Flux Vr: the Development and Validation of a Heuristic Checklist for Virtual Reality Game Design Supporting Immersion, Presence, and Flow

Total Page:16

File Type:pdf, Size:1020Kb

Flux Vr: the Development and Validation of a Heuristic Checklist for Virtual Reality Game Design Supporting Immersion, Presence, and Flow FLUX VR: THE DEVELOPMENT AND VALIDATION OF A HEURISTIC CHECKLIST FOR VIRTUAL REALITY GAME DESIGN SUPPORTING IMMERSION, PRESENCE, AND FLOW A Dissertation by Daniel Smith Master of Arts, Wichita State University, 2018 Bachelor of Science, Cameron University, 2015 Submitted to the Department of Psychology and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2021 © Copyright 2021 by Daniel Smith All Rights Reserved FLUX VR: THE DEVELOPMENT AND VALIDATION OF A HEURISTIC CHECKLIST FOR VIRTUAL REALITY GAME DESIGN SUPPORTING IMMERSION, PRESENCE, AND FLOW The following faculty members have examined the final copy of this dissertation for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Doctor of Philosophy with a major in Psychology. Rui Ni, Committee Chair Barbara Chaparro, Committee Member Traci Hart, Committee Member Michael Jorgensen, Committee Member Lisa Vangsness, Committee Member Accepted for the College of Liberal Arts and Sciences Andrew Hippisley, Dean Accepted for the Graduate School Coleen Pugh, Dean iii DEDICATION To my partner, Jasmine – I could never express my appreciating for your support these past few years. This dissertation marks the end of an era and the start of our new lives. I wouldn’t want to share it with anyone else, I love you. To my Mother – Your emotional support has been unwavering for 28 years. I know you’ve wanted this just as much as me. Everything we went through motivated me to make it this far. My success is our success. We did it. To my Father – You’ve always pushed me to be better. I wouldn’t have made it this far if you hadn’t shown me that anything can be done with enough effort. iv ACKNOWLEDGEMENTS When I was in high school, I wanted to be a medical doctor. While sitting in the chair to enroll for my first semester of college, I decided I didn’t want to go to school for that long and elected to major in Psychology. About 2 years in, I decided counseling wasn’t for me and was very lost in what I wanted to do. Then, in my Psychology of Perception class, I heard my professor mention “engineering psychology”. I have always loved building things and regretted not making it a career, which made this very interesting to me. I asked him to explain the field to me more and the rest is history. I started my journey into human factors psychology and shortly after discovered that I could do research on whatever I wanted, including video games. This was the first step in fulfilling my childhood dream of working in video games, but there were so many more steps to be taken to get here today. It all started with my first advisor, Dr. Adam Randell. At my old university, there were no research labs, so he and Dr. Jeff Seger started the Research Club, where I became president simply because I wanted to go to graduate school. Even though he wasn’t my assigned advisor, Dr. Randell went to great lengths to help prepare me for graduate school by pushing me as far as he could with my writing in his classes, giving me responsibilities in research projects he had set up, and any other areas he could find. The effort given but not required by Dr. Randell and Dr. Seger will forever be the jumping point for my graduate education and I hope to offer the same help to anyone that could possibly benefit from it. Neither of you had to do what you did for me, and for that I am forever grateful. When I started at Wichita State, I left behind everyone and everything I knew to start a new life. Alongside me were the members of my cohort: Adam, Alexis, and Jasmine. By some crazy stroke of luck, we were all interested in video games, both casually and as a career, so we bonded immediately. We grew very close very quickly and that became a rock for me for the remaining years of graduate school. We shared stories and frustrations daily, supporting each other through all of the trials and tribulations that come with graduate school. Through internship rejections, stressful assignments, long nights, and v everything in between, I always felt like I wasn’t going through it alone because of you three. There exists no universe where I would have made it all the way through graduate school without you three, thank you for enriching my life. To S.W.A.R.M., my online community of friends, you were all a blessing throughout the COVID quarantine. I probably would have lost my mind if not for the consistent contact with people through our discord and game nights. To all of my fellow HF students, thank you. We’ve all stood together through so many things, both personal and academic. Kirsten, Tiffany, Monica, Bill, Dakota, Abbie, Dom, Inga, Will S., Will C., Shivani, JP, Brad, Jake, Christina P., Christina S., Brady, Taylor, and Kevin, I hold so many dear memories with all of you that make up many of the highs amongst the myriad of lows caused by graduate school. For those of you that will come after me, keep going, you’re going to make it. vi ABSTRACT Virtual reality (VR) gaming is a rapidly-growing field in both technology and adoption (eMarketer, 2019). However, because the technology is relatively new, there is a lack of guidance on what constitutes good design and effective evaluations measures for VR games. Because the goals of VR gaming are immersion and presence, it’s important that effective evaluation tools are available that may catch usability problems that interfere with these goals. This study utilized an eight-step method developed by Quiñones et al. (2018) to develop and validate a heuristic checklist to evaluate VR games. The experimental VR games heuristic checklist was compared to a control checklist developed by Muñoz, Barcelos, & Chalegre (2011) for evaluating virtual worlds. Two VR games, Apex Construct and Art of Fight, were evaluated by six experts, three using the experimental checklist and three using the control checklist. Experts were also given a questionnaire used to evaluate the checklist itself, and user tests were conducted on both games to uncover usability problems that might have been missed by both lists. Expert heuristic evaluations resulted in 55 total revisions to the list, including 50 changes to existing questions and the addition of 5 new questions. The expert judgment questionnaire did not result in any adaptations to the questions but did result in the change of three heuristic category importance ratings. User tests uncovered many overlapping usability problems when compared with the heuristic evaluations, but also uncovered unique problems which resulted in the creation of 11 new checklist questions. The final heuristic checklist consists of 145 questions and 15 heuristic categories. vii TABLE OF CONTENTS Chapter Page 1. INTRODUCTION ............................................................................................................................................. 1 2. LITERATURE REVIEW ................................................................................................................................. 5 2.1 Immersive Design in Virtual Reality .............................................................................................. 5 2.2 Immersion, Presence, and Flow ....................................................................................................... 6 2.3 Grounded Theory in Immersion ...................................................................................................... 8 2.4 Immersion, Presence, and Performance Model [IPP] ............................................................. 9 2.5 Flow & Gameflow ............................................................................................................................... 12 2.6 Virtual Reality Technology. ............................................................................................................ 17 2.7 Heuristic Evaluation (HE) ............................................................................................................... 19 3. THE CURRENT STUDY .............................................................................................................................. 25 3.1 Heuristic Checklist Generation and Validation Methodology ........................................... 26 3.2 Step 1: Exploratory stage. ............................................................................................................... 27 3.2.1 Method. ......................................................................................................................................... 27 3.2.2 Results. ......................................................................................................................................... 27 3.2.3 Discussion. .................................................................................................................................. 28 3.3 Step 2: Experimental stage. ............................................................................................................ 29 3.3.1 Method. ......................................................................................................................................... 29 3.3.2 Results. ......................................................................................................................................... 29 3.3.3 Discussion. .................................................................................................................................. 31 3.4
Recommended publications
  • VR Headset Comparison
    VR Headset Comparison All data correct as of 1st May 2019 Enterprise Resolution per Tethered or Rendering Special Name Cost ($)* Available DOF Refresh Rate FOV Position Tracking Support Eye Wireless Resource Features Announced Works with Google Subject to Mobile phone 5.00 Yes 3 60 90 None Wireless any mobile No Cardboard mobile device required phone HP Reverb 599.00 Yes 6 2160x2160 90 114 Inside-out camera Tethered PC WMR support Yes Tethered Additional (*wireless HTC VIVE 499.00 Yes 6 1080x1200 90 110 Lighthouse V1 PC tracker No adapter support available) HTC VIVE PC or mobile ? No 6 ? ? ? Inside-out camera Wireless - No Cosmos phone HTC VIVE Mobile phone 799.00 Yes 6 1440x1600 75 110 Inside-out camera Wireless - Yes Focus Plus chipset Tethered Additional HTC VIVE (*wireless tracker 1,099.00 Yes 6 1440x1600 90 110 Lighthouse V1 and V2 PC Yes Pro adapter support, dual available) cameras Tethered All features HTC VIVE (*wireless of VIVE Pro ? No 6 1440x1600 90 110 Lighthouse V1 and V2 PC Yes Pro Eye adapter plus eye available) tracking Lenovo Mirage Mobile phone 399.00 Yes 3 1280x1440 75 110 Inside-out camera Wireless - No Solo chipset Mobile phone Oculus Go 199.00 Yes 3 1280x1440 72 110 None Wireless - Yes chipset Mobile phone Oculus Quest 399.00 No 6 1440x1600 72 110 Inside-out camera Wireless - Yes chipset Oculus Rift 399.00 Yes 6 1080x1200 90 110 Outside-in cameras Tethered PC - Yes Oculus Rift S 399.00 No 6 1280x1440 90 110 Inside-out cameras Tethered PC - No Pimax 4K 699.00 Yes 6 1920x2160 60 110 Lighthouse Tethered PC - No Upscaled
    [Show full text]
  • Virtual Reality Headsets
    VIRTUAL REALITY HEADSETS LILY CHIANG VR HISTORY • Many companies (Virtuality, Sega, Atari, Sony) jumped on the VR hype in the 1990s; but commercialization flopped because both hardware and software failed to deliver on the promised VR vision. • Any use of the VR devices in the 2000s was limited to the military, aviation, and medical industry for simulation and training. • VR hype resurged after Oculus successful KickStarter campaign; subsequently acquired by Facebook for $2.4 bn. • Investments rushed into the VR industry as major tech firms such as Google, Samsung, and Microsoft and prominent VC firms bet big on the VR revolution. LIST OF VIRTUAL REALITY HEADSET FIRMS Company Name Entered Exited Disposition Company Name Entered Exited Disposition Company Name Entered Exited Disposition LEEP Optics 1979 1998 Bankrupt Meta Altergaze 2014 Ongoing VPL Research 1984 1990 Bankrupt SpaceGlasses 2012 Ongoing Archos VR 2014 Ongoing Division Group Sulon Cortex 2012 Ongoing AirVr 2014 Ongoing LTD 1989 1999 Acquired Epson Moverio Sega VR 1991 1994 Bankrupt BT-200 2012 Ongoing 360Specs 2014 Ongoing Virtuality 1991 1997 Acquired i2i iPal 2012 Ongoing Microsoft VictorMaxx 1992 1998 Bankrupt Star VR 2013 Ongoing Hololens Systems 2015 Ongoing Durovis Dive 2013 Ongoing Razr OSVR 2015 Ongoing Atari Jaguar VR 1993 1996 Discontinued Vrizzmo 2013 Ongoing Virtual I-O 1993 1997 Bankrupt Cmoar 2015 Ongoing CastAR 2013 Ongoing eMagin 1993 Ongoing Dior Eyes VR 2015 Ongoing VRAse 2013 Ongoing Virtual Boy 1994 1995 Discontinued Yay3d VR 2013 Ongoing Impression Pi
    [Show full text]
  • Attitudes Towards Virtual Reality Gaming and Products
    ATTITUDES TOWARDS VIRTUAL REALITY GAMING AND PRODUCTS Eppu Siirtola International Business Bachelor's Thesis Supervisor: Suzanne Altobello Date of approval: 9 April 2018 Aalto University School of Business Bachelor´s Program in International Business Mikkeli Campus ATTITUDES TOWARDS VIRTUAL REALITY GAMING AND PRODUCTS Eppu Siirtola International Business Bachelor's Thesis Supervisor: Suzanne Altobello Date of approval: 9 April 2018 Aalto University School of Business Bachelor´s Program in International Business Mikkeli Campus AALTO UNIVERSITY ABSTRACT OF SCHOOL OF BUSINESS BACHELOR’S THESIS Mikkeli Campus Author: Eppu Siirtola Title of thesis: ATTITUDES TOWARDS VIRTUAL REALITY GAMING AND PRODUCTS Date: 9 April 2018 Degree: Bachelor of Science in Economics and Business Administration Supervisor: Suzanne Altobello Objectives The main objective of this study was to explore the attitudes towards virtual reality gaming and the products surrounding it to identify the reasons why consumers choose to purchase and adopt the usage of these devices. The study also analyzes the components of added value that virtual reality gaming brings on top of a more traditional gaming experience Summary An extensive examination of already published academic research regarding product adoption and value concept was conducted to realize the key notions that would act as the cornerstones of the primary research. A quantitative survey was designed for the relevant sample to see whether the earlier findings on the topics of product adoption and value concept resonated with the results gathered from the survey focusing on virtual reality gaming and the products surrounding it. Conclusions The research shows that the product adoption in the virtual reality gaming market essentially operates under the already established concepts of product adoption.
    [Show full text]
  • Immersive Virtual Reality Methods in Cognitive Neuroscience and Neuropsychology: Meeting the Criteria of the National Academy Of
    Immersive virtual reality methods in cognitive neuroscience and neuropsychology: Meeting the criteria of the National Academy of Neuropsychology and American Academy of Clinical Neuropsychology Panagiotis Kourtesisa,b,c,d* and Sarah E. MacPhersone,f aNational Research Institute of Computer Science and Automation, INRIA, Rennes, France; bUniv Rennes, Rennes, France; cResearch Institute of Computer Science and Random Systems, IRISA, Rennes, France; dFrench National Centre for Scientific Research, CNRS, Rennes, France. eHuman Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK; fDepartment of Psychology, University of Edinburgh, Edinburgh, UK; * Panagiotis Kourtesis, National Research Institute of Computer Science and Automation, INRIA, Rennes, France. Email: [email protected] Abstract Clinical tools involving immersive virtual reality (VR) may bring several advantages to cognitive neuroscience and neuropsychology. However, there are some technical and methodological pitfalls. The American Academy of Clinical Neuropsychology (AACN) and the National Academy of Neuropsychology (NAN) raised 8 key issues pertaining to Computerized Neuropsychological Assessment Devices. These issues pertain to: (1) the safety and effectivity; (2) the identity of the end-user; (3) the technical hardware and software features; (4) privacy and data security; (5) the psychometric properties; (6) examinee issues; (7) the use of reporting services; and (8) the reliability of the responses and results. The VR Everyday Assessment Lab (VR-EAL) is the first immersive VR neuropsychological battery with enhanced ecological validity for the assessment of everyday cognitive functions by offering a pleasant testing experience without inducing cybersickness. The VR-EAL meets the criteria of the NAN and AACN, addresses the methodological pitfalls, and brings advantages for neuropsychological testing.
    [Show full text]
  • Recommendations for Integrating a P300-Based Brain–Computer Interface in Virtual Reality Environments for Gaming: an Update
    computers Review Recommendations for Integrating a P300-Based Brain–Computer Interface in Virtual Reality Environments for Gaming: An Update Grégoire Cattan 1,* , Anton Andreev 2 and Etienne Visinoni 3 1 IBM, Cloud and Cognitive Software, Department of SaferPayment, 30-150 Krakow, Poland 2 GIPSA-lab, CNRS, Department of Platforms and Project, 38402 Saint Martin d’Hères, France; [email protected] 3 SputySoft, 75004 Paris, France; [email protected] * Correspondence: [email protected] Received: 19 September 2020; Accepted: 12 November 2020; Published: 14 November 2020 Abstract: The integration of a P300-based brain–computer interface (BCI) into virtual reality (VR) environments is promising for the video games industry. However, it faces several limitations, mainly due to hardware constraints and limitations engendered by the stimulation needed by the BCI. The main restriction is still the low transfer rate that can be achieved by current BCI technology, preventing movement while using VR. The goal of this paper is to review current limitations and to provide application creators with design recommendations to overcome them, thus significantly reducing the development time and making the domain of BCI more accessible to developers. We review the design of video games from the perspective of BCI and VR with the objective of enhancing the user experience. An essential recommendation is to use the BCI only for non-complex and non-critical tasks in the game. Also, the BCI should be used to control actions that are naturally integrated into the virtual world. Finally, adventure and simulation games, especially if cooperative (multi-user), appear to be the best candidates for designing an effective VR game enriched by BCI technology.
    [Show full text]
  • Guidelines on Successfully Porting Non-Immersive Games to Virtual
    Guidelines on Successfully Porting Non-Immersive Games to Virtual Reality: A Case Study in Minecraft John Porter III Matthew Boyer Andrew Robb Clemson University Clemson University Clemson University Clemson, SC, USA Clemson, SC, USA Clemson, SC, USA [email protected] [email protected] [email protected] ABSTRACT top 10 best seller list on the Steam marketplace after it was Virtual reality games have grown rapidly in popularity since released for pre-ordering. the first consumer VR head-mounted displays were released When porting a game to VR, one of the major challenges faced in 2016, however comparatively little research has explored by developers is adapting the controls of the non-immersive how this new medium impacts the experience of players. In game to work in the new immersive context. Several options this paper, we present a study exploring how user experience are open to developers. At the most basic level, developers can changes when playing Minecraft on the desktop and in im- change nothing and continue to allow users to play the game mersive virtual reality. Fourteen players completed six 45 using a keyboard or a gamepad. This method relies purely on minute sessions, three played on the desktop and three in VR. indirect input, as no aspect of the player’s bodily motion is The Gaming Experience Questionnaire, the i-Group presence used to interact with the game (expect for head motion). At the questionnaire, and the Simulator Sickness Questionnaire were most advanced level, developers can completely recreate the administered after each session, and players were interviewed controls to take full advantage of the motion controls afforded at the end of the experiment.
    [Show full text]
  • Audio-Induced Interaction Virtual Reality Game
    UTM Computing Proceedings 1 Innovations in Computing Technology and Applications Volume 2 | Year: 2017 | ISBN: 978-967-0194-95-0 Audio-Induced Interaction Virtual Reality Game 1 2 Izwan Harris Ismail Jafli and Norhaida Mohd Suaib 1 Faculty of Computing, Universiti Teknologi Malaysia (UTM), 81310, Johor Bharu, Johor, Malaysia 1 2 {[email protected] ,[email protected] } Abstract. Immersion into Virtual Reality (VR) is a perception of being physically present in a non-physical world. The perception is created by surrounding the user of the VR environment in images, sound or other stimuli that provide an engrossing total environment. In order to optimize the immersive feeling of the simulations, the remaining issue is to balance the trade-off between realism and interaction methods while still adhering to cost and hardware constraints. Enhancing the feeling of realism when the player enters the world of VR is the main objective of this project. Therefore, this project aims to add a new main interaction cue to a VR game, that is interaction induced by sound-cues. The game uses spatial sound as interaction cue rather than depending entirely on visual cues. In order to actualize the aim, several phases needed to be carried out. Firstly, a VR headset has to be selected, followed by setting up the appropriate VR technology in the development environment. The game is designed to work with VR immersion technology and the interaction be enhanced by spatial sound. Game mechanics such as shooting, randomizer and enemy behaviour are then implemented to complete the game. Subsequently, the integration of an audio engine to spatialize the sound is required.
    [Show full text]
  • VIRTUAL REALITY Webinar Are Those of the Presenter and Are Not the Views Or Opinions of the Newton Public Library
    5/14/2021 Different VR goggle rigs vs GeoCache, Ingress, Pokemon Go etc The views, opinions, and information expressed during this VIRTUAL REALITY webinar are those of the presenter and are not the views or opinions of the Newton Public Library. The Newton Public VS Library makes no representation or warranty with respect to the webinar or any information or materials presented therein. Users of webinar materials should not rely upon or construe Alternative REALITY the information or resource materials contained in this webinar To log in live from home go to: as legal or other professional advice and should not act or fail https://kanren.zoom.us/j/561178181 to act based on the information in these materials without The recording of this presentation will be online after the 18th seeking the services of a competent legal or other specifically @ https://kslib.info/1180/Digital-Literacy---Tech-Talks specialized professional. The previous presentations are also available online at that link Presenter: Nathan, IT Supervisor, at the Newton Public Library Reasons to start your research at your local Library Protect your computer A computer should always have the most recent updates installed for spam filters, anti-virus and anti-spyware software and a secure firewall. http://www.districtdispatch.org/wp-content/uploads/2012/03/triple_play_web.png http://cdn.greenprophet.com/wp-content/uploads/2012/04/frying-pan-kolbotek-neoflam-560x475.jpg • Augmented reality vs. virtual reality: AR and VR made clear • 122,143 views Aug 6, 2018 Two technologies that are confusingly similar, but utterly different. Augmented reality vs. virtual reality: AR and VR made clear • Augmented reality playlist - https://youtu.be/NOKJDCqvvMk https://www.youtube.com/playlist?list=PLAl4aZK3mRv3Qw2yBQV7ueeHIqTcsoI99 • ​ Virtual reality playlist, by Cnet- https://www.youtube.com/playlist?list=PLAl4aZK3mRv0UCC7R14Zn4m8K7_XoLODQ 1 5/14/2021 My first intro to VR was … http://www.rollanet.org/~vbeydler/van/3dreview/vmlogo.jpg ht t ps: //cdn.
    [Show full text]
  • Flightsim Community Survey 2019
    FlightSim Community Survey 2019 Final Report 1 Copyright Notice © 2020 Navigraph By licensing our work with the CC BY-SA 4.0 license it means that you are more than welcome to copy, remix, transform and build upon the results of this survey and then redistribute it to whomever you want in any way. You only have to give credit back to Navigraph and keep the same license. https://creativecommons.org/licenses/by-sa/4.0/ 2 Preamble This is the annual flightsim community survey, a collaborative effort between partners – developers, companies and organizations in the flightsim domain – coordinated and compiled by Navigraph. This survey is freely distributed for the common good of the flightsim community to guide future projects and attract new pilots. This flightsim community survey is the largest and most comprehensive of its kind. This year 17,800 respondents participated in the survey. This is an 18.6% increase from last year when 15,000 participated. This year’s survey consisted of 93 questions, compared to last year’s 77 questions. However, this year many more of the questions were conditional, allowing us to add new sections and ask in-depth questions only to those respondents for whom it was relevant. New sections this year contained questions specifically aimed at pilots using flight simulator software on mobile devices and helicopter flight simulators. We also added questions on combat simulators, air traffic control and flight planning. Finally, because of the upcoming release of the new Microsoft Flight Simulator 2020, we added questions on this topic as well. Our main objective this year was to recruit more and diverse partners to broaden the reach of the survey to get an even more representative sample of the community.
    [Show full text]
  • Équipement Léger De Simulation À Domicile
    Équipement léger de simulation à domicile Le confinement vous a incité à trouver des solutions pour voler par-delà les interdictions administratives ou une météo capricieuse ? Alors, un ordinateur, un manche, CONDOR 2 et vous voilà prêt (à minima) à décoller *! *Les matériels que vous trouverez ci-dessous ont été testées par les membres du groupe « lab Planeur FFVP ». Ces préconisations ne sont pas exhaustives mais représentent le meilleur rapport qualité/prix du moment sur le matériel testé. Les liens vers les commerces en ligne sont proposés à titre indicatif et la FFVP n’a contracté aucun partenariat avec le distributeur ni le fabricant. Les matériels sont susceptibles d’être trouvés dans tout commerce dédié à un prix inférieur. Les prix peuvent variés d’un jour à l’autre suivant les promotions. Matériel requis : 1) Ordinateur : • Avec ou sans Track IR : processeur I3 minimum avec 4 Go de mémoire, carte graphique GTX 1050 TI • Avec un casque de réalité virtuelle : processeur I7 avec 8Go de mémoire carte graphique GTX 1080 2) Condor 2 et accès réseau internet En plus d’acquérir Condor 2 et de disposer d’un réseau internet de qualité, il vous faudra un disque dur de 500 Go minimum (recommandé 1 ou 2 To) pour stocker les scènes Condor... 3) Le matériel de vol Un joystick avec au minimum 1 manette de gaz et 8 boutons. Si vous voulez allez plus loin, nous conseillons l’acquisition d’un palonnier (ou la fabrication maison avec les nombreux tutos que vous trouverez via internet). a) manche à moins de 75€ Manche thrusmaster T 16000 FCS PC b) palonnier à moins de 150 € Thrustmaster TFRP Rudder c) les combinés manche/palonnier (150 à 250€) ▪ T.16000M FCS FLIGHT PACK (palonnier + manche avec trim 16 boutons + manette des gaz pour volet ou aérofreins) ▪ Thrusmaster T flight à 150 € environ Pour aller plus loin pour votre confort de pilotage Vous pouvez acquérir un Track Ir ou un masque de réalité virtuelle.
    [Show full text]
  • Envrment: Investigating Experience in a Virtual User-Composed Environment
    ENVRMENT: INVESTIGATING EXPERIENCE IN A VIRTUAL USER-COMPOSED ENVIRONMENT A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Computer Science by Matthew Key December 2020 c 2020 Matthew Key ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: EnVRMent: Investigating Experience in a Virtual User-Composed Environment AUTHOR: Matthew Key DATE SUBMITTED: December 2020 COMMITTEE CHAIR: Zo¨eWood, Ph.D. Professor of Computer Science COMMITTEE MEMBER: Christian Eckhardt, Ph.D. Professor of Computer Science COMMITTEE MEMBER: Franz Kurfess, Ph.D. Professor of Computer Science iii ABSTRACT EnVRMent: Investigating Experience in a Virtual User-Composed Environment Matthew Key Virtual Reality is a technology that has long held society's interest, but has only recently began to reach a critical mass of everyday consumers. The idea of modern VR can be traced back decades, but because of the limitations of the technology (both hardware and software), we are only now exploring its potential. At present, VR can be used for tele-surgery, PTSD therapy, social training, professional meetings, conferences, and much more. It is no longer just an expensive gimmick to go on a momentary field trip; it is a tool, and as with the automobile, personal computer, and smartphone, it will only evolve as more and more adopt and utilize it in various ways. It can provide a three dimensional interface where only two dimensions were previously possible. It can allow us to express ourselves to one another in new ways regardless of the distance between individuals.
    [Show full text]
  • Applikationszentrum V/AR Bericht #08: Head-Mounted Displays
    Bericht #08: Head-Mounted Displays: Messung des Sichtfelds (Field of View) Stand: v12. 06.11.2020 Inhalt 1. Einführung - Aufgabenstellung ........................................................................................................ 3 2. Messaufbau ..................................................................................................................................... 4 3. Messverfahren ................................................................................................................................. 6 4. Messergebnisse ............................................................................................................................... 7 5. Schlussfolgerungen ........................................................................................................................ 14 6. Limitationen ................................................................................................................................... 16 7. Glossar ........................................................................................................................................... 17 8. Messprotokoll ................................................................................................................................ 18 9. Literaturverzeichnis ....................................................................................................................... 19 10. Impressum ....................................................................................................................................
    [Show full text]