 129 181 1973 148 2»6 I97»» 10« 266 TABLE B-ZT

CONCEMTRATIOMS OF TBABSORABICS IN SOIPACB SBDIMOnrS (pC^/g)

Olatanoe froa Plut

1 44 i 4 56 J 6

4.5 105 i 7. 28 i 2 113 - 1». 49-5

9 K) i 1, 14.0 - 0.5, 35-2 15^ 2, 17-2, 47-5

18.5 4.0 i 4 5.2 i 0.5

110 0.70 1 0.06 0.7 * 0.07

Betharingtoo has desoribed in aoae detail the ooaaequeaoea of a oontrolled diapoad of plutoaiua and aaerioiui froa tbe Hlndacda Merka to tbe aariae Be coododed: *Ia view of the apeed with whi^ tbla plutodua fToo Miadaode diaappeara froa the water, it ia aot eonaidered likely that tbe oeohaaiaa for ita reaovd is biolegiod aa proposed by Boweo et d.^^ oo the baais of their owo work aad that of PUlal et d. Rather it la assuaed that the loaa ia due to tbe rapid hydrolyala and coasequeat preelpltatloo of tbe plutoolua preaent ialtldly la tbe efflueat la a soluble phase, either aa a bydroua ooapound of the eleaeat itsdf or la aaaociatloe with auspeaded aatarid already preeent in the aaawater. ladeed, alnoe tbe pH of the effluent is adjuated to aohieve neutrality before diaobarge, aad oo tbe aasoaptioa that plutoaita bebavea at very low gravlaetrlc cooceatratloas la a aaaaar which ia ooaaiatent with ita uaual cheaioal propertlea, hydrolyala aad colloid foivatioe have aoat probady ooourred before the effluent ever reeehea tbe aaawater. Alternatively, if colloid fbmatloa baa not dready takaa place, then tbe eleaeat auat appear ia the aaawater ia a atate abowlng great affialty for aay solid aatcrlal available. Uhatever the •ecbaoiaa, the aeaaureaents aadc on the TABLE B-ZTI

CONCBBTRATIOH VITBIB 10 ka OF OISCBABGE OORIMQ 197r4 (pC./g fbfor aa 1 C,/da "iscaiBrOISGBlRQ"g RATE

*^Mrlgl ia Sadiaaat 10 5 Seaweed 1 1 Fiab Fleab 0.004 0.003 Sea Mater 0.0002 _

suspended aolid freotlona of the aaawater aaaples have abowa that tbe prooesa leada to tbe reaovd of the dutodua froa both auspension and sdutioo, while tbe relatively high vdue fer tbe fraction of the water-borne plutodua idiiob paaaea a 0.22 va fUter mt averaged over 15 saaplaa) aoggeata that tha reaidua reoaining ia tbe water ia preseat either as a colloidal aoapendoo or la aoae other cooplexed fora."

Oonoentratlon ratioa derived fToa Beetheriagtee^ are given la Table B-ZTin. Hard^ studied the uptake of ^^^Pu by lobaters fToa aerated, filtered sea water. Tbe lobaters were exposed ia partitloaed glaaa taaka la a rooo with a constant teaperature of 9* to iZ* . Every few daya tbe lobatera were tranaferred to freab taaka of sea water coatalaing 6.S x 10 uCl/L of dutoniua over a period of about 230 daya. Cooo«itratioa ratioa for fleab raaged up to three with, however, aa Indloatioa that they aay atill have beea inoreaslag at tha aad of tbe experlaeat. The edclfied ahdl appaara to aoouaulate plotoalua-239 at a rapid rata. A very high proportico (89.$f) of tbe totd plutoolua is ia tbe skeletoa which acoouata for about 43S of tbe totd weight of tbe lobater. Cooceatretloa faotora for ahella were oa the order of 200 aad gilla were about 100. Tbe fleab which, ecapriaes about 28.7t of tbe totd body weight, oootalns ody t.2t ot tbe plutmilua present ia tbe eatlre body. Tbe eoateat of tbe caat shell ia approxiaataly twice that of the shell of the iatenaodt lobster. It ia of Intereat that in this experlaeat the uptake of tbe tracer waa only .'roo the TABLE B-ZTII

DBRITBD MGBKIMC LBTBLS - ^^^Pu (pC^/g)

Flab (edible parta) $00 Seaweed (edible 150

water, aiaoe the lobatera were fed oo uncootaalBated auaaela. This codd poaaidy iadioate that higher ooocentratien faotora oodd ba expeoted ia aalada that dae obtained their food frea the ooataainatad eaviroaaaat. Ia a atudy of orayfish froa the Great Hiaai River, Mtyaaa et d.^ reported that aost of the dutodua waa eooeeotrated la aoft tisaoes rather thaa ia tbe 27 aolarotlxed abell. Slailar readta were reported by Belaoe and Boahkia for 28 tbe rr>*Am^,^ QiM and lobater froa tbe Baiwetok Atoll. Boahkia reported higher ooooentrationa of 239-240p^ ^ ^^ ^^^ ^^^^ ^ ^^ ^^^ ^^ acallope, whelks, and aooashella oolleeted off Cape Cod. Vhether the dffereoeee reported are due to the ebeaied speoiea of plotodua the orgaaiaaa were expoeed to at tbe varloua dtea, or later^eeifie phydolegiod diffareaoes, ia opea to queatieo at thla point. Beoaot atadlaa have reported that dutedui iaetopea oan apparently behave differently la biologied aysteas.^*^^'^^*^^ In eaviroaaaatd atudiae, the diaerepeaeiaa in behavleor cap be explained by different phyalooohealcd foraa of the iaetopea la the origlad aooroe or to different souroea of uptake. In laboratory experlaeata, dlffareoees in aetabollo behavior oaa be attributed to dffereeoea la concentrations of tbf iaetopea teated. Fowler et d.^ foood that if the dfferent plutoalva iaotopea (^^'Pu, ^^''pu, ^^^r^x, 239-240p^j ^^.^ preaeat la tbe aaae phydeooohaaled fora, aqoatio orgaaiaaa were ooade to diaorlaiaate between thea, either in aoouaolation or eoceretioa atadlaa. Tbey alao oonoluded that the suggestion of Hogdaai aad Carter^^ and Byaan et d.^, that, for environaental atudiaa, ^^Pu ia aoat likely tbe beat tracer fbr aaaaurlag dutoniua klaetics ia bldegied ayataaa la oorreot.

BlanMBBlnfi Thia review ia not iatcoded to be defiaitlve; rather, we have atteapted t syntbeaixe tbe beat available data. Although there appaara to be « alai.arit dl envlroeaaotd data, whether aariae or freabwatar, there are TABLE B-ZTIII

COMCSBTRATIOM RATIOS FOB ^^^PO IB HARIBE BIOTA IB ntlSB SBA MIBDSCALE TICIBITT - 1974 (Vet weight)

Seaweed whole 1 000

Plaice auaele 10 Dab ouade 20 Mhitiag ouade 6 Hollnaea Haaad eeft tlaaue 2 000 Viakle aoft tiaaoe 1 000

Crab ouade 100

aignlfieaat diaerepaaciea. The aoat iateraatiag eoaaoe factor wa were ada to extraot fToa a wide range of atudiaa, both laboratory aad field, ia tha alailarlty la the obaerved diatribotioo oeeffioient for plutodui given la Table B-ZIX. Prlaary ocnfllcta iavolve diffareaoea la coaoeatratioa ratioa for freabwatar algae aad tbe tlaaue diatrlbutioa obaerved ia both freabwatar and aarlne atudiaa. Tbeae dlsorepanciea are probably explainable based on differeacee la phyaioobeaied fora to whioh orgaaiaaa are expoaed at different altea. Bowever, la reviewing the data available for both freab water and aariae aavirooaeata, we oao aee little red differeooe ia the patteraa of aoevadatioa or la the aotud vduaa of oonoentratiee fhotora. The data froa the waata pond at Baaford, while obtaiaed under very uauaod oooditiona, do aarve, bowever, to iadioate that there aay be variatlona in apaeifio dtuatioaa well beyond thoae atudied la this review. An addltlond dfficulty we encounter ia the lack of aay definitive inforaatioo oo tbe other two eleoenta of intereat - lo and Rp. One atudy or neptuaiua in the Coltabia River Involved aa laotope with a half-life of only 2.3 days so that tbe radioactive decay aay well have Halted the quantities of TABLE B-Zn

DISTRIBOnOM COSFFICIEBTS FOB PLOTOMIOf ISOTOPES IB FKBSBMATBR ABD HARIBE STSTBC

Isotope ' Baviroaaeat Refereoee

9.0 X 10* 237 L,F Trabalka A Byaaa, 1976*^ 1.3-9.4 X w" 237 L,H Dooraaa 4 Paral, 1974^* 1.2-7.9 X 10* 239 L,F Trabalka A Freak, 1976^^ 4.8 X W* 1.3 X 10^ 239 H PUUi A Hbthew, 1975^^ V.5 X W* 239 F Bowea, 1974« 3 X 10' 239 F Mahlgrea et d., 1975^ 5 X 10* 239 H Betheringtea et d., 1975^^

*P m Freabwatar M > Harina L • Laboratory

this laotope lo the orgaaisa. Data froa Lake Hiehlgaa iadieatea iacreaaed 241^ eoaeeotratloa fhotora for over dutodta la the lower trophic levela by faotora of 1-5 to 5 8 Bowever, the vduea for flab are ladeteroloate with aaxlata vduea of iaoraaaa over plutodua of 6-10- Data froo tbe diacharge of 2'^ 7'Vi 241 waata frco Hiadsode'^ iadioate little differeooe between '-^'Pu and ' 4o ir^ cooceatratiooa witbla 10 la of the diaobarge for equd daeharge ratea. Ia aeleotiag oeooentretloo faotora for applioatioa, it is aeoeaaary to conaider all poadble oaaa by aaa. This is wall illoatratad by tbe edible aeaweed la the Iriah See. The oaa of ahark liver for ita oils aa well aa eating by soae groupa la aaotber exaaple that la of iatereat, particularly aiaoe the liver appeara to be acre effective ia eoaceotratiag dutodua tbaa tbe auaele. The future poteatld oae of other prodoota fToa the aea la varloua foraa oodd dao be of loportaooe. For purpoaea of oalcdatloa wa have oboaea ooocentratioo ratios for the three nuclides. These are not tbe higbeat aeaaured am* are tbey the averse but, rather, vduea that appear reasonable for geoerd uae la ligbt of preset knowledge. For IB and Np ( Aa, ^^^Mp) \m bara applied an arbitrary factor of to ovar th« plutooiua valuaa. Thaaa valuea were oboseo becauaa thaaa Isotopaa hav* a (raater availability than plutooiua in tarrastrial ayatasa and it la suapaotad that when data are available tba saaa aay be true in aquatlo ayatasa. Lijaitad data froa Lake Miobi as tba faotor for biota. Conoentratloo faotora ohoaan for uaa in both fraahwatar and aarlna anviroiaanta are tlv*B la Table H->XZ. The very hl^h affinity of plvtmiluB for partloolata aattar in aquatic aooaysr—a (dlatributloa ooafflolent ^w') aakea it dlffloult to uaa the tradltlooal aacpraasion of oonoantratlon ratio (Ol) as a aaaaurt of the tendenoy of biota to aoouHulata thla alaaaot in tlaaua. Bather, ve feel the obaarred conceotrationa of plutonlaa In aquatlo biota abould be related to the prioary abiotio aouroe in the ayatea, aedlaent (both suspended and bottoa). In order to axpreaa thla relationahlp, the tent Tlrophio Traaa^ar Paetor (TTP) haa been used by Tarioua reaearohara (Llpka 197t;-" Trabalka and tyaan; Blwood and Hlldebraad. ) This oonoept sobstltutea the ofmoentrationa of an aleaent in aadlaant and anapaoded partloulata aattar for the ooooentratloa in water noraally usad in the oaloulatlon of a oonoeatratioo ratio. The underlying ezpeetatlon la that, due to the hl

TABLE H-n

COHCSmiTIOH RATIOS RECOMfEMDID

Aaerioiua CoriUB MmtMf^Ami •aatupiiai

Sediaent 100 000 100 000 Plankton 5 000 50 000 Benthlo Alcae 5 000 50 000 and Naorophytea Banthlc Invertebrataa 1 000 10 000

Flah Bottoa feeders 250 2 500 Plankton feeders 25 250 PlaclToroua (fish eatars) 5 50 tiaauea of hlgber trophlo levela will be doainatad by got abaerptlee rather than direct uptake froa water. Again, we atreaa that external ooataaloatlon wiir. aadlBentary partioulate aattar and gut loading are not ooaaidared to repreaent true uptake and ahould be oonaldered aeparately. This tera, then, eenrea as a realiatlo aaasure of plutoniua dlaorialnatioa In food ohaina. Soae of the •arlatloo in TTP valoaa obaarred oan be aacplalned by the relative trophlo poaitioo of the organiaaa aaalyBad. Tba auahar of intervening food ^aln transfara between the orgaaiaa aoalysad and the abiotio aouroe of plutooiua abould be inversely related to the observed TTP value. Therefore, in aaaeaalng potential traaafer of plotonlua to aaa froa aquatlo eooayataaa, it is laportaat to ooaeeotrate oo thoaa food sow aaa aoat oloaaly llakad to aedlaent aa a aaaaure of aarlaua pLvtoniua in huaao food. Thaaa aoold repreaent a abort, alngle trophlo traaafer food ohala as opposed to the tradltlooal ooooept of the gras«> food ohaiaa. Inaplaa of laportaat groupa laelnde bottoi-feediag fiahea, ahall fish, aad rooted aeorophytes swA aa rloe. A aajor dietary eoaponent of a large aa^aot of the world populatioo la rioa. Although we oeuld find no data oo aoouBulatloo of plutooiua in rioa, this iafoivatlfle la i^Mrtant sinoe it is represeotative of a siagla trophlo traasfn* fTea sadlaaot aad/or water to aan. •oahkia^ poiatad out that aarim organlsas asaooiatad with the aadiaeot-«ater iatarfaoe, (i.e., heothio iavertahratea) oootain ooa huedred tiaea higher plutooitai burdeos than aariaa free airiaalng vartabrataa. Potura raaaaroh on pathwaya of plutooiua to aan froa aquatic eoosystaas should oonoentrate on thoaa food ohaina whloh bave the aMllest nuaber of trophlo transfara between abiotio aouroea in the syataa aad aan. Additionally, eaphaaia oo the relationahlp between the ohaaloal oharaotaristioa of plutoniua la abiotic ooapooanta of the ayatea and availability for abort food ohalo transport to aan abould be atreaaad.

RBPBRBIKSS

1. R. N. toery, 0. C. CLopfer, aad H. C. Hieaar, "loologloal Babavior of Plutooiua and Aaerioiua in a Preahwater Booayatea. Phaae I. Liaoologloal Charaoterlntion aad laotopio Diatributioo," Battelle Pacific Sorthwest Laboratory laport, BWL,-186T (Sept. 197«).

2. R. M. Baery and J. R. Phrland, "Boologieal Behavior of Plutoniua and Aaerlclua in a Fresbwater Eccaystea. Phaae II. lapllcatlona of Differences in Transuranic laotopio Ratios," Battelle Pacific Northwest Uboratory Report, BUHL-1879 (Dec. 197*). R. M. toary aad D. C. Klopfer, J. R. Parlaad, V. C. Illaer, •Boologieal Behavior of Plutaniia aad iaeriei«ai la a PraahMater Poad,* Battelle Pacific Northwest Laboratory Report, BHHL-SA-53U (Maroh 1975)-

R. H. Muy, and D. C. Klopfer. J. R. Parlaad, H. C. Welaer, "Th« Eoologloal Behavior of Plutoaita aad Aaerioiua ia e Preahwater Pood." In: C. B. Cuahing, Jr. (Bd.) Radloeoology and Bnersy Reaooroae, The Beclogical Society of Aaarloa, apeoial Publioatioo lo. 1, Dowdeo, Bntohinaoo A Roaa, Ino., Stroudaourg, Pa. (1976).

J. S. Itarahall, B. J. Waller, and 1. M. Tagoehi. •Plutooiua in the Laurentian (h*eat Lakea: Pood (SMia ReUtioeahipa,^ CQV-7«oe26-3. ZIX Coograaa of Assooiation of Llaaology, Ulnnepeg, Nuiltoba, Canada (Aug. 23-28, 197*). J. J. Oavia, R. H. Perkiaa, I. P. Palaar, H. C. Baaaoo. aad J. P. aine. •Radioaetiva Hatarlala ia Aqoatie aad Terreatrial Organiaaa tipoaad to Raaotor Effluaat Hater,• Proo. 2ad lat'l. Ooof. oo Peooefttl Oaea of Atoaio Baargy, Qeoeva 18: *23-42e (1958).

N. A. Uahl«ren and J. S. Harahall, "Diatribution Studlea of Plutoniua in the (2reat Lakea,• (X)V-7*070i Prooeedli«a of the 2ad Int'l. Coaf. on ftiolear Mithoda in Bnvirooaental Reaaaroh, U. of Miaaourl, Coltaibia, MO. (July 24-31. 1974).

M. A. Hahlgran, J. J. Alberta, B. H. Halaon, aad C. A. Orlaadinie. "Studlea of tba Babavior of Tranaurawla aad Poaaihla Chealeal Boaologuaa la Lake Niehlgaa Hfetar aad Biota,^ lABA Ooofaraooe oo Traaaoraaiaa •oelidaa ia the ftniiu—eut, S« Praooiaoo, CA {Wow. 1T-21, 1975).

J. A. Batheriagtoo, •The Behavior of Plutoaiua luolidea ia the Iriah Sea," In: Bnvironaental Tozieity of Aquatic Radioauolidaa: Hodela and Maohaniaaa, M. H. NUler aad J. I. Stanaard (Bda.) Aan Arbor Science Publi^are, Inc., Ann Arbor (1976).

E. H. Taguohl, D. H. Halaon aad J. S. Narahall, •Plutoniua in Lake Mlctalgan Plankton and Benthoa,^ In: Argonna Hatlooal Laboratory Radiological and Bhvironaental Reaaaroh Divialon Aaa. laport 1973• AIL-8060 (197*).

D. R. Bdgii«ton, J. J. Alberta, N. A. Hahlfrea, J. 0. Karthwren. and C. A. Reeve. •Plutoniua and Aaerioiua la Lake Miehigaa Sediaenta," IAEA (kmfareooe oo TrenanrwKiua Hoolldaa la the BBviroaaeat, Saa Praaclaoo, CA (Hov. 17-21. 1975).

V. T. Bowan. "Plutoniua aad Aaerioiua Coooeotratloe aloog Preetawater Pood Chaina of the Great Lakee, O.S.A.. General Suaaary of Progreaa 1973-7*," Report 00O>3568>4, Hboda Bole Oeeaaocr^hio laatitvtiOB (197*).

H. H. Adaaa. J. R. Buohbola. C. M. Cbristanaoo. G. L. Jofanaoo and E. B. Powler. "Studies of Plutoniua, Aaerioiua, sad Oreaiua in Bpvlrcnaental Hatrloes," Loe Alaaoe Scientific Laboretory Report U-5661 (January t^"^) I*. R. C. Oahlaan, B. A. Bondlettl. and L. 0. Byaan, •Blologioal Pathwaya and Cheaioal Babavior of Plutoniua and other Aetinldea la the Bnviroaaent," in: A. N. Priedaan (Bd.) Actlnidee ia the Bavii aaaiut, teerican Cheaicai Society SyapoaluB Seriea 35. Aaarioaa Cheaioal Sooiety, Haahington, D.C. (1976).

15. L. 0. Byaan, J. R. Trabalka. and P. H. Caaa, •PlutoolUB>2S7 aad 2*6: Their Product loo and uaa aa Gaaaa Tracers in Reaaaroh oo Plutoniua Elnetioa in an Aquatlo Cooaiaer,^ 193-206. In: lavlroaaaotal Toxicity of Radloouclides: Hodela and Maohaniaaa, Ann Arbor. Soiaaoa Ptthliahara, Ino. Aan Arbor, Nioh. (1976).

16. L. D. Byaan and J. R. Trabalka. In Praaa. "Plutoniua-237: CoaparatiTc Optake in Chelated aad Boo-ohelated Poraa by Chaaael Catfish (Ictalurua punctatiia)," Baalth Phyaioa.

17. J. R. Trabalka and L. D. lyaan. In Praaa. •Oiatribatioa of Plotoniua-237 ia a Littm^ Preahwater Mioroooaa,* Baalth Phyaioa.

18. C. C. PUlal. R. C. aaith and T. R. Pblaoa, lature 203 (*9*5), 568-571 (19M).

19. H. L. Teapleton, •Piaaioa Produota aad Aquatlo Organiaaa." In: The Bffeota of Pollution oo Livii« Material. Inatltnta of Biology, London, Sept. 1958, Bo. 8, 125-1*0 (1959).

20. L. M. HQI«, J. C. Borka and f. T. Bowao, •Plutooioa Coooaatretioo in Organ1saa of the Atlaatio Ooaaa,^ Proo. 5th Aaaoal Baalth Phyaioa Society Midyear Topioal Syap. 529-539 (1970).

2t. f. T. Bo«feo, K. N. Hoc« aad T. B. Hoahkia, •Pltttaoiua-239 la and OWT the Atlantic Oeean," J. of Murine Rea. 29:t-10 (1971).

22. T. E. Moahkln, T. T. Bowao, K. H. Hoog, and J. C. Burke, "Plutoniua in iorth AUantlc Ocean Organiaaa, Boologieal Relationahipa," Coof. 710501 Radlonuclidea in Eooayataaa. Proo. 3rd Hat. Syap. on Radloeoology, D. J Helaon (Bd.) (1971).

23. J. A. Betherington. 0. P. Jefferiea, H. T. Mitohall, R. J. Pantreetb and D. S. Hoo4head, "Bnvironaaatal aad Public Health Coaaaquenoes of the Controlled Dlapoaal of Tranaaraaie Caaaota to the Nariae Bhvironaent," IAEA Syap. en Tanaoranlc Ruolidaa in the Bavirooaent, Sen Pranclsoo, CA (Hov, 17-21. 1975).

2*. B. J. Dunster, R. J. Gamer, H. Howella. and L.P.f. Mix, •Bnvirooaeotal Monltorli« Asaooiatad with the Dlaoharge of Low Activity Radioactive Uaate froa Viadaeale Horka to the Irlah Saa," Health Phyaioa 10, 353-362 (196*)

25. B. B. Hard, "Optake of Plutoniua by the Lobater Hcaarua Tulgaris,- latum 209 (5023) 625-626 (Feb. 5. 1966). 26. C. H. Hayaan, G. B. Bartlet. S. B. Qrovea, "PUrthar Xavaatl«atioo8 of Plutoniua in Aquatio Uota of the Great Niaai River Mitarabad Xnoludli« the Canal and Ponda la Niaaiahurg, Ohio," in: Argoone Hatlooal Laboretory Rediological and Bnvironaental Reaeereb Dlvlaioa Annual Report 1975. AHL-75-60 Part III. (1976). 27. T. Helaon and T. B. Hoahkln, fiaiwatok Radiologioal Survey, U.S. Atoalc Energy Cnaalaalco, Hevatfa Operetiooa Offioa, HVO-1*0 (1973)- 28. r. B. Hoahkln, "Boologioal Aapeota of Plutoniw Diaaealaatloe In Aquatio Moveaeota," Health Phya. 22. 537-5*9 (1972). 29. H. J. Bair. D. B. Villard. 1„ C. Halaoa, A. C. Caaa, "CoaparetlT* Diatribotioo aad Ixoretioe of ^^Pu aad '^Pu Hitratee la Baegle Doga," Baalth Phya. 27, 392 (197*). 30. T. B. Bakooaoo, L. J. Jotaiaon, LA-ai-73-2391, GOV. 730907-1*. Loa Alaaoa Soiaotifio Lab., QOlv. of California, Loo Alaaoa, Haw NMdao (1973)- 31. N. Norin, J. C. Henot, J. LaPuHL. "Matabolio and Therapeutic Study Followii« Aitalniatration to Rata of ^^Pu, Health Phyaioa 23, *75 (1972). 32. S. Powler, M. Beyraud, T. N. Beaaley, •Bxparlaaotal Studlea oo Plutoniua Elnetioa ia Hariaa Biota,* IAEA, Oooferaaoa oa lapaeta of Hoelear Raleaaes lato the Aquatic bvirooaant, Otanleal, Plalaad (Joae 30 - July *, 1975). 33. A. A. Moghiaal^M. H. GK^ar, •Coaaaata oa Coaparative Diatributioo aad Bxoretioa of ^^Pu aad ^^Pu Ritrataa ia Beagle Doga," Baalth Phya. 28. 625 (1979). 3*. B. E. Duuraaa aad P. Parai, •Oiatrihutioo Coeffioieot of Plutoniua Between Sadlaeot aad Sea Hater," ia: AoUvitiaa of tba Xntaraatiooal Uboratory of Marine Radioactivity 197* Report, IAEA 163, 9*-96 (197*). 35. J. R. Trabalka, N. L. Prank, •Trophlo Traaafer by Chlroooaide and Distribution of Plutoniua>239 la Siaple Aquatic Microooaaa," J. of Enviroaaantal Quality (LB Praaa). 36. K. C. PUlal and B. Mathaw, •Plotooiua in the Aquatio Bnvlroeaent: Ita Behavior, Diatribotioo aad SigBifioaaoa,^ ia: Pmnaadlngs of the Syapoaiua oo TraaaaraaiuB Bbelidaa ia tba BttvirooBaat, Bov. 17-21, 1975, IAEA sn/im/kn lam 92-0-020076-1 (1975). 37. B. J. Llpka, Jr., "Bffeota of ftivlronaental Paraaatera on the Optake of Radloiaotopea in Preahwater Flah," Ph.D. Dlaaertation, Oniversity of Nlehican, Ann Arbor (1971). 38. J. V. Blwood, S. G. HUdebrand, aad J. J. Baeiwhaap, •CMtribatioo of Out Coot«ita to the Conoen tret loo and Body Burden of Eleaenta in Trlpula spp- froa a Spring-Fed Streea." J. Flah Rea. Bd. Canada 33: 1930-1938 (1976). APPBMDIX I

HODBLIMG RADIOHUCLIDE TRANSPORT TBROUQH SOIL kWD ROCKS BY SOBSORPACS UATBR

John C. Rodgers

I. IHTRODOCTIOH Once ouoleer waates are introduoed into the aubaurfaoe environaent by shallow land burial, a possible release pathway froa the burial site to aan ia the aobilisatioo of radionuclides into flowing groundwater. Contaaloated groundwater oould be obtained for uaa by aan near the eouroe by wells, or tranaport over long diatancea to aurface watera aay be required before interaction with nan's environaent ooeura. Several faotora aaaoolatad with the plaoeaent of waatea in the aubsurfaoe environaent, and the prooeas of transport of radionuclides aa aolutes in groundwater, auoh aa dilution, diapersioo, and retardetloo of aoveaeot by soll-aoluta Interaotiooa. aarve to ereete a natural barrier between the waate and nan. Beoauae of the eoaplesity of the solute tranaport proceaa. and beoeuee of the laok of generality and inability of field data to aupport extrapolatioo over long t^ea and large apaoaa. site evaluation and riak aaaeaaaant of aigretlon in groundwater baa relied heavily on aathaaatieal aiaulation. Following ia a review of aoaa of the aalient featurea of aaveral approaches to the problen in current literature, and an evaluation of the predictions of a aiaple one-diaeosional aathaaatieal siaulatlon ^r groundwater transport.

II. OHSATURATED - SATURATED FLOW Typieally, shallow land burial of radioaotive waste involvee plaoeaent of the waatea well above the top of the water table. Thia aeana that aoat often releeee and tranaport of radlonuolldaa by groundwater involvea a phaae where the westes are in contact with soil noisture aovlng aa unaaturated flow abore the water table. However, release aay ocour directly into the «one of saturation, as for exaaple, in tbe case where water aoundlng below a trench intersects the waste. The predoainant direction of unaaturated flow is vertically downwer^" until the flow reaches the zone of saturation. Within this tone, flc% is principally lateral. The processes that control the tranaport of diasclv*- radionuclides in a hydro^eologic systea include: I) hydrodynaalc !ll3p«r3:c' ooablning the effects of eechanlcal dispersion and eoleculir ilffuslo?^. •

oonvectioo of tbe solute by aovlng water, 3) physiosl-oheaioal reeotions between solutes and the soil aatrix (eg., lon-exchenge), and between aolutes «f., precipitation or coagulation), and *) radioactive decay. Hath«aa*.ja. siaulatlon of saturated - unsaturated flow and aaterial tranaport requires the solution of the set of coupled differential equatlona for the aoveaent of gas and water, and the differential aass tranaport equation. It also requires foraulatico of appropriate aatbeaatical relationahipa deecribing tba physical - obealcal reactions aentlooed in 3) above, a teak not easily and satisfactorily done.

III. NUMERICAL MODELS Until rather recently only aaparate portiona of thia overall aiaulation probleo oould be aolved by various aoalytio aad auaerioal teobnlquea. The aoat powerful natheaatioal approa^ haa been the uaa of nuaerioal techniques. An 2 laportant exaaple ia the work of Robinaon and othera, who uaed the aethod of oharacteriatica to deaoriba the two-dlaenaional tranaport of radionuelidae in tbe Snake River Plain aquifer (aaturated flow). The aodel inoludea the effecta of convection tranaport. flow divergenoe, two-dlaenaiooal bydraulic diapereion, radioactive decay, and reveralble linear aorptlon (Inatantanaoua equilibriua). The hydraulic phaae of the aodel uaea the iterative, alternating direotloo, lapllcit finite - different aoheae to aolve Uie groundwater flow equatlona, while tba waaU tranaport phaae uaes a aodified aethod of oharactariatica to solve the solute transport equations. Reportedly, such nuaerioal aethods as this suffer froa nuaerioal dispersion effects and other liaitatlons. Another nuaerioal technique which virtually eliainates nuaerioal diaperaioo ia the Galerlein finlte-eleoent aethod for aolvizq( partial differential equatlona.^ An exaaple of this approach la the two>diaenalonal aaterial tranaport aodel developed at OREL by IKiguld and Reeves. It la designed to conaider a ooabinaticn of saturated and unsaturated flow. The water transport equstlon in this code is solved for specified boundary conditions by nuaerioal aethods using Galerlein finlte-elenent aethods. The region of interest (e.g., soil coluan under a waste trench) Is represented by a two diaensional grid of subdoawins requiring specified boundary conditions at boundary nodal points. One portion of the code solves the noisture trmnsport equation, requiring such Inputs as precipitation, aoisture content %a a functior. of pressure, and conductivity %a a function of pressure. llso soil proper*:*5 such as ooapressibillty, bulk density, and affective poroaity aust be specified. Another portion of the eode uaea ^he fl'ixes generated in the first portion, coefficients such as soil diaperaivlty, a retardation factor for solute aoveaent based on specific radionuclide distribution coefficients, and radioactive decay rate for solution of tbe aaas transport equation. This pert of the code then providea the quanbitiee of aaterial in aolid aad liquid phaaea. Tbe oode ia not eaaily iapleaented. due to the considerable detail required in the input deck.

IV. AHALTTIC TRAHSPORT M««LS While not aa powerful aa nuaerioal aethods in teraa of such applloationa as preolae aiaulation of haterogaaeoua field oonditiona at a particular aite. analytical aolutiona of tbe aaaa tranaport equation (aaaualng aaturated flow and certain typea of generalised boundary oonditiona) have a uaeful role in Identifying critical varlablaa and prooeaaee. aagnituda of effects, etc. An exaaple of thla type of aiaulation ia a aet of related one-diaeoalooal oodea baaed on analytioal aolutiona to the aaaa tranaport equation for a decaying ohain of radlonuolldaa aovlng through a geologic aediua developed by S fi 7 Burkholder and othera.^' " The approaoh is to aodel tranaport of a chain of radlonuolldaa anaiMlng apeoifloally: ii^ulaa or band releaae, water velocity, dlatanoa to breakthrough point (reoeiving water body), down-gradient (axUl) dlsperaion coefficient, equilibriua adaorption oonatant, and aoil bulk density and porosity. The oodes oan be applied to heterogeoeoua aoil oolvans by assuning appropriate weighted average valuea of aodel input pareaeters, and tr faulted, aonollthic aedia provided tba adaorption equilibriua data were obtained properly. Soae of the prediotiona of intereat of theee aodela include, i) tbe difference in adaorption charaoteriatioa aaong the nuclldea In the decay ohain. the aicratlon path length, the leaoh rate and the half-livea of the nuclldea oan, in aoaa cirouaatanoea oreaU a ooodition where ths prediot^M aaxiaua (but not average) nuclide discharge to the bloaphere la greater for certain miclidea than their correapondiog value for direct dlaoharge without tranaport through soil or rook , 2) in other cases theee oonditione oan eauae tbe inventory of • given nuclide to exit the aoil coluan over the entire period between tba tines its precursors exist and the tiae the Initial inventory of that nuclide exiato thereby greatly reducing the discharge rate at any one tiae , and I' »xia: dispersion signifioently reduces the aaxiaua discharge rate of the firsi c»v«-. aeaber and the slowest decay chain weaber, but only slightly reduces ^^.•• discharge rates of other ohain aeabers with significantly faater decay '

V. DISCUSSION The single paraaeter which aost significantly affects the predicted aoveaent of radionuclides through soil coluans in any of these aodels is tbe equilibriua distribution coefficient, K^. It ia iaperative to be aware of tbe liaitationa of this paraaeter, and the aeana for ita aaaaureoent when applying any of tbeae aodels. K^ is a luaped paraaeter, repreaenting aany (but perhapa not all) sorptive and retardation processes occurring between eobile rsdionuclides and soil. It is a function of aany soil and laachate paraaeters including pH, redox potential, solute cheaistry, radionuclide concentration, alnerology of the soil, horizon through which tranaport occurs, and, in the unsaturated zone, aoisture content. For a given aioeralogy it is a function of the surface area of the porous aediua. Hence, applicability of laboratory aeasureaents of K nay have limited (or worse, indeterainate) applicability ic field conditions being modeled. Also -xtrapolation of K values froa one *—% or soil type to another oan be extreaely probleaatlc. Since sorptive processes are strongly dependent on surface area and contact tiae, sorption is considerably less effective in fractured aaterials where flow occurs with aaxiaal velocity and, ainiaal contact with surfaces. In such casea tn*' predictive value of K. besed on cor* aaaplea and laboratory teata (batch testa) is aa-ginal. An exaaple of a tiio-diaenaional aodel of tbe releaae and transport of TRU froa a burial site will be preeented here to illustrate aany of tba points raised in the foregoing review. In aost general teraa, the two-diaensiooal nodal of ground-water tranaport of TRU oontaainanta froa a ahallow earth burial aite will be repreaeeted by tbe siaplified oonoept of an axtreaely large reaervoir of oontaainant being released at a oonatant, oontlnuoua rate through a finite plane aurface at right-angles to a hoaogeneoua, isotropic aquifer of finite depth, but otberwiae unoonflned extent. Moveaent of water and oontaainant oooura in the X-T plane, X being the down-gradient diaenalon. The aathaaatieal boundary oonditiona are:

XaO. t>.0. C « C^

I>0, t«0, C m 0 (I)

X—, t>0, C « 0,

where C » concentration of TRU activity in water, C m concentration in the water directly under the releaae point (XsO). The boundary oonditiona will be applied in two atepa: fli^at tbe eouroe tern will be coaputed, then tba down-gradient tranaport will be described by « solution of the diffusion-transport equation. For tbe source tera, assuae aa an approxiaatioo that tba total TRU activity of the site, Q, is being leeched, with a constant fraction f, loat each year for a very long tiae. Then Q. x Qf (Ci/yr) is tbe total rate of oontaainant input to the aquifer. The aodel assuaes that the release occurs into a plane of width *qual to the width of the 3it4' and dept.h equal to the depth of the aquifer Thus the holdup and dispersion occurring in t^iatever soil coljan :-it*'*ven»s between the pit and tba top of the aquifer ia igaerad for alapllcity. The eleoental voluae in which the releeaed activity is dlaperaad initially is this plane area tiaes an inoreaental down»gradient dlatanoa \X. Tbe total concentration in the oontaainated frontal voluae of eoil and water Is thus the product of the releaae rate per elenental voluaea aad the tiae required for a given water voluae to traverae tbe inoreaental dowo-gradlent dlatanoa:

^'• t) if)' f, b) •

where A « plane area, aad v a water velooity. It will be aaauaed that the water velooity ia low enougb that equilibriua can be fully eatabliabed between the leaohate and aoil. All aapeota of tbe diatribution of oontaainant between aoil and water will be deacribed by tbe diatributioo coefficient K^. The total activity ia divided between aoil and water, with wat«* oooupying a voluae deterained by aoil poroaity. Hence, for a soil with denaity o and poroaity c, the activity conoeotration on tbe oontaaiaatad front ia dlatributad aa:

^t • V * V • ^d V * V • ^3)

Solving for the activity in tbe water phaae.

Substituting froa equation (2). When the sorptive capacity of tbe aoil at a particular down-gradient location beooaes exhausted by continuous input of contaainants froa the aite, "oreakthrough" occurs, and tbe concentration of TRO in soil water becoaes:

^w " Av« . (6)

Equation 6 is tbe siaplest, aost conservative aodel of iapact of tbe releaae at any given location ainoe no eatiaation of retardation and dlsperaion over large diatanoea or loog tiaea ia required. Of oourae, the aouroe activity will be reduced by leaching aad radioaotive deoay. Thia deoreaae will not be included in the following derivationa for alapllcity. The direct expreaaion of tbe siaultaneoua effecta of diaperaion and retardation in the dowa-gradiant aquifer on this initial oontaainant front is aodeled by aolvlag the hydrodynaalc diaperaion and tranaport equation for ths given boundary oonditiona. In two-diaensions, tbe equation for decaying oontaainant concentration C is:

(7) at D 2 - ' - ^"d *^ »I2 ' jy ax where D^, D « X and y dispersion coefficients, respectively, Rjj » retardation facta* defined as, R^ « (l*«K^/«), V M down-gradient water velocity. ^ s radioaotive deoay oonatant, C s concentration in water.

The instantaneous solution of equation (7) at tiae t' for boundary oonditiona given in equation (1), and assuaing an area source perpendiuclar to the direction of flow as described, with constant concentration C , and with a widt^ o L centered at the origin is: C v/R )[z-(v/R )(t-t'j]^ ( C(x,y,t;t') 3 ,I °' '«'liii'" ' sss==aBs «xexpp \ *^ • xa-t')xa-t')ii \*lEx(t-t') I *Bx(t-t') I

/ \2VEy(t-f)/ \2VBy(t-tM/j . where Ex, Ey » Dx/R^ and Dy/R^, respectively and erf(x) equals

-t^ e ^ dt . •/

The effect of a oontlnuoua releaae froa start to any tiae t la the tiae integral of equation (8):

C(x,y,t) . /''''\,.y.t;t.)<»^' • (9) t*^»0

Figure I presents the results of a coaputer evaluation of integral (9) with water velocity v s 30 ca/day, K. a 100, dlspersiv^ty in the y-dir«ction of 2 2 ft /day, and a variety of dispersivities downgredient. The effects of increasing dispersion are seen to be twofold. First, the oontaainant appears sooner at a given place than would be expected assuaing little or no dispersion; and second, there is a considerable delay in attaining levels of concentration at the fully saturated value. For exaaple, with relatively high dispersion (D « 60* a /day), centerllne water concentrationa '6 aeters downgredient are lOf of their ultlaste value over lOO years earlier than would be predicted under oonditiona of extreaely low dispersion. However, under these conditions the water concentration has not reached 50f of the saturated value in 1 500 years. The introduction of cross-gradient dispersion does not appear lo ilt"" 'n» predicted cente'-line concentration greativ tl

100 200 300 Time After Releott Begins (yrs)

Fig. 1. Effects of Inoreaalng Diaperaion.

Theaa ccaputationa tlluatrate how tbe detaila of tbe aovii^ front of oontaainant are aodeled by a aolutioo to the hydrodynaalc tranaport equation .^t the saa« tiae they eaphasize the conservatiaa of the siaple, saturated acl^l 1. J. A. Cherry, G. B. Griaak, and R. B. Jackaon, "Hydrogeological faotora in Shallow Subsurface Radioactive Uaste Manageaent in Canada," In. Proc. International Conference on Land for Haate Manageaent, Ottawa, Canada (Oct. 1973). 2. J. B. Robertaon, "Digital Modeling of Radioaotive aad (SMaical Uaate Tranaport in the Snake River Plain Aquifer at the Hatlooal Reactor Teating SUtion, Idaho," U.S. Geological Survey Open-Pile Report 100-2205* (May 197*). 3. Jacob Rubin and R. ?. Jaaea, "Diaperaion Affected Tranaport of Reacting Solutea in Saturated Porous Media: Galerkin Method Applied to Equilibriua-Controlled Exchange in Unidirectional Steedy Hater Flow," Water Reaouroea Reaaaroh 9. 5, 1332-1356 (Ootober 1973).

*. J. 0. IXaguid and M. Reevea, "Material Tranaport Through Poroua Madia: A Pinite-Bleaent Galerkin Model." Oak Ridge Hatlooal Uboratory Report 0RNL.*928 (March 1976).

5. D. H. Leater, G. Janaen, aod H. C. Burkholder, "Migration of Radionuclide Chaina Through an Adsorbing Madiua," A.I. Ch. B. Syapoaiua Seriea No. 152, Adaorption and Ion Bxohange 71, 202-213 (1975).

6. H. C. Burkholder "Methoda and DaU for Pradiotii^ Huolide Nlgratioo in Geologic Media," In: Proo. Intamatiooal Syapoaiua on the Manageaent of Waatea froa the LHR Fuel Cycle, Baergy Reaaaroh aod Developaent Adainiatration Report CGHP-76-0201 (1976).

7. H. C. Burkholder and M. 0. Cloninger, "The Reoonoentration Fbenoaaaon of Radionuollda Ctmin Migration," Battelle Pacific Horthweat Uboratoriea Report BNHL-SA-5786 (Reviaed) (April 1977).

8. R. J. Seme and R. C. Routson, "One-Diaenaional Model of the Hoveaent of Trace Radioactive Solute Through Soil Coluana: The PERCX Model," Battelle Pacific Northwest Uboratory Report BNWL-1718 (1972). APPEHDll J

TRU HASTE ASSAX IN8TRUNBHTATI0H

C. J. Qibarger Los Alaaoa Solentlfio Uboratory

There ia atroog evidence that tranauranio (TIO) waste aaaay la vital to the overall aaata aanagiant prograaa of the DOS. In tbe firat plaoe there oan be a algnifioant ooat/heaefit relationahlp by raduoiag the voluae of aaatea that are olaasifiad aa TRO waatea aad that require axpenaive retrievable atorege. Secondly, for waate rapoaltoriee. auoh aa tba propoaed HIPP, there ia a need for aaaay of all or a rapraaaatativa aaapla of laoeaiag oeotainere. Thla providea quality aaauraaoe tor tba oparatlag aod health aad aafaty aapeota of the plant. (There have been too aany axaaplaa la tba past of aasta atoraga fhoilitiaa aooepting the atated oootaota of tba oootalaar, uben, ia reality, tbe oooteiner bold vaatly graatar aaouata aod, baooe, praaaoted potaotlally large aafaty and other problaaa. There aoat alwaya be a reoeiver aaaay capability to ainlaite Biatakaa aad avoid later airprisaa.) Ia tba dlaouaaloa that foUowa, a brief daaoriptioa will be sivaa of tba various waste typea aad tba applioable aaaay iaatnaMotatiao. Ihphaaia will ha placed go dataetioo liaita aad aaaay aoouraoiaa, aquipaeat and oparatioaal ooata, aad avaloatlao of tba operational charaoteriatioa aad aaaay llaitatiooa. Baaioally, DOE, or "defaoae". waatea oan be divided into two aejor oategorlea of low and hi«h denaity. On oocaaioo, tbeae waatea oan be oontaainated (beaidea the TRO aaterial) with aaall aaouata of fiaaion produota. Waatea froa the ooaaercial nuclear power ladostry, oo the other band, are by definition heavily oontaaiaatad with fiaaloa produota. At tba preaeot tiae. and exoept for aoaa waataa froa O/D (daoootaaiaatioQ/danoiiaaioalag) projeots, only the low denaity portion, the "ooabuatihlaa*. of tba OOB waataa oan be aaaayad at the 10 nCi/g level. Theaa waatea aaka up approxlaataly balf of tbe DOE waates by voluae. The other half of tbe DOB waatea. the hi4|h denaity waates, and all of the ooasMroial waatea are preaaatly Inaooeaaable to ooadeatruetlve aaaay. Oevelopaeot Prograaa now underway or planned for theaa areaa are diaouaaed below. nOK rn»htistlbli> VMf^g For low denaity waates that are essentially free of Interfering fission products, aeverel nondestructive assay syataaa bave oeec built. The fl'-st HEGA5 (Hulti-Energy Gaaaa Aasay Syatea) dealgn consisted of a single large area N«i detector, with a thin berylliua entrance window, and a aechanical turn table that aoved tbe waate package peat the stationary gaaaa and x-ray detector. Four of this aodel have been cooatructed and are in operetlonal uae at plutoniua facilities. The ayatea aaaaya 2 ft cardboard oootainera bolding free 5-^0 kg of coabuatibla waatee. The ayatea autoaatioally welgha each package and perforaa tba TRO aaalyaia in 200 aeo oouating tiaea. tba aaalyaia is read out on a ooaputer terainal in unite of total aCi/g, witb aaparate anawara for plutonliai and aaariciiai. Detection liaita are well below i oCi/g witb aaaay acouraoiee in the ± *0f raage. Xnatruaaatatioo ooata are approxlaataly $35E with operatiooal ooata (the operator) approxlaataly $20K par year. Such ooata oan be quickly recouped, however, when auoh of tbe waataa are ahoao to be leee than 10 nCi/g. For aauuiple. at Ua Alaaoa ia 1977 ovar $20aB waa aaved through tbe uae of the MBOAS in aaaaylng the rooa waataa gaoeratad ia the plutoniua prooeaaing facility. Thaaa aavinga ware deteraiaed by oaloulating tbe differ«ice between handltng all tba waatea aa retrievable TIO waatee (at 150/ft^) and handl 1f^ only that waate aeaaurad to be above 10 aCi/g (8f of the total) aa ratrlevahla. Ibe other 92S of tba waste was buried nooretrlevably with tbe burial estiaatad to coat, oooaervativaly, |5/ft. • 1 alngle iaatnaent oan eaaily aaaay all of the ooabuatihle waataa generated la a large plutoniua facility. The ayatea is easy to operate by aoderately akillad teotanlciana and is reliable. However, the ayatea can be fooled by two things. Tbe first is high d«islty wastes uhere the TRU aaterial Inaida the peokage is shielded froa the detectors by the waate itaelf. The seoood problaa witb tbe systea is the interfereoce fTca any beta/gaaaa ealtting fiaaion products. Above fisaioo product oootaainatlooa of the order of lOO aCl/paokage'. the ayatea is no longer capable of 10 aCl/g detection. A new deaign of the MBOAS wUl allevUte this problea and ia diaouaaed below. 2 The )CGAS II baa a siailar Nal detector aa tbe original ICGAS. Added are two additional dateotico systaaa: a high energy reaolution byperpure geraaniva (HpGe) detector and four He neutron detector banka. The BpGe detector will tolerate acre fisaioo products then the Nal detector, as will tbe neutron banka «4iich are very insensitive to gaana rays. The neutron banks will allow the assay of higher density wastes, not at the 10 nCi/g level, but at auch .nigher levels, perhaps nearer to several thousand nCl/g. The laportancc of the leutror systea oo tbe MEGAS II is that significant aaounta. graa fractiona, of plutoniua cannot be taken out in tbe waste, even in tbe preaenoe of blgb denaity aaterlala and/or large aaoints of fiaaion products. The NE(US II ooata approxlaately I60K with siailar operational costs aa tbe original MBOAS. Beoauae tbe (OGAS II has not been installed in a facility aa yet, ita operatxooal oharaoterlatlcs have not been deterained at thia tiae.

A apecial category of high denaity waatea ia that generated frca D/D prograaa aa the DOE begina decoaalaalonlng outdated plutoniua facilltiea Inoludiag the exhuaation of old waate burial grouada. For aoaa typea of aasta generated la theaa operatioaa. there are aoadeatruotive assay taohniquaa that are currently being uaed with auooeaa. For aurfhoa oootaaiaatioa auoh aa on tbe interior aurfhoea of plutooiua glovaboxea, two new instruaeats have been 2 developed. The flrat is a high range alpha probe (air ioolatloo cow tar, 60 2 ca aurface area) that la placed oa the surface to be aeaaurad. The eleotrooios are capable of oouating ratea up to 200 alllioo opa. A aacond, and ooapllaeotary aethod, la baaed oo a thia Hal detector that la held above tbe eurfioe to be aeaaurad. Hare, tbe low eoargy z-raya aad gaaa-raya eaitted by the TRO aaterial foUowiag alpha decay are aeaaurad. For the glovebox aeaaureaent aeotioned above, the Hal detector la placed into a clean noo-leaded glove froa tbe outside and tbe aeaaureaent perfonaed through the glove wall. The direct alpha aeasureaent, on tbe other band, auat be aade froa the inside of the box due to tbe very Halted range of tbe alpha particles. Both inatrtaents bave a very large low biaa if liMpa of TRU aaterial are preaent or TRO aaterial is hidden behind denae objeota auoh aa gaakata and aeala. Precluding thia, detection liaita are wall below 10 nCl/g. Coata of the equlpaent are leaa than $10E for both inatruaenta. Maaaureaent tiaea are abort, with entire gloveboxes being asaayed in less than 60 ainutes. Medliai-akllled, tecbnlclan operatora are required. In the exhuaation of outdated waate groixido. aaveral oondeatructive aaaay tecbniqueo have been developed for field survey of aolla at leaa than 10 nCi/g activity levels. One aethod is tbe portable phoawich systaa that ia carried in a backpack by a aan. The phoswicb detector is a ccabinatioo Nal-Cs: sandwich, photon scintillator coupled to a single phototube. Speci*.L electronics reduce tbe detector beckground to approxlaately three tiaea lower than tbe conventional field FIDLBR detector. Detection Halts are i nCi/g for plutoniua and 100 pCi/g for aaerlclua in a real-tiae acan aode. Systee costs are approxlaately $10K. Nadiia akilled technician operators are required The systeaa bave been field teeted for aaveral yeera with good auooeaa in all types of weather oonditiona. The preeence of other radioaotive aaterials, such as fiaaion produota, will fool the ayatea, however, aad aaterial buried acre than aaveral

DOB Hl«h Dfisitir Wf At tbe preaent tiae, tbere ia no aatiafactory aethod to aaaay blgb density 2 TRU waatea in bulk fora at the 10 nCi/g level. A prograa is preeently underway to develop active Interrogation aethoda (at or near the 10 nCi/g level) using external souroea of high energy pbctcoa aad nautrooa to induce fiaaioos in the TRU aaterial. Initially, a 30 Ma? electron llaear accelerator (LIHAC) la be'lng uaed to geeerate the necaaaary photon baaa aad, later, to produce neutrooa for prelialnary atudiea. The LIHAC ia preeently being ueed becauaa of its availability and capability for such atudiea. Aoceleratora eventually uaed for this purpoae will be of saaller energy, alaa, and coat. Sealed tube and Cockoroft-Halton neutron geoeratora are likely oaadldatee. It is worth noting thet saall LINACa and Cockeroft-Halton ganeratora have already been aounted In truck trailers and aoved around tbe Halted States for the purpose of assay of Buch larger quantities of TRU aaterials (wall above 10 nCl/g levels) in support of nuclear safeguard prograaa. Also developed in the safaguarda prog'-aa ar

passive spontaneous fiaaion neutron cotatera for the assay of graa fraction quantitiea of plutoniua contained In 55 gsi.. driau. The ayataaa are alaed ai scrap generated at a plutoniia facility rather than the aucb lower level waatea of interest here.

PI 1111 111 kualaar Powr Induatrv ilastae The aotlve Interro^tion aethoda diaouaaed above for uae on hlgb denaity DOE TRU waatea haa potential applioatioo to TRU waatea heavily oootaalnated with fission products froa tbe coaaeroial aactor. It la poaaihla that a alngle aaaay tecbnique aight be uaed for both WX high denaity waatea and ooaaercial waatea of any denaity. The active Interrogation prograa of Haf. Z ia addreaaing this.

REFERENCES

1. C. J. Qabargar and L. R. Cowdar, "Maaaureaent of Traoauraalo Solid Wastes at the 10 nCi/g Activity Level." Huol. Technol. 21, 500 (1975).

2. D. A. Cloae et al.. "TTanatiranlo Uaate Aaaay Inatruaantatloo: New Developaenta and Diractiooa at tba Loa Alaaoa Soientific Uboratory," U-UR-78-1652. and praaaoted at tba 1978 Aaaual Maetiag of the Inatitute of Nuclear Materiala Muiaceaaot. CincinaaU, Ohio (Juae 1978).

3. J. S. Hendricks and D. A. Qoaa, "Ha Detector Deaign for Uw-Uvel Tranauranio Haate Aaaay," U-aB-76-326*

*. C. J. Qabargar and M. A. Wolf, "A Battery Operated Portable Pboawicb Detector for Field Monitoring of Uw Levela of Tranauranio Contaainants," accepted for publication in Nuol. Instrxa. Matboda.

5. C. J. Uabarger and M. A. Wolf, "Two Portable Survey Inatruaenta: The Field Pboawicb Detector and tbe Wee Pee Hee," piJbliahad in tbe prooeedlnga of tba Eleventh Midyear Tbpioal Syapoaiua of the Health Physlea Society on Radiation Inatnaentation, San Diego, Callfbmla (January 16-19. 1978).

6. A. J. Ahlqulat, C. J. Qabargar and A. E. Stoker, "Hecent Developaenta for Field Monitoring of Alpha-BBitting Contaalaanta in the Bnvironaent," Health Physics 3A, *86 (1978).

7. J. F. Tinney, "Calibration of an X-Ray Senaitlve Plutonlia Detector," Univeraity of CalifomU RadUtico Laboratory report UCRL-50007-68-2. Haxarda Control Progreaa Report 31 (1968).

6. C. J. Uabarger, R. B. Walton, J. E. Foley and L. R. Cowder. "NDA Heasureaent of Uw-Uvel U and Pu Waste." J. Inst. Nucl. Haterlals Manageaent, Proc. I5th Annual Meeting 3, 3 (Fall 197*). APPENDIX K

NATURAL ENVIRONMENTAL SOORCES OP ALPHA-EMITTING RADIONUCLIDSS

J. C. Rodgers Los Alaaos Scientific Uboratory

I. INTRODUCTION There are considerable variatlona in levels of exposure to natural radiation around the world. But aan haa not.ayateaatioally avoided reglona of elevated natural radioactivity; on tbe contrary, aany tberaal aprings oontalning high concentrationa of natural radioactivity in water, aaada. aad air bave been sought out and developed aa health reaorta for ceatarlaa. Spaa beoaae particularly popular in the 19th century aoaa yeara before the diaoovery of radioactivity. Subaequent to the diaoovery of radioactivity aod the aaaociatlon between elevated natural radioaotivity and aoaa aineral or tberaal apri(«a, a belief grew that there ia acae beneficial effect of radioaotivity on health.' This belief peraiata in aoaa people today. The purpoae of the following disouaaion ia to review the range of levels of natural alpha-ealtting radlonuolldaa in aolla aad rooka ia different localitiaa around tbe world ia order to develop a aore quaatitativa parspeetive on certain kinds of natural radiation envirooaenta in which aan Uvea.

II. UNITS The quantities of natural radioactive aaterials are aoat frequently given in parts per Billion (ppa, or ug/g). But for purpoaes of discussion and coaparison with tranauraniua eleaenta in waatea, it ia helpful to convert the weight fraction to the radioaotivity of the aaterlala of intereat. This requirea aoaa aaaiiaptiona and conversion faotora for the two principal natural decay ear lea of intereat here, the uraniua (^^U) aad the tboriua (^^^Th) series. Tables B-IT to B-VII in Appendix B give tbe details of tbe decay products and tbe half-lives of the various aeabers of the uraniuB and tboriua series. Table K-I lists the aeJor alpha ealtting daugbtera along witb tbe activity associated with each while in equilibriua with tbe parent of the chain. There are, however. influences in nature that will cans* ^ov disequilibriua to occur aaong the daughter nuclides. Thus, if water passes •«

TABLE E-I

ALPHA-ACTIV ITT OP URANIUM AND THORIUM DBai CHAINS AT BQQILIBHIOM

QuaatltT leotooea JlBfaa-tfitlTitT 1 g of U-natural 3.33 X »0""' Ci (in aecular equil­ 23*0 ibriua with all 230Th daugbtera) «Sa 22«Rn 2'So 2'-PC 2'Opo

Total 2.7 :I 10"* Ci

1 i>pa U « 1 ttg/g « 2.7 pCi/g alpha activity

1 g of Th-aatural 232«» 1.09 X 10"^ Ci (la aecular equili­ 22Sh • briua witb all 22*R. « daugbtera) 22Sn • 2'6po • 2'2Bi 0.38 X 10""^ 2'2po 0.72 X 10"^

Total 6.5 X 10- 7

1 ppa Th « 1 ug/g s 0.65 pCi/g alpha activity

K-i through the soil, tbe aore soluble long-lived daugbtera aay be leached froa '.he site of foraation and deposited elsewhere. The preaenoe of the 4augMe;- of - Ra, '"''^Rn, a noble gaa with a balf-lif* of about 38 deya tbat la long encogf: to pemlt algration away froa ita point of foraation, Beans that under conditions where the gas oan diffuse away froa tbe parent, this decay product and its daughters will be in quantitlea lower than equilibriua. The loaa of 501 of tbeae daugbtera for tbe top aeter of the eoll haa been glveo aa a typical value.^ In deeper ore bodlee, pertioularly thoat of a large slse, such aoveaent should be less signlflcsnnt. If one oooaidera the 50f to be typical, then i ppa of uraniua tfould have an activity of 2 pCi/g of alpha activity rather than the 2.7 pCi/g at equilibriua. For the tboriua chain, the belf-llfe of the radon daughter ia aaall enough that a aiailar phenoaeoon ia not expected.

III. DISTRIBUTION OP ORAHIUM AND THORIUM Uraniua and tboriua are naturally aoat abundant in granitic, Intrualve rock aod volcanic rook. Uraniua aod tboriua concentrationa in the U.S. continental cruet range froa 0.2-7.0 ppa for uranlia and 0.2 to 36 ppa for tboriua. The averagea weifbted by areal abuodanoe are 2.5 ppo (5-7 pCl/g) for ureniua and )0 ppa (6.5 pCl/g) for tboriua. But in aoaa areaa tba ooooentratlona are coeaiderebly higher. For tbe 7 000 aquare-alle Colorado Front Range the averages are *.6 ppo (9.2-12 pCl/g) uraniua aod 22.7 Ppa (15 pCl/g tboriua, with soae relatively aaall areas having rook containing aa auoh as 100 ppa (200-?"" n pCi/g) uraniua, and *00 ppa (260 pCl/g) tboriua. The Conway granite In H-* Haapshire has been known for soae tiae to have elevated natural radioactivity Values ranging froa *.3 to 25.5 ppo (12-69 pCi/g) uraniua. aod 30 to 77 ppa (20-50 pCi/g) tboriua bave been reported in aoaa of theee granites. Another source of elevated netural alpha-eotlvity in the U.S.A. Is tbe pbosphorita rock and "black aand" of Florida. The phoaphorite oootalna uraniua ranging froa '35-350 ppa (365-9*5 pCi/g) and the "black aand" conUina tboriua -anglng froa 250-1000 ppa (162-650 pCl/g).^ There are other regions of the world where even grester concentrationa if natural alpha-activity are found, aoat notably lo Brasil and India. Along tne Atlantic coast of Braail (Rio de Janeiro and Espirito Santo states tber<» *."-• extensive deposits of eonazlte sand, as euch as 300 ailes along ••5« snores of Espirito Santo. The aonaxite proper oonslats of ''0 oercent '-%r» »nr'-r.s. --• percent thorljB oxide, and :. '5-0.25 percent jranlue 3«ld» T^.^ •oonar.-' t concentration in layered patches of sand ranges froa 5-20 percent, but even over I a oonsiderable extent of ordinary sand. It aay reach 0.5 percent. At the high end of these ranges, the alpha-activity concentration approaches 8 nCi/g froa • thorlua, and U nCi/g froa uraniua content. The total alpha-activity I oonoantratlon is, therefore, oo the order of 22 nCl/g in the aore coocentratedd sands. Other regions in Brazil with reaarkably blgb naturally radioactive soils | and rock are Pooos de Caldas and t^.^ area around Araxi and Tapira. At one site within Pocoa de Caldaa (the Morro do Ferro) there are extensive I deposits of tboriua ore. Values of thi*ee percent thorlua are not unccaaon (.^20 nCl/g). At Araxa and Tapira the radioectivity ia aaaooUted with a aa«aatic I rock called apatite (ooaplex fluorpboephate of oalciua) tdiich is profusely ainerallsed with aaterials Including pyrochlore. Pyroohlore baa a high oontent of thorlua, along with rare earth oxidea, and only relatively ainor aaounts of uraniua (tboriua oxide, 7 percent, or 60 nCl/g; uraniua oxide, 0.22 percent, or 6 nCl/g, for a total of about 66 nCl/g). Of oourae tbe pyroohlore aaounta to only a saall percentage of the total rook (about six percent or about * nCl/g). except in certain rich layers. | In tbe Eerala and Taall Nadu Statea on tbe west coest of India tbere sre extensive depoaita of aooasite aand that contain relatively high concentretlone of Uiorlua. Monazite is alao found in aolla in tbeae reglona in aaaller aaounta. a Kerala beach sand contains 5-9 percent aonaxite. Kerala aonaxite is approxlaately 10 percent thorlua oxide and 0.* percent uraniua oxide. The alpha activity of such sand is then approxlaately 5 nCi/g thorlua and 830 pCi/g uraniim. Soil values are in the ranges of O.M-0.5 pCi/g uraniua and 7-25 pCi/g a thorlua. It appears then that the bulk of tbe naturally radioactive rock and soil around tbe world containa on the order of 10 pCi/g of alpba-actlvity froa tbe uraniua and thoriia series. There are regions in Bratll and India where populations live in areas containing significant aaounts of alpha eeitters in the soil.

IV. ETFECTS OF HUMAN POPULATIONS Soae studies of possible effects on hiauin populations living In areas of "•levated background radiation froa naturally .-adioactive aaterials in the soil have been done. Froo the perspsctive of the transuranic •leeents •.n<»3* rkav» ^r." added feature of high external gaaaa radiation, up to two raas per year in 'it-.^ highest areas, and the high levels of radon isotopes in the ataospbere. Thus, any discernible effect will bave been aaaoclated largely with theac radiation sources and seperating any effect froa tbe alpha eaittera other than 220 Rn w-.ii be difficult. The following kinds of Inforastioo are available.

1. A very extenalve deaograpblc and gaaaa radiation doaiaetrlc survey of a portion of the population in the aonaxite aands region of Kerala State, India, has been reported. On the basis of the TLD doelaetrlc aeaaureaents it la expected that, aa a firat approxiaatioo, of tbe 70 000 individuals living in tbe region covered by the survey, about 16 600 are likely to be reoeiving a doee exceeding 500 ar/yr, and aaveral hundred eight be receiving expoaurea greater than 2 r/yr (57 out of 8513 individuals surveyed out of thia population received a dose greeter than 2 r/yr.)' Data on pregnanclea aod their temlnatloo were extensively reviewed to deteralne if auch vital atatistica reflect the elevated exposure. The nuaber of pregnanclea per couple (Fertility Index) waa not different between groupa receiving widely different levels of background radiation (tbe oategorlea for thia and other statiatioa are 100-500 ar/yr, 600-1000 ar/yr, 1100-2000 ar/yr. and >2000 ar/yr). No clear-cut pattema eaerged froa a atudy of the eex-ratio aaong the off.spring. Infant aortality waa high aaong all groupa atudied. Infant aortallty is a sensitive indicator of the living standards of a coaaunity, and priBitive aedlcal facilities, inadequate sanitation, and the like are characteristic of the region. Infant aortality rates as high as those found m this region were reported in other parts of India having noraal background However, it was noted that the higbeat aortality rate (309/1000 live births) was recorded in the group of nine couples living in Thekkunghagva receiving an exposure froa gaaaa radiation greater than 2 r/yr. The frequency of abortion abnoraalities end aultiple births was not significantly different aaong the different categories. However, the frequency of still births in the group receiving greater than 2 r/yr was significantly higher than in other groupa (6.1*1 vs 3.6% in the lowest category of exposure). The conclusion of the study was that although differences were recorded between the highest and loves* exposure groups, the paraaeters analyzed were not sensitive enough to rev«*. statistically significant differences 2. k nuabar of atudiaa of tiM population la ttoa Brasiliae areas of nl«h natural radioactivity have baan aada. One physiologioal aanifeata*ion attributed to the radiation emrironaent of Ouarapari, Brssll, is an elevat«c rata of chroaosoaa abbaration In tha parlpharal Lyapbooytaa. The lacK of reliable publio health raoorda, or routine aadioal axaaination and the generally hard oonditiona of life andaalo to these paopla bava not providad a baae for a statiatioal study of aaoroaoopio aoaatio daaaga. k oytocanatie sunrey, in Mhich the ohroaosoaas of tha radlosansltiva, parlpharal, blood lyaphocitea are •iaroaaopieally analysad for abbaration rataa, ratraalad a type and frequency whi(^ oannot be attributed solely to an external radiation souroe, and which siiggasta tba praaenoa of an additional axpoaure to a high LST radiation. The souroa is tbougbt to b« a taaporary body burdan of tboroa and ita daughters inhaled ubila insida Ouarapari bulldinga. Altbougb dlraot avldaooa oonoeming the soupoa has not baan ooapilad, a doslaatrlo aodal baa baan developed utilizing a saall population of vorkara in a aooatita-aaod prooasslag Bill in a Rio da Janeiro gas aantla (TbOj) factory. Tbia aodal oonfiraa tba oytoganatic response to transient elaratad lavala of tboron and daughters.

3. Another study of a salaotad popolatioo group aaoog the inbabitanta of the aoozlte belt in Kerala, India, foouaad on oartain daraatoglyphic paraaeters (finger ridge oounta) tbougbt to ba aaasitlTa indloators of gaoetio change in aan. Total finger ridge oount la one of tba aore thoroughly studied quantitative characters in aan. The faailial oorrelations for this trait are in reaarkable agreeaent with the theoretical values for perfectly additive genes. In the case of a quantitative trait, an inoreaae in autation followed by recoabination alght be expected to add to ita varianoe, and radiation exposures with high acuta dosaa have oonfiraad suoh an expectation. Hotiever, when deraatoglypbic data froa 7% aalaa native to tba Karala area were coapared with those froa 72 ethnically coaparable aalas native to another area exposed to near noraal levels of radiation, all six quantitative cbaractara studied showed lower variance aaong the higher exposed population coapared to the controls. Two possible interpretations for this soaawhat puzsling finding have been proposed: a) the exposed population aay have originated froa a saall group of possibly related individuals, or b) the effects of chronic low-level radiation -ay not »• the saae as those of high, acute doses. The foraer aay soaettaes

4. k cytogenetic investigation of tba population expoaed to the elevated radiation anvirooaent of Badgaataln, Austria, waa initiated in 1968. The aajor 222 source of axpoaure la the radon and daugbtara in tba tbaraal baths ( Rn content of the water is ^15 000 pCi/L, in the air of the hatha, ^90 pCi/L.)^ Tba oaloulatad alpha dose ratea to varioua orgaaa (priaolpaily lungs and blood) range froa 0.07 -0.15 raa/yr (lungs) in inbabitanta of tba aurrounding area, to 2 50-100 raaa/yr (Luoga) in tbaraal gallery aloara and tralnlaadara. The upturn point in tbe cytcgenatlo affaot va alpha blood doaa ourvaa liaa aoaawhere betwean 0.3 and I raa/yr. An invaatigation baa begun on tba age and cause of death of tbe people living la tbe area of Badgaataln and ooatrol populations in non-radioaotive apaa with aiallar gaograptaloal and acologleal conditions. To date tbe findinga are that tba loogavity of tba Badgaataln population is oertainly not balow tba control plaoas, aad tiia oaaoar aortality is certainly not blgbar. A vary large nuMbar of studies of posslbia affaota on boaan populationa froa exposure to natural radioaotivity at diffarant levels aad uadar different conditions have been aada, only a f^w of wbicb bava baan reviewed here. The evidence of well over ten years of study is inoonoluaive. On the one hand. cortaln effects that could be attributed to exposure to Ionizing radiation hsv« been observed,^'" but on tbe otbar band, tba aaaroh for severe adverse healtr, 9 10 effects (life-abortaning, oanoar) baa not baan at all conoluaive. The reaaona for tba inoonolusivanaas regarding affaota of elevated natural radUtion include suoh probleas aa, 1. Tbe population slsa under atudy la not large enough to exhibit epideaological aanifeatationa; 9 2. An adequate control population cannot be found; 2 9 3- A phyaiologioal effect wbich bas baan observed, ' cbroaoaoae aberrations, not only presents tbe difficulty of establishing ir. adequate control since several other environaental agents can cause chroaosoaal Breaks, but also it la extr»«ely dlfflcui* •: sake an eatiaata of tbe degree of daaaga associated with such 12 aberrations sinoa they are actively aelected against; an

RBFBREMCBS

1. H. Bisanbud, "Tbe Matural versus tba Onnatural," in Tba latural Radiation Bnvirooaant II, J.A.S. Adaas, V.N. Lowdar and T.F. QaaaU. Ida., U.S. Tacbnical Inforaation Service, Dept. of Coaaeroe, Springfield, VA, ((XXF>720805) (Aug. 1972).

2. J. Pobl-Ruling and F. Sohaainzky, *Tba Natural Radiation Envirooaent of Badgaataln, Austria, and ita Biological Effects," in Tbe latural Radiation Bnvirooaant II, J.A.S. Adaas, U.H. Lowder and T.P. Gesell, Eds., U.S. Technical Inforaation Service, Dept. of Coaaerce, Springfield, V*, (COIIF-720805) (Aug. 1972).

3. Wayne M. Lowder. W-''«iaa J. Condon and Harold L. Beck, •Field Spectroaetrlc Inveatigations of Environaental Radiation in tbe O.S.A.," in the Natural Radiation Bnvironaent I, J.\.S. Adaas and W.M. Lowder, Eds., University of Cblcago Press, (Thicago (1964).

t. G. Phair and D. Gottfried, "The (>}lorado Front Range, Colorado, U.S.A., as a Oraniua and Thorlua Province," in The Natural Radiation Envirooaent 1, J.A.S. Adaas and U.H. Lowder, Eds., Oniversity of Chicago Press, Chicago 096M).

5. K. A. Richardson, "Thoriua, Draaiua, and Potaaaiua in tbe Conway Granite, New Haapahire, O.S.A., "in Tha Natural Radiation Eovironaent I, J.A.S. Adaas and W.H. Lowder, Eds.. Oniversity of Chicago Press, Chicago ( )96«}.

5. J. K. Osound, "Th« Distribution of Heavy Radloeleaents In *.he Roc^« siri Maters of Florida," in T*ie Natural Radiation Envirooaent I. Z.K Z Ai^as and W.M. Lowder, Eds., University of Chicago Press, "hlcagc '56- T. F. X. Roser, G. Kegel sod T. L. Cullen, "Radiogeology of Soee High-background Areas of Brazil," in Tbe Natural Radiation Bnvironaent I. J.A.S. Adaas and W.M. Lowdar, Bda., Oniversity of Chicago Press, Chicago (I96«). 8. V. V. Kulkarni, T. N. V. Pillai aod A. K. Ganguly, "Diatribution of Natural Radioactivity and Trace Bleaanta in the Soils and Sanda froa tbe High Radiation Coantal Belt of India," Bbabba Atoaic Research Center, Boabay, Indis, BAIC-702 ( I97«).

9. A. R. Oopal-Ayengar, K. Sundsraa. C. B. Nistry, C. N. SunU, K. S. V. mmbl, S. P. CatburU, A. S. Basu and H. David, "Evaluation of the Long • Tera Effeota of High Background Radiatioo on Selected Population Groups on tba Kerala Coast," in Fourth Intsmational Coofareooe oo Peaceful Oaea of Atoaic Boargy, Onitad Natioos aad Intamatiooal Atoaic Boargy Ageooy, Tiaooa (1972).

10. D. B. (}oosalaa, C. (3oata Ribario, H. Haass, T. L. Cullao, N. C. Pfeiffer, E. Faooa Praoca, N. J. T. Soaraa, "Taaporary Body Burdaos in Doaa-Effeot Studiea of the Brazilian Areas of High Natural Radioactivity." in Population Kxpoauraa, J. C. Bart, R. B. Ritobia aod B. S. farosdore. Eds., U.S. Tacboical loforaatioo Sarvioa, Dept. of Coaaaros, Springfield, VA C0«P-71I0I8I (Oct. 197«l).

11. T. R. Ahuja. A. Sbanaa, K. 0. K. •aapoctbiri, H. R. Alruja, E. R. Daapater, "Bvaluatioo of Effects of Hicb latural Baokgrouod Radiatioo oo Soaa Geoetic Traita la Inbabitaota of Nooasits Bait in Karala, IndU," Buaan Biology, «5, 2, 167-179 (M»y 1973). )2. S. Wolff, "Stataaent oo Oytocanatie Bffacta of Low-Laval RadUtion," in Conferanoe on tbe Bstlastico of Low-Level RadUtion Effaeta in Huaan Populations, Argonne National Laboratory Report, AIL-78II (Deo. 1970).

13. B. J. Stover «<^QH. Eyrins*^ The Dynaaloa of Life. I. "Desth froa Interna: Irradiation by ^^Pu and Hla, Aging, Cancer and Other Diseases," Proc. of the National Acadeay of Sciencea, 66, I, 132-139 (Hsy 1970). APPENDIX L

TECHNICAL DEVELOPMENTS IN WASTE MANACQfENT

During the developaent of this report, the Taak Group identified a nuBt>«r of suggestions that oould lead to iaproved control of waatea containing transuraniua eleaents. Since tbe iaproveaant of technology was not a purpose of this study, tbe suggestions wars not pursued further. Bowever, they ar« described briefly in this appendix for posaible future study by those involved In waste aanageaent.

1. While not a technical point, tba need to resolve the question of the proper approach to protecting possible future intruders bacaae apparent. As was discussed in the body of tbe report, the Task (jroup could not reach agreeaent as to whether such actions should ba included in tba patbwaya. Tba Taak Group also noted that they were not oonstituted to grapple with this question. Instesd, it was believed that the queation involved legal, ethical and aooial expertise not represented on tbe Task Group. We feel that it would ba useful to have a properly oooatltuted group study thU quastioo with a view to providing a policy to ba used by tacboical people.

2. While soae success has been had in ainiaizing waste voluaes, we believe that further efforts are needed to reduce not only voluae but the quantity of contained transuraniua eleaents. This could involve studies of the processes used to reduce scrap and aake the scrap and waste foras aore tractable for aanageaent or for recovery. At preaent, the difference between waste and scrap is defined by the cost of recovery. Perhapa processes aore aaenable to recovery at a lower ocat could result in saaller quantitiea of the transuraniua eleaents going to waste. We think iaaediately of tbe aoid-dlgestion possibility for coabustibles which aay result in a stress easier to handle than Incinerator ash for recovery, but there aay be other aethods. Our philosophy is that everv graa that can be recycled to the aain streaa is a graa that does not go to waste. We are not certain of the responsibility for funding such an effort, sine* It could be considered as process iaproveaent, but we believe that it is i *- •h'Jt waste aanageaent considerations extend to every atec of sny Drcoe?* 3. Another itaa for oonsideration arose in our discussion of tn« jse of plastics for containing wastes. Our studies indicate that such contalnaent in a non-degradable plastic would be useful if deep burial is atteapted, but the practice can be undesirable in shallow burial because of the tendency to preaerve the co«N>uatiblee. This, of course, only applies if intrusion is considered a vUble pathway. If shallow burial oontinues, we believe that soae effort should be devoted to obtaining dagradable plaatioa that will provide the saae protection to .nste handlera as tbe praaent plaatic.

^. The poaaibility of uaing additivea to tba waste at the tiae of eaplaceaant to oootrol poaaibla aigration could ba inveatigated. Theae additivea could change cbaaieal fora or the ooodltiooa in tbe waste aass. The aigration aod raooncentratloo of varioua aetals froa ore bodies in nature could provide cluea to tba type of additive that would be aoat effective.

5. Another poaaibility for oootrolllng aigration would be to line the burUl pit with a layer of absorbent astarUl that would reaove tbe transtiranics froa tba water passing tbroagb. ThU oould possibly be aoat effactive if used in conjuootioo with an additive that would aid in controlling tba oheaical fora and pH of tba transuranics U the water.

6. The use of a rook covering for tbe bxirial ground to oontrol erosion should be considered. ThU would also discourage burrowing anioals and, possibly, aUiaixe tranafer to tbe surfaoe by plant uptake. In an article by Judaon there U a picture of a Roaan road built of basalt blocks in 200 B.C.. The road U now a low ridga bacauaa tbe leaa raaistant lithifiad volcanic ash of tha hillaida upon which the rood was built bss baan eroded away. Such erosion control would need serious investigation to find the types of situations for which it U useful and tha sizes and shapes of rocks that would provide the best long-tera stability. Obviously if the rock ia too saall it will, itself, "srode away. However, if it is too large it aay serve as a souroe of future building aaterial and be reaoved. 7. In connection with the above, it was auggasted tbe burial ground be marked with penianent aarkers in a universal language so that future generi:ti:,n-> could replace the covering as needed.

8. Criteria for acceptable areas for shallow earth burUl are needetl to perait decisions on continuing in present areas and in looking for posal&le future areas. We have concluded, elaewbere in tbia report, that burial in iaperaeable foraationa, particularly if fractured, should be avoided in areas of aoderate to heavy rainfall because of the tendency for the .pits to fill with water and overflow or possibly provide seepage paths through the fractures. Data available indioata lower leaching if tba water froa raUfall paaaes through tbe waste to tbe aquifer without accuaulaticn in tha pit. Such data ahould be studied and definite site criteria established to allow avoidance of unfavorable sites.

9. The present approach to radioactive waste disposal appears to call for an either-or approach. Either the waste goes to shallow earth burial or it goes to a repository at a significant cost. As bas been seen, a aajor portion of the problea with shallow earth burial arises froa tha possibility of direct exposure of people to the waste aass following uocovariog by aroaioo or other aeans or froa intrusion into the wastes. ThU raises tbe possibility of providing a third alternative for those wastes which are too higb in eontaaination for the relatively exposed shallow earth burial but are low enough to be placed in an areas less secure than the repository. Dry caverns, abandoned sines, or deliberately dug caverns in dry foraationa ware suggested as possibilities. The lower lUits for artifacts that are proposed in this report also suggest that such a location could also ba used for Itaaa suoh as tbsse if the area were properly secured by collapaing any openinga.

REFERENCES

1. S. Judson, "Erosion of the Land or What's Happening to Our Continents," ka. Sci. 56, U, 356-37H (1968).