How My Views on Evolution Evolved
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Understanding the Intelligent Design Creationist Movement: Its True Nature and Goals
UNDERSTANDING THE INTELLIGENT DESIGN CREATIONIST MOVEMENT: ITS TRUE NATURE AND GOALS A POSITION PAPER FROM THE CENTER FOR INQUIRY OFFICE OF PUBLIC POLICY AUTHOR: BARBARA FORREST, Ph.D. Reviewing Committee: Paul Kurtz, Ph.D.; Austin Dacey, Ph.D.; Stuart D. Jordan, Ph.D.; Ronald A. Lindsay, J. D., Ph.D.; John Shook, Ph.D.; Toni Van Pelt DATED: MAY 2007 ( AMENDED JULY 2007) Copyright © 2007 Center for Inquiry, Inc. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the Center for Inquiry, Inc. Table of Contents Section I. Introduction: What is at stake in the dispute over intelligent design?.................. 1 Section II. What is the intelligent design creationist movement? ........................................ 2 Section III. The historical and legal background of intelligent design creationism ................ 6 Epperson v. Arkansas (1968) ............................................................................ 6 McLean v. Arkansas (1982) .............................................................................. 6 Edwards v. Aguillard (1987) ............................................................................. 7 Section IV. The ID movement’s aims and strategy .............................................................. 9 The “Wedge Strategy” ..................................................................................... -
The Fourth Perspective: Evolution and Organismal Agency
The Fourth Perspective: Evolution and Organismal Agency Johannes Jaeger Complexity Science Hub (CSH), Vienna, Josefstädter Straße 39, 1080 Vienna Abstract This chapter examines the deep connections between biological organization, agency, and evolution by natural selection. Using Griesemer’s account of the re- producer, I argue that the basic unit of evolution is not a genetic replicator, but a complex hierarchical life cycle. Understanding the self-maintaining and self-pro- liferating properties of evolvable reproducers requires an organizational account of ontogenesis and reproduction. This leads us to an extended and disambiguated set of minimal conditions for evolution by natural selection—including revised or new principles of heredity, variation, and ontogenesis. More importantly, the con- tinuous maintenance of biological organization within and across generations im- plies that all evolvable systems are agents, or contain agents among their parts. This means that we ought to take agency seriously—to better understand the con- cept and its role in explaining biological phenomena—if we aim to obtain an or- ganismic theory of evolution in the original spirit of Darwin’s struggle for exis- tence. This kind of understanding must rely on an agential perspective on evolu- tion, complementing and succeeding existing structural, functional, and processual approaches. I sketch a tentative outline of such an agential perspective, and present a survey of methodological and conceptual challenges that will have to be overcome if we are to properly implement it. 1. Introduction There are two fundamentally different ways to interpret Darwinian evolutionary theory. Charles Darwin’s original framework grounds the process of evolution on 2 the individual’s struggle for existence (Darwin, 1859). -
Population Size and the Rate of Evolution
Review Population size and the rate of evolution 1,2 1 3 Robert Lanfear , Hanna Kokko , and Adam Eyre-Walker 1 Ecology Evolution and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia 2 National Evolutionary Synthesis Center, Durham, NC, USA 3 School of Life Sciences, University of Sussex, Brighton, UK Does evolution proceed faster in larger or smaller popu- mutations occur and the chance that each mutation lations? The relationship between effective population spreads to fixation. size (Ne) and the rate of evolution has consequences for The purpose of this review is to synthesize theoretical our ability to understand and interpret genomic varia- and empirical knowledge of the relationship between tion, and is central to many aspects of evolution and effective population size (Ne, Box 1) and the substitution ecology. Many factors affect the relationship between Ne rate, which we term the Ne–rate relationship (NeRR). A and the rate of evolution, and recent theoretical and positive NeRR implies faster evolution in larger popula- empirical studies have shown some surprising and tions relative to smaller ones, and a negative NeRR implies sometimes counterintuitive results. Some mechanisms the opposite (Figure 1A,B). Although Ne has long been tend to make the relationship positive, others negative, known to be one of the most important factors determining and they can act simultaneously. The relationship also the substitution rate [5–8], several novel predictions and depends on whether one is interested in the rate of observations have emerged in recent years, causing some neutral, adaptive, or deleterious evolution. Here, we reassessment of earlier theory and highlighting some gaps synthesize theoretical and empirical approaches to un- in our understanding. -
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B. -
Perceptual Variation and Structuralism
NOUSˆ 54:2 (2020) 290–326 doi: 10.1111/nous.12245 Perceptual Variation and Structuralism JOHN MORRISON Barnard College, Columbia University Abstract I use an old challenge to motivate a new view. The old challenge is due to variation in our perceptions of secondary qualities. The challenge is to say whose percep- tions are accurate. The new view is about how we manage to perceive secondary qualities, and thus manage to perceive them accurately or inaccurately. I call it perceptual structuralism. I first introduce the challenge and point out drawbacks with traditional responses. I spend the rest of the paper motivating and defending a structuralist response. While I focus on color, both the challenge and the view generalize to the other secondary qualities. 1. Perceptual Variation Our perceptual experiences tell us that lemons are yellow and sour. It’s natural to infer that lemons really are yellow and sour. But perceptions vary, even among ordinary observers. Some perceive lemons as slightly greener and sweeter. This gives rise to a challenge that forces us to rethink the nature of perception and the objectivity of what we perceive. For concreteness, I’ll focus on the perceptions of two ordinary observers, Miriam and Aaron. I’ll also focus on their perceptions of a particular lemon’s color. These restrictions will make the challenge easier to understand and the responses easier to compare. But the challenge and responses are perfectly general. Toward the end of the paper I’ll return to sourness and the other secondary qualities. When Miriam and Aaron look at the same lemon, their perceptions differ. -
Biogenetic Structuralism'
'BIOGE~TIC STRUCTURALISM'STRUCTURALISM" AND THE LOCATION OF STRUCTURES*STRUCTURES~'< In the heyday of 'high' structuralism it was sometimes argued, explicitly or implicitly, that the ultimate 'explanation' of cultural structures was to be found in the properties of 'the human mind'. This argument, it was perhaps felt, shifted the problem of explanation to the realm 'of philosophr, which many anthropologists considered outsiqe their concern. It was not surprising, therefore, that $ceptics ofaof, a more materialist persuasionpersuas'ion would critiofze structuralist analysis for being an essentially idea11stormentalistidealJtst or mentalist undertaking.undertakirig. Even so, the analytical value, of the notion of structures (in the Levi-Straussian sense,'hasbeen increasingly recognized, even by anthro pologists of a materialistmateria~ist stance (e.g. in the 'structural marx.i;sm'marx,j;sm' of MauriceNaurice Godelier (1973) and JonathanJonatl1an Friedman (1974),(1974)1 to the extent that nowadays only the most ardent 'vul¢ar'vul$ar materialists' feel they can do without it. This devefopment has not, however, done away with the problem of t~e locatiori of structures; the problem has only been push~d into the background, because other problems were.were felt: by most to be of more immediate concern. , .' ~ptwhether~f.lt'whether or not we have been bothered by the location problelflproblelf1 we should all welcome the pioneering work of two auth'prl;j,auth'prl;l, Charles Laughlin, an anthropologist, and Eugene d' Aqui!i, ~ psych~atrist, in which they lay the foundations " of aneW structural approach, 'biogenetic structuralism'. In the introduction to the book they state: !~ f f ., Th~majorTh~rnajor onttllbgical-:assumptiononttJlbgical-:assumption upon which biogenetic str\.ibturalismstr~bturalism is founded is that there exists no reality intervening between the central nervous system and the environment. -
Scientists Dissent List
A SCIENTIFIC DISSENT FROM DARWINISM “We are skeptical of claims for the ability of random mutation and natural selection to account for the complexity of life. Careful examination of the evidence for Darwinian theory should be encouraged.” This was last publicly updated February 2019. Scientists listed by doctoral degree or current position. Philip Skell* Emeritus, Evan Pugh Prof. of Chemistry, Pennsylvania State University Member of the National Academy of Sciences Lyle H. Jensen* Professor Emeritus, Dept. of Biological Structure & Dept. of Biochemistry University of Washington, Fellow AAAS Maciej Giertych Full Professor, Institute of Dendrology Polish Academy of Sciences Lev Beloussov Prof. of Embryology, Honorary Prof., Moscow State University Member, Russian Academy of Natural Sciences Eugene Buff Ph.D. Genetics Institute of Developmental Biology, Russian Academy of Sciences Emil Palecek Prof. of Molecular Biology, Masaryk University; Leading Scientist Inst. of Biophysics, Academy of Sci., Czech Republic K. Mosto Onuoha Shell Professor of Geology & Deputy Vice-Chancellor, Univ. of Nigeria Fellow, Nigerian Academy of Science Ferenc Jeszenszky Former Head of the Center of Research Groups Hungarian Academy of Sciences M.M. Ninan Former President Hindustan Academy of Science, Bangalore University (India) Denis Fesenko Junior Research Fellow, Engelhardt Institute of Molecular Biology Russian Academy of Sciences (Russia) Sergey I. Vdovenko Senior Research Assistant, Department of Fine Organic Synthesis Institute of Bioorganic Chemistry and Petrochemistry Ukrainian National Academy of Sciences (Ukraine) Henry Schaefer Director, Center for Computational Quantum Chemistry University of Georgia Paul Ashby Ph.D. Chemistry Harvard University Israel Hanukoglu Professor of Biochemistry and Molecular Biology Chairman The College of Judea and Samaria (Israel) Alan Linton Emeritus Professor of Bacteriology University of Bristol (UK) Dean Kenyon Emeritus Professor of Biology San Francisco State University David W. -
Understanding Poststructuralism Understanding Movements in Modern Thought Series Editor: Jack Reynolds
understanding poststructuralism Understanding Movements in Modern Thought Series Editor: Jack Reynolds Th is series provides short, accessible and lively introductions to the major schools, movements and traditions in philosophy and the history of ideas since the beginning of the Enlightenment. All books in the series are written for undergraduates meeting the subject for the fi rst time. Published Understanding Existentialism Understanding Virtue Ethics Jack Reynolds Stan van Hooft Understanding Poststructuralism James Williams Forthcoming titles include Understanding Empiricism Understanding Hermeneutics Robert Meyers Lawrence Schmidt Understanding Ethics Understanding Naturalism Tim Chappell Jack Ritchie Understanding Feminism Understanding Phenomenology Peta Bowden and Jane Mummery David Cerbone Understanding German Idealism Understanding Rationalism Will Dudley Charlie Heunemann Understanding Hegelianism Understanding Utilitarianism Robert Sinnerbrink Tim Mulgan understanding poststructuralism James Williams For Richard and Olive It is always about who you learn from. © James Williams, 2005 Th is book is copyright under the Berne Convention. No reproduction without permission. All rights reserved. First published in 2005 by Acumen Acumen Publishing Limited 15a Lewins Yard East Street Chesham Bucks HP5 1HQ www.acumenpublishing.co.uk ISBN 1-84465-032-4 (hardcover) ISBN 1-84465-033-2 (paperback) Work on Chapter 3 was supported by British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British -
Adaptive Tuning of Mutation Rates Allows Fast Response to Lethal Stress In
Manuscript 1 Adaptive tuning of mutation rates allows fast response to lethal stress in 2 Escherichia coli 3 4 a a a a a,b 5 Toon Swings , Bram Van den Bergh , Sander Wuyts , Eline Oeyen , Karin Voordeckers , Kevin J. a,b a,c a a,* 6 Verstrepen , Maarten Fauvart , Natalie Verstraeten , Jan Michiels 7 8 a 9 Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Kasteelpark Arenberg 20, 10 3001 Leuven, Belgium b 11 VIB Laboratory for Genetics and Genomics, Vlaams Instituut voor Biotechnologie (VIB) Bioincubator 12 Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium c 13 Smart Systems and Emerging Technologies Unit, imec, Kapeldreef 75, 3001 Leuven, Belgium * 14 To whom correspondence should be addressed: Jan Michiels, Department of Microbial and 2 15 Molecular Systems (M S), Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, box 16 2460, 3001 Leuven, Belgium, [email protected], Tel: +32 16 32 96 84 1 Manuscript 17 Abstract 18 19 While specific mutations allow organisms to adapt to stressful environments, most changes in an 20 organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often 21 considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in 22 cellular mutation rates as a response to changes in selective pressure. We show that hypermutation 23 independently evolves when different Escherichia coli cultures adapt to high ethanol stress. 24 Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation 25 rate. Specifically, population mutation rates rise when cells experience higher stress and decline again 26 once cells are adapted. -
Adaptive Mutation Sequences Reproduced by Mismatch Repair Deficiency (Escherichia Coli/Muts/Dam/Spontaneous Mutation/Recombination) SIMONNE LONGERICH, ANNE M
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 12017-12020, December 1995 Biochemistry Adaptive mutation sequences reproduced by mismatch repair deficiency (Escherichia coli/MutS/Dam/spontaneous mutation/recombination) SIMONNE LONGERICH, ANNE M. GALLOWAY, REUBEN S. HARRIS, CINDY WONG, AND SUSAN M. ROSENBERG* Department of Biochemistry, 4-74 Medical Sciences Building, University of Alberta, Edmonton, AB Canada T6G 2H7 Communicated by Allan M. Campbell, Stanford University, Stanford, CA, September 15, 1995 (received for review June 15, 1995) ABSTRACT Adaptive reversions of a lac frameshift mu- mutation (16). The lagging-strand synthesis, which occurs tation in Escherichia coli are -1 deletions in small mononu- along with leading-strand synthesis in vegetative replication, cleotide repeats, whereas growth-dependent reversions are was suggested to produce the heterogeneity of the growth- heterogeneous. The adaptive mutations resemble instability of dependent reversion sequences by, e.g., incorrect joinings of simple repeats, which, in hereditary colon cancer, in yeast, Okazaki fragments (16). Data discourage the view that con- and in E. coli occurs in the absence of mismatch repair. The jugational transfer is a predominant source of adaptive rever- postulate that mismatch repair is disabled transiently during sion (and thus of its unusual sequence spectrum) (17, 18). adaptive mutation in E. coli is supported here by the demon- However, a possible caveat regarding such data has been stration that the growth-dependent mutation spectrum can be suggested (15), and it is also possible that transfer replication made indistinguishable from adaptive mutations by disallow- occurs without actual transfer (16, 18). ing mismatch repair during growth. Physiologically induced (iv) A fourth possibility is that both growth-dependent and mismatch repair deficiency could be an important mutagenic mechanism in in adaptive mutations result from essentially similar polymerase cancers and evolution. -
The Role of Transient Hypermutators in Adaptive Mutation in Escherichia Coli
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 6862–6867, June 1999 Genetics The role of transient hypermutators in adaptive mutation in Escherichia coli WILLIAM A. ROSCHE† AND PATRICIA L. FOSTER†‡, WITH APPENDIX BY JOHN CAIRNS§ †Department of Environmental Health, Boston University School of Public Health, Boston University School of Medicine, Boston, MA 02118; and §Clinical Trial Service Unit, Radcliffe Infirmary, Oxford OX2 6HE, United Kingdom Communicated by Philip Hanawalt, Stanford University, Stanford, CA, April 23, 1999 (received for review January 10, 1999) ABSTRACT Microbial populations under nonlethal se- that bear adaptive mutations than among cells that do not (3). lection can give rise to mutations that relieve the selective In four cases in which this has been tested, the prediction has pressure, a phenomenon that has come to be called ‘‘adaptive been confirmed (3–6). However, it is not possible to determine mutation.’’ One explanation for adaptive mutation is that a from those results what proportion of the mutations that occur small proportion of the cells experience a period of transient during selection arise from hypermutating cells—that will hypermutation, and that these hypermutators account for the depend on the proportion of cells that are in the hypermutable mutations that appear. The experiments reported here inves- state and the degree to which their mutation rate is elevated tigated the contribution that hypermutators make to the (7, 8). Two independent measurements are needed to solve for mutations occurring in a -
Darwins-Corrosive-Idea.Pdf
This report was prepared and published by Discovery Institute’s Center for Science and Culture, a non-profit, non-partisan educational and research organization. The Center’s mission is to advance the understanding that human beings and nature are the result of intelligent design rather than a blind and undirected process. We seek long-term scientific and cultural change through cutting-edge scientific research and scholarship; education and training of young leaders; communication to the general public; and advocacy of academic freedom and free speech for scientists, teachers, and students. For more information about the Center, visit www.discovery.org/id. FOR FREE RESOURCES ABOUT SCIENCE AND FAITH, VISIT WWW.SCIENCEANDGOD.ORG/RESOURCES. PUBLISHED NOVEMBER, 2016. © 2016 BY DISCOVERY INSTITUTE. DARWIN’S CORROSIVE IDEA The Impact of Evolution on Attitudes about Faith, Ethics, and Human Uniqueness John G. West, PhD* EXECUTIVE SUMMARY In his influential book Darwin’s Dangerous Idea, have asked about the impact of science on a person’s philosopher Daniel Dennett praised Darwinian religious faith typically have not explored the evolution for being a “universal acid” that dissolves impact of specific scientific ideas such as Darwinian traditional religious and moral beliefs.1 Evolution- evolution.5 ary biologist Richard Dawkins has similarly praised In order to gain insights into the impact of Darwin for making “it possible to be an intellect- specific scientific ideas on popular beliefs about ually fulfilled atheist.”2 Although numerous studies God and ethics, Discovery Institute conducted a have documented the influence of Darwinian nationwide survey of a representative sample of theory and other scientific ideas on the views of 3,664 American adults.