Multiplicative modulations in hue-selective cells enhance unique hue representation Paria Mehrani1, 2, *, Andrei Mouraviev1, 2, and John K. Tsotsos1, 2 1Department of Electrical Engineering and Computer Science, York University, Toronto, Canada 2The Center for Vision Research, York University, Toronto, Canada
[email protected],
[email protected],
[email protected] There is still much to understand about the color processing mechanisms in the brain and the transformation from cone-opponent representations to perceptual hues. Moreover, it is unclear which areas(s) in the brain represent unique hues. We propose a hierarchical model inspired by the neuronal mechanisms in the brain for local hue representation, which reveals the contributions of each visual cortical area in hue representation. Local hue encoding is achieved through incrementally increasing processing nonlinearities beginning with cone input. Besides employing nonlinear rectifications, we propose multiplicative modulations as a form of nonlinearity. Our simulation results indicate that multiplicative modulations have significant contributions in encoding of hues along intermediate directions in the MacLeod-Boynton diagram and that model V4 neurons have the capacity to encode unique hues. Additionally, responses of our model neurons resemble those of biological color cells, suggesting that our model provides a novel formulation of the brain's color processing pathway. The color processing mechanisms in the primary visual Beyond LGN, studies on multiple regions in the ventral cortex and later processing stages are a target of debate stream show an increase in nonlinearity with respect to among color vision researchers. What is also unclear is the three cone types from LGN to higher brain areas [7] which brain area represents unique hues, those pure col- and also a shift of selectivity toward intermediate hues ors unmixed with other colors.