The Neuropeptide Galanin Modulates Behavioral and Neurochemical Signs of Opiate Withdrawal
The neuropeptide galanin modulates behavioral and neurochemical signs of opiate withdrawal Venetia Zachariou*†, Darlene H. Brunzell*, Jessica Hawes*, Diann R. Stedman*, Tamas Bartfai‡, Robert A. Steiner§, David Wynick¶,U¨ lo Langelʈ, and Marina R. Picciotto*,** *Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508; †Faculty of Medicine, Department of Pharmacology, University of Crete, 711 10 Crete, Greece; ‡Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037; §Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195; ¶Department of Medicine, Bristol University, Bristol BS2 8HW, United Kingdom; and ʈDepartment of Neurochemistry and Neurotoxicology, Stockholm University, 106 91 Stockholm, Sweden Edited by Richard D. Palmiter, University of Washington School of Medicine, Seattle, WA, and approved June 2, 2003 (received for review May 23, 2003) Much research has focused on pathways leading to opiate addic- galanin-mediated effects on morphine withdrawal were exam- tion. Pathways opposing addiction are more difficult to study but ined in transgenic mice that overexpress the peptide under the may be critical in developing interventions to combat drug depen- control of the dopamine--hydroxylase (DH) promoter, which dence and withdrawal. Galanin decreases firing of locus coeruleus normally drives gene expression in noradrenergic neurons (20), neurons, an effect hypothesized to decrease signs of opiate with- and in studies of c-fos and tyrosine hydroxylase (TH) phosphor- drawal. The current study addresses whether galanin affects mor- ylation in the LC of wild-type mice administered galnon. phine withdrawal signs by using a galanin agonist, galnon, that crosses the blood–brain barrier, and mice genetically engineered Methods to under- or overexpress galanin peptide.
[Show full text]