Vegetation Degradation Impacts Soil Nutrients and Enzyme Activities In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Discovery of an Alternate Metabolic Pathway for Urea Synthesis in Adult Aedes Aegypti Mosquitoes
Discovery of an alternate metabolic pathway for urea synthesis in adult Aedes aegypti mosquitoes Patricia Y. Scaraffia*†‡, Guanhong Tan§, Jun Isoe*†, Vicki H. Wysocki*§, Michael A. Wells*†, and Roger L. Miesfeld*† Departments of §Chemistry and *Biochemistry and Molecular Biophysics and †Center for Insect Science, University of Arizona, Tucson, AZ 85721-0088 Edited by Anthony A. James, University of California, Irvine, CA, and approved December 4, 2007 (received for review August 27, 2007) We demonstrate the presence of an alternate metabolic pathway We previously reported that mosquitoes dispose of toxic for urea synthesis in Aedes aegypti mosquitoes that converts uric ammonia through glutamine (Gln) and proline (Pro) synthesis, acid to urea via an amphibian-like uricolytic pathway. For these along with excretion of ammonia, uric acid, and urea (20). By studies, female mosquitoes were fed a sucrose solution containing using labeled isotopes and mass spectrometry techniques (21), 15 15 15 15 15 NH4Cl, [5- N]-glutamine, [ N]-proline, allantoin, or allantoic we have recently determined how the N from NH4Cl is acid. At 24 h after feeding, the feces were collected and analyzed incorporated into the amide side chain of Gln, and then into Pro, in a mass spectrometer. Specific enzyme inhibitors confirmed that in Ae. aegypti (22). In the present article we demonstrate that the 15 15 15 mosquitoes incorporate N from NH4Cl into [5- N]-glutamine nitrogen of the amide group of Gln contributes to uric acid and use the 15N of the amide group of glutamine to produce synthesis in mosquitoes and, surprisingly, that uric acid can be 15 labeled uric acid. -
Francisella Tularensis 6/06 Tularemia Is a Commonly Acquired Laboratory Colony Morphology Infection; All Work on Suspect F
Francisella tularensis 6/06 Tularemia is a commonly acquired laboratory Colony Morphology infection; all work on suspect F. tularensis cultures .Aerobic, fastidious, requires cysteine for growth should be performed at minimum under BSL2 .Grows poorly on Blood Agar (BA) conditions with BSL3 practices. .Chocolate Agar (CA): tiny, grey-white, opaque A colonies, 1-2 mm ≥48hr B .Cysteine Heart Agar (CHA): greenish-blue colonies, 2-4 mm ≥48h .Colonies are butyrous and smooth Gram Stain .Tiny, 0.2–0.7 μm pleomorphic, poorly stained gram-negative coccobacilli .Mostly single cells Growth on BA (A) 48 h, (B) 72 h Biochemical/Test Reactions .Oxidase: Negative A B .Catalase: Weak positive .Urease: Negative Additional Information .Can be misidentified as: Haemophilus influenzae, Actinobacillus spp. by automated ID systems .Infective Dose: 10 colony forming units Biosafety Level 3 agent (once Francisella tularensis is . Growth on CA (A) 48 h, (B) 72 h suspected, work should only be done in a certified Class II Biosafety Cabinet) .Transmission: Inhalation, insect bite, contact with tissues or bodily fluids of infected animals .Contagious: No Acceptable Specimen Types .Tissue biopsy .Whole blood: 5-10 ml blood in EDTA, and/or Inoculated blood culture bottle Swab of lesion in transport media . Gram stain Sentinel Laboratory Rule-Out of Francisella tularensis Oxidase Little to no growth on BA >48 h Small, grey-white opaque colonies on CA after ≥48 h at 35/37ºC Positive Weak Negative Positive Catalase Tiny, pleomorphic, faintly stained, gram-negative coccobacilli (red, round, and random) Perform all additional work in a certified Class II Positive Biosafety Cabinet Weak Negative Positive *Oxidase: Negative Urease *Catalase: Weak positive *Urease: Negative *Oxidase, Catalase, and Urease: Appearances of test results are not agent-specific. -
Extended Spectrum Β-Lactamases and Class C Β
F1000Research 2020, 9:774 Last updated: 01 APR 2021 RESEARCH ARTICLE Extended spectrum β-lactamases and class C β-lactamases gene frequency in Pseudomonas aeruginosa isolated from various clinical specimens in Khartoum State, Sudan: a cross sectional study [version 1; peer review: 1 not approved] Dina N. Abdelrahman 1,2, Aya A. Taha2, Mazar M. Dafaallah2, Alaa Abdelgafoor Mohammed3, Abdel Rahim M. El Hussein 1, Ahmed I. Hashim 2, Yousif F. Hamedelnil2, Hisham N. Altayb 4 1Department of Virology, Central Laboratory, Khartoum, Sudan 2Department of Microbiology, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan 3Department of Pharmaceutical Biotechnology, College of Pharmacy, Ahfad University for Women, Omdurman, Khartoum, Sudan 4Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia v1 First published: 27 Jul 2020, 9:774 Open Peer Review https://doi.org/10.12688/f1000research.24818.1 Second version: 15 Sep 2020, 9:774 https://doi.org/10.12688/f1000research.24818.2 Reviewer Status Latest published: 01 Apr 2021, 9:774 https://doi.org/10.12688/f1000research.24818.3 Invited Reviewers 1 2 Abstract Background: Pseudomonas aeruginosa is a pathogenic bacterium, version 3 causing nosocomial infections with intrinsic and acquired resistance (revision) mechanisms to a large group of antibiotics, including β-lactams. This 01 Apr 2021 study aimed to determine the susceptibility pattern to selected antibiotics and to index the first reported β-lactamases gene version 2 (extended spectrum β-lactamases (ESBLs) genes and class C β- (revision) report report lactamases genes) frequency in Ps. aeruginosa in Khartoum State, 15 Sep 2020 Sudan. Methods: 121 Ps. -
Studies on the Diversity of Ciliate Species in Gahai Alpine Wetland of the Qinghai-Tibetan Plateau, China
COMMUNITY ECOLOGY 20(1): 83-92, 2019 1585-8553 © AKADÉMIAI KIADÓ, BUDAPEST DOI: 10.1556/168.2019.20.1.9 Studies on the diversity of ciliate species in Gahai Alpine Wetland of the Qinghai-Tibetan Plateau, China H. C. Liu1,2, X. J. Pu1, J. Liu1 and W. H. Du1,3 1 College of Grass Science of Gansu Agricultural University, Lanzhou, Gansu Province 730070 China 2 Department of Chemistry and Life Science of Gansu Normal University for Nationalities, Hezuo, Gansu Province 747000 China 3 Correspondence to Du Wen-hua, [email protected], Present address: No. 1, Yingmen village, Anning District, Lanzhou, Gansu province, China Keywords: Ciliate, Community structure, Distribution, Functional-trophic group, Gahai Alpine Wetland of Qinghai-Tibetan Plateau, Species diversity. Abstract: This study investigated the community structure of ciliates in Gahai Alpine Wetland of Qinghai-Tibetan Plateau, China. We hypothesized that the ciliate community in the Plateau is more complex and the species diversity is richer than those in other climate zones of China. In particular, we studied how the ciliate species responded to environmental temperature, soil moisture content and the manner of pasture utilization. We determined key features of the ciliate communities such as trophic functional groups, ciliate seasonal distribution, species diversity and similarity index at six sample sites from January 2015 to October 2016. To count and characterize ciliates, we combined the non-flooded Petri dish method with in vivo observation and silver staining. We identified 162 ciliate species in this area, showing a high species and functional diversity. The mode of nutri- tion was diverse, with the lowest number of ciliates in group N (Nonselective omnivores, 4 species) and the highest number in group B (Bacterivores-detritivores, 118 species, corresponding to 73% of the total species number). -
(12) United States Patent (10) Patent No.: US 9.422,609 B2 Teichberg (45) Date of Patent: Aug
USOO9422609B2 (12) United States Patent (10) Patent No.: US 9.422,609 B2 Teichberg (45) Date of Patent: Aug. 23, 2016 (54) METHODS, COMPOSITIONS AND DEVICES (58) Field of Classification Search FOR MANTAINING CHEMICAL BALANCE CPC ........................ C02F 1/725; C12Y 305/01005 OF CHLORINATED WATER USPC ........................... 210/754; 435/195, 227 231 See application file for complete search history. (75) Inventor: Vivian I. Teichberg, Savyon (IL) (56) References Cited (73) Assignees: Mia Levite, Savyon (IL); Yaar Teichberg, Savyon (IL); Nof Lyle U.S. PATENT DOCUMENTS Teichberg, Savyon (IL) 4,793,935 A * 12/1988 Stillman ............... CO2F 1.5236 21Of727 (*) Notice: Subject to any disclaimer, the term of this 6,673,582 B2 * 1/2004 McTavish ..................... 435/122 patent is extended or adjusted under 35 U.S.C. 154(b) by 1044 days. (Continued) (21) Appl. No.: 12/225.18O FOREIGN PATENT DOCUMENTS y x- - - 9 AU 41971 5, 1979 (22) PCT Filed: Mar. 14, 2007 GB 2025919 1, 1980 (86). PCT No.: PCT/L2007/OOO336 (Continued) S 371 (c)(1) OTHER PUBLICATIONS (2), (4) Date: Sep. 16, 2008 Examiner's Report Dated Oct. 6, 2010 From the Australian Govern (87) PCT Pub. No.: WO2007/107.981 ment, IP Australia Re. Application No. 2007228391. (Continued) PCT Pub. Date: Sep. 27, 2007 (65) Prior Publication Data Primary Examiner — Peter Keyworth (74) Attorney, Agent, or Firm — Browdy and Neimark, US 201OfO270228A1 Oct. 28, 2010 PLLC Related U.S. Application Data (57) ABSTRACT (60) Provisional application No. 60/783,028, filed on Mar. A composition-of-matter for use in water treatment, com 17, 2006. -
Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 Version
Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8 th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9 th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY . DD MM YY Name: Junzhen Li, Peilong Ma, Lin Wang Institution: Bureau of Gansu Gahai-Zecha National Nature Reserve Address: 9 Le’erduo Eastern Road, Luqu County Designation date Site Reference Number 747200, Gansu Province, China Tel: +86-(0)941-6625586 Fax: +86-(0)941-6625558 E-mail: [email protected] 2. -
Letters to Nature
letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997). -
Download Author Version (PDF)
Food & Function Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/foodfunction Page 1 of 16 PleaseFood do not & Functionadjust margins Food&Function REVIEW ARTICLE Interactions between acrylamide, microorganisms, and food components – a review. Received 00th January 20xx, a† a a a a Accepted 00th January 20xx A. Duda-Chodak , Ł. Wajda , T. Tarko , P. Sroka , and P. Satora DOI: 10.1039/x0xx00000x Acrylamide (AA) and its metabolites have been recognised as potential carcinogens, but also they can cause other negative symptoms in human or animal organisms so this chemical compounds still attract a lot of attention. Those substances are www.rsc.org/ usually formed during heating asparagine in the presence of compounds that have α-hydroxycarbonyl groups, α,β,γ,δ- diunsaturated carbonyl groups or α-dicarbonyl groups. -
Chemical Transformations Encoded by a Gene Cluster in Streptomyces Coelicolor Containing an Unusual Gtp Cyclohydrolase
Chemical Transformations Encoded by a Streptomyces coelicolor Gene Cluster with an Unusual GTP Cyclohydrolase Item Type text; Electronic Dissertation Authors Spoonamore, James Edward Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 11/10/2021 06:44:52 Link to Item http://hdl.handle.net/10150/194825 CHEMICAL TRANSFORMATIONS ENCODED BY A GENE CLUSTER IN STREPTOMYCES COELICOLOR CONTAINING AN UNUSUAL GTP CYCLOHYDROLASE by James Edward Spoonamore ______________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOPHYSICS In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2008 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by James Edward Spoonamore entitled Chemical Transformations Encoded by a Gene Cluster in Streptomyces coelicolor Containing an Unusual GTP Cyclohydrolase and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: April 16, 2008 Vahe Bandarian _______________________________________________________________________ -
Comparison of Nitrile Hydratases in Rhodococcus Rhodochrous DAP 96253 and DAP 96622 Growing on Inducing and Non- Inducing Media
Georgia State University ScholarWorks @ Georgia State University Biology Dissertations Department of Biology Spring 4-26-2013 Comparison of Nitrile Hydratases in Rhodococcus Rhodochrous DAP 96253 and DAP 96622 Growing on Inducing and Non- Inducing Media Fengkun Du Georgia State University Follow this and additional works at: https://scholarworks.gsu.edu/biology_diss Recommended Citation Du, Fengkun, "Comparison of Nitrile Hydratases in Rhodococcus Rhodochrous DAP 96253 and DAP 96622 Growing on Inducing and Non-Inducing Media." Dissertation, Georgia State University, 2013. https://scholarworks.gsu.edu/biology_diss/130 This Dissertation is brought to you for free and open access by the Department of Biology at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Biology Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. COMPARISON OF NITRILE HYDRATASES IN RHODOCOCCUS RHODOCHROUS DAP 96253 AND DAP 96622 GROWING ON INDUCING AND NON INDUCING MEDIA by FENGKUN DU Under the Direction of George E. Pierce ABSTRACT Nitrile hydratase activity in Rhodococcus rhodochrous DAP 96253 can be induced with multiple inducers that include urea, cobalt (Co), iron (Fe) and nickel (Ni). When induced with Co/urea, cells of R. rhodochrous DAP 96253 expressed the highest level of nitrile hydratase activity (~200 units/min·mg-cdw) when compared with the other inducers tested. Cells induced with Co had the second highest nitrile hydratase activity (~7 units/min·mg-cdw), whereas in the uninduced cells, nitrile hydratase activity was lower than 1 unit/min·mg-cdw. Similarly in R. rhodochrous DAP 96622, when induced with Co/urea, the nitrile hydratase activity of R. -
From the Tribe to the Settlement - Human Mechanism of Tibetan Colony Formation
2013 International Conference on Advances in Social Science, Humanities, and Management (ASSHM 2013) From the tribe to the settlement - human mechanism of Tibetan colony formation - In Case Luqu Gannan Lucang Wang1 Rongwie Wu2 1College of Geography and Environment, Northwest Normal University Lanzhou, China 2College of Geography and Environment, Northwest Normal University Lanzhou, China Abstract layout. Gallin (1974) obtained that there was a close relationship between the rural residential location of Tribal system and the regime has a long history in Luqu agglomeration and central tendency and reforment of County. Tribal system laid the tribal jurisdiction, which is government public infrastructure by the model analysis[4]. the basis for the formation of village range; and hierarchy Although settlements have the close relationship with the of the tribe also determines the level of village system and natural environment, human factors are increasing in the the hierarchical size structure of village; Tribal economic development of the role of them[5]. Zhang (2004) puts base impacted the settlement spatial organization. With forward the “city-town-settlement”which is a settlement consanguinity and kinship as a basis, tribal laid the hierarchy on the basis of Su Bingqi’s “ancient city”theory. identity and sense of belonging of the population. Each He views that social forms and the management system tribe had its own temple, temple play a role on the will change from the tribe to the national, and there will stability of settlement. Therefore tribes-temple-settlement be classes, strata and public power. Some tribal centers formation of highly conjoined effect. may have become political, economic and cultural center, or a capital[6]. -
From Helicobacter Pylori
Biochemical Characterization of Hypothetical Proteins from Helicobacter pylori Han-Pil Choi1, Silvia Juarez2, Sergio Ciordia2, Marisol Fernandez2, Rafael Bargiela3, Juan P. Albar2, Varun Mazumdar4, Brian P. Anton5, Simon Kasif1,4, Manuel Ferrer3*, Martin Steffen1,6* 1 Dept of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America, 2 Proteomic Facility, CNB-National Centre for Biotechnology, CSIC, Darwin 3, Madrid, Spain, 3 Spanish National Research Council (CSIC), Institute of Catalysis, Madrid, Spain, 4 Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America, 5 New England Biolabs, Ipswich, Massachusetts, United States of America, 6 Dept of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America Abstract The functional characterization of Open Reading Frames (ORFs) from sequenced genomes remains a bottleneck in our effort to understand microbial biology. In particular, the functional characterization of proteins with only remote sequence homology to known proteins can be challenging, as there may be few clues to guide initial experiments. Affinity enrichment of proteins from cell lysates, and a global perspective of protein function as provided by COMBREX, affords an approach to this problem. We present here the biochemical analysis of six proteins from Helicobacter pylori ATCC 26695, a focus organism in COMBREX. Initial hypotheses were based upon affinity capture of proteins from total cellular lysate